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2 Introduction to the Physics of Gases 

In physical textbooks and especially in thermodynamic textbooks there are more 
or less detailed explanations with the most important equations. For a more in-
depth study the monograph from (Atkins 2006) is recommended as detailed as 
well as the German handbook from (Messer Griesheim 1989) and the monograph 
from    (Hering et al. 1999). 

2.1 The Ideal Gas 

Since it has been possible to examine gases using physical methods two questions 
have always been of interest: 

– How do the pressure p and the volume V of an enclosed quantity of gas behave 
at a constant temperature T (isothermal state change)? 

– How does the volume of a gas behave at changing temperatures but constant 
pressure (isobaric state change)? 

The answers can be found in Boyle-Mariotte’s Law (17th century) according to the 
equation. 

                                                p V constant k⋅ = =                                         (2.1-1) 

with k as a constant and in Gay-Lussac’s Law (around 1800) 

                                               ( )T1 T0 1 0V V 1 T −= ⋅ + α ⋅ Δ                                 (2.1-2) 

with a constant p for the states 0 and 1, and with the temperature difference 

1 0 1 0T T T−Δ = −  and α as the (spatial) expansion coefficient of gas. α was deter-

mined by experiment and is found to be in a borderline case p → 0 as 1/(273.15) 
K. A gas with this borderline case is described as ideal. 

All known gases show no ideal behaviour, rather, they are so called “real 
gases”. The above mentioned Eqs. for the ideal gas can be used, if the tempera-
tures are clearly above the melting point or the triple point and/or the pressure or 
the differences in pressure are small. The monoatomic He as the lightest inert gas 
comes closest to this ideal behaviour which is why it is used in gas thermometers. 

The analogous equation (2.1-2) also applies to the behaviour of pressure at a 
constant geometric volume (isometric state change). 

T1 T0 1 0p p (1 T )−= + α ⋅ Δ  (2.1-3)
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Example E2.1-1: Calculating pressure with varying temperature.  

At 15°C the pressure of the gas cylinder is determined to 198 bar gauge-pressure, 
thus the absolute pressure is 199 bar. A temperature of 35°C is expected, conse-
quently ΔT = 20°C. By approximation  

                             [ ]T35

1
p 199(1 20) 213.6 bar

273.15
= + =  

The equations (2.1-2 and -3) assume a very simple form when VT0 is equal to 
V0 for 0°C. Taking  α = (273.15 K) –1 = (Tstand)

 –1  into consideration one obtain  

                                  1
1 0

s tan d

T
V V

T
=        and      1

1 0
s tan d

T
p p

T
=                    (2.1-4) 

with T in K or more generally  

                                         1

V
k

T
=              and               2

p
k

T
=                     (2.1-5) 

2.1.1 State Equations 

The combination of Boyle-Mariotte’s Law and Gay-Lussac’s Law produces the 
state equation for the ideal gas.  

                                                       
p V

k
T

⋅ =                                                   (2.1-1) 

where k indicates a specific constant in each case. With a fixed but arbitrary mass 
M of an ideal gas for two states 1 and 2 and the standard condition this equation is 
therefore valid. 

                                         s tan d T s tan d1 1 2 2

1 2 s tan d

p Vp V p V

T T T
−⋅⋅ ⋅

= =                        (2.1.1-2) 

with VT-stand the volumes for V1 and V2 under standard conditions. By introducing 
the experimentally measured density of the real gas G at standard conditions 
ϕG,STP and the specific gas constant RG a simplification is obtained.  

 G
G,T s tan d G,STP

G,STP

M
V V− = =

ϕ
 (2.1.1-3) 

 G s tan d

s tan d G,STP

M pp V

T T

⋅⋅ =
⋅ϕ

 (2.1.1-4) 

G,s tan d
G

s tan d G,STP

p
R

T
=

⋅ϕ
 (2.1.1-5)

                                             Gp V M R T⋅ = ⋅ ⋅                                             (2.1.1-6) 
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Example E2.1.1-1: Calculating RG for Ar (RAr) with a density  ϕAr,STP = 1,784 
kg · m–3 . 

1 1
Ar

101325
R 207.9 J kg K

273.15 1.784
− −⎡ ⎤= = ⋅ ⋅⎣ ⎦⋅

 

From the equations (2.1-10 and -11) one can derive a formula to calculate the 
density when RG is known. 

 G
G,T,p

G G

M p

V T R
ϕ = =

⋅
 (2.1.1-7) 

Example E2.1.1-2: Calculating the density φAr at 15°C (=288.15 K) and 1 bar 
(=105 Pa) using RAr  from Example E2.1.1-1. 

 
5

3
Ar

10
1.669 kg m

288.15 207.9
−⎡ ⎤ϕ = = ⋅⎣ ⎦⋅

  

If it is necessary to start from a different point than ϕG,STP one can use a formula 
which can also be derived from the equation (2.1.1-2). This also applies in ideal-
ized conditions, i.e. for small pressure and temperature differences.  

 2 1
G,T2,p2 G,T1,p1

1 2

p T

p T

⋅
ϕ = ϕ

⋅
 (2.1.1-8) 

The specific gas constant can also be formed for mixtures. The basis is Dalton’s 
Law (1807): The pressure p of an ideal gas mixture consists of the sum of the par-
tial pressure pi of the n individual gases.  

 
n

i
i 1

p p
=

=∑  (2.1.1-9) 

Thus one obtains the equation (2.1.1-6) for the individual gas i and the number n 

 i i ip V M R T⋅ = ⋅ ⋅            and              ( )
n

i i
i 1

p V M R T
=

⋅ = ⋅ ⋅∑   

The specific gas constant R1–n can be represented as 

n

i i
i 1

1 n n

i
i 1

M R
R

M

=
−

=

⋅
=
∑

∑
          and         

n

i
i 1

M M
=

=∑  

 

                                                 1 np V M R T−⋅ = ⋅ ⋅                                   (2.1.1-10) 
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The gases can be compared with each other using the molar volume. According 
to Avogadro’s Principle (1811) different gases contain the identical number of 
molecules at the same pressure and the same temperature and the same volume. 

The molar volume VG,Mol is the volume that the molar mass MG,Mol of a gas 
adopts. The molar volume of an ideal gas at standard conditions is the VSTP from 
paragraph 1.2.3. 

With ν as the number of moles in the mass MG of the gas G, partly also referred 
to as fractions one obtains  

                                                  G G,MolM M= ν ⋅                                       (2.1.1-11) 

ϕG,STP from equation (2.1.1-3) can be expressed through VG,Mol,STP at standard con-
dition as  

 G,Mol
G,s tan d

G,Mol,STP

M

V
ϕ =  (2.1.1-12) 

The ϕG,Mol is usually referred to as molar density (at standard condition). How-
ever the VG,Mol,STP for an ideal gas is the VSTP from chapter 1.2.3. Thus one can in-
troduce a universal molar gas constant RMol . It is combined with the specific gas 
constant via the molar masses.  

 s tan d
Mol G,Mol G

s tan d STP

p
R M R

T V
= = ⋅

⋅
                   (2.1.1-13) 

           1 18.31441 J mol K− −⎡ ⎤= ⋅ ⋅⎣ ⎦
2 3 1 18.31441 10 bar m kmol K− − −⎡ ⎤= ⋅ ⋅ ⋅ ⋅⎣ ⎦   

From the equation (2.1.1-6)  Gp V M R T⋅ = ⋅ ⋅ and the equations (2.1.1-11) as 

well as (2.1.1-13) follows the Clapeyronish State Equation (mid. 19th century). 

                                               Molp V R T⋅ = ν ⋅ ⋅                                       (2.1.1-14) 

For 1 ν, i.e. 1 mole, the following equation is valid  

                                               Mol Molp V R T⋅ = ⋅                                       (2.1.1-15) 

Thus a new equation for the density is aquired. 
Omitting the index G and introducing the molar density φMol one obtains  

Mol
G,T,p

Mol

p MM

V R T

⋅
ϕ = =

⋅
 (2.1.1-16)

                                         Mol
Mol Mol

1 p

V R T
ϕ = =

⋅
                    (2.1.1-17) 

The Boltzmann constant kBoltzmann (around 1900) is used for state equations. 
Here RMol is reduced to a single molecule (or atom in the case of the noble gases). 
The molar volume contains 6.0221367 · 1023 particles. This number is referred to 
as Avogadro or Loschmidtish Number. 

 Mol
Boltzmann

Avogadro

R
k

k
=  (2.1.1-18) 
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kBoltzmann is 1.380658 · 10–23 J · K–1. Thus instead of the equation (2.1.1-15) we ob-
tain  
                                          Mol Boltzmann Avogadrop V k k T⋅ = ⋅ ⋅                          (2.1.1-19) 

This equation is valid for one mole. Therefore the counterpart for the equation 
(2.1.1-14) with the number of particles nparticle in volume V is the equation  

                                              Boltzmann particlep V k n T⋅ = ⋅ ⋅                            (2.1.1-20) 

nparticle = ν · kAvogadro                           (2.1.1-21) 

2.1.2 Kinetic Gas Theory  

Two concepts are associated with the ideal gas and form the basis of the kinetic 
gas theory: 

– Molecules are so small that their own volume is negligible in comparison with 
the dimension of the container.  

– No forces act between the molecules except those of the completely elastic col-
lisions with each other.  

Amongst other things the kinetic gas theory provides us with the equation for the 
average velocity vm of a molecule or an atom using  the root mean square statisti-
cal method. It is therefore called the RMS value.  

 Mol
m,G

G,Mol

3 R T
v

M

⋅ ⋅
=  (2.1.2-1) 

As there is a dependency of the gas G on the molar mass the velocity is referred to 
as vm,G .  

Example E2.1.2-1: Calculating the molecular velocity of hydrogen and sulphur 
hexafluoride at a room temperature of 20°C. 
The specifications are MH2,Mol = 2.0 ·10–3 kg · mol–1, MSF6,Mol = 146.05 · 10–3 kg ·  
mol–1, T = 293.15 K. The RMol = 0.0831441 bar · m–3 · kmol–1 · K–1 from the equa-
tion 2.1.1-13 needs to be adjusted: 1 bar = 10+5 kg · m–1 · s–2, 1 kmol = 103 mol, 
RMol = 8.31441 kg · m2 · s–2 · mol–1 · K–1. 

 1
m,H2 3

3 8.31441 293.15
v 1904.5 m s

2.016 10
−

−

⋅ ⋅ ⎡ ⎤= = ⋅⎣ ⎦⋅
   

1
m,SF6 3

3 8.31441 293.15
v 223.8 m s

146.05 10
−

−

⋅ ⋅ ⎡ ⎤= = ⋅⎣ ⎦⋅
 

The average velocity which has been introduced here vm,G is only one of several 
common ways of determining the average value. It is important to mention Max-
well distribution and probability distribution when determining the average value.  

 m,G,Maxwell m,G m,G

8
v v 0.9212 v

3
= = ⋅

⋅ π
 (2.1.2-2) 
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 m,G,p r obability m,G m,G

2
v v 0.8165 v

3
= = ⋅  (2.1.2-3) 

The diffusion which will be dealt with in chapter 2.2.3 is directly proportional to 
vm,Maxwell . Therefore there may be significant differences in the reaction times of 
chemical syntheses, adsorption and catalysis depending on the mass of the gases.  

The kinetic gas theory provides us with another important factor: The mean 
free path of a molecule or an atom which was first introduced by Clausius in 1858. 
It is the path which a molecule travels between two collisions. We refer to the av-
erage value as sparticle .  

 Boltzmann Mol
particle 2 2

Avogadro

k T R T
s

2 p d 2 p d k

⋅ ⋅
= =

⋅ π ⋅ ⋅ ⋅ π ⋅ ⋅ ⋅
 (2.1.2-4) 

with the diameter d of the particle. 

2.1.3 Enthalpy 

From thermodynamics we introduce the properties of state quantities U for the in-
ternal thermodynamic energy of a system and H as enthalpy, both are measured in 
Joules J. The enthalpy is the sum of the internal energy and the product p · V 
meaning the work which is done by a gas, e.g. when it drives a piston.  

                                                    H U p V= + ⋅                                            (2.1.3-1) 

We need this equation to calculate the heat capacity. This is defined as the heat 
quantity which is needed to heat a specific quantity of a material by 1 K. If 1 kg is 
used we talk about the specific heat capacity. If we refer to one mole then it is the 
molar heat capacity. The equation symbol is the lower case c. Now we need to dif-
ferentiate between the cV at constant volume and the cp at constant pressure.  

If we have a container with rigid walls (constant V) and heat the gas in it, then 
p increases and thus also the internal energy U. cv is therefore defined as the dif-
ferential quotient of U with respect to the temperature  

V
V

dU
c

dT
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.1.3-2) 

This only applies to the ideal gas (which is not intended to be proven here!) 

 V
V p

dU dU
c

dT dT
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

Looking at a container with a moving piston an increase in temperature will 
lead to an increase in volume with the pressure remaining the same. The increase  
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in volume, however, necessitates further derivation. Thus we must use enthalpy 
for the definition of cp . 

                                                       p
p

dH
c

dT
⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                         (2.1.3-3) 

We ascertain the difference and put p V = ν RMol T into the equation (2.1.3-1) 
and differentiate according to T 

 p V
p V p p

dH dU dH dU
c c

dT dT dT dT
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  

 Mol
p p

dH dU
R

dT dT
⎛ ⎞ ⎛ ⎞= + ν ⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  

p V Molc c R− = ν ⋅  

and with reference to moles  
 p,Mol V,Mol Molc c R− =  (2.1.3-4) 

This is the known equation for the difference of the heat capacities which can 
also be calculated individually from the kinetic gas theory. For a monoatomic  
ideal gas which has three degrees of freedom as to translation of its atoms (vibra-
tion in three directions without rotation) the following applies:  

 p,Mol Mol

5
c R

2
=        and        V,Mol Mol

3
c R

2
=   

The heat capacities of ideal gases do not depend on temperature, thus they only 
give an approximation of the correct values for real gases. For diatomic gases like 
N2 and  O2   cp,Mol = (7/2) · RMol  and cv,Mol = (5/2) · RMol apply. For molecules like 
H2O with three degrees of freedom in translation and rotation they are cp,Mol = 
(8/2) · RMol  and cv,Mol = (6/2) · RMol. The proportion ε of both heat capacities will 
be required in chapter 2.2.3 for the adiabatic expansion: 

p,Mol

V,Mol

c

c
ε =  (2.1.3-5)

ε equals 5/3 for a monatomic and 7/5 for a diatomic ideal gas. 

2.2 The Real Gas 

The real gas is differentiated from the ideal gas because the forces between the 
molecules or atoms as well as their own volume cannot be neglected. This causes 
a number of consequences.  

The gases can be liquefied under suitable conditions and also transformed into 
solid phase. Therefore the critical point with TCri and pCri and density φCri is  
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important. However when T > TCri , one cannot achieve liquefaction even at high 
pressure. At the triple point all three thermodynamic phases exist simultaneously, 
illustrated in P2.2-1 explains this.  

The vapour-pressure curve separates the gaseous from the liquid phase, the sub-
limation curve separates the gaseous from the solid, and the melting-pressure 
curve separates the liquid from the solid. Thus these curves are called phase sepa-
ration curves. The melting point Tmp is obtained from the intersection point of the 
isobars at  pstand = 1.01325 bars with the vapour-pressure curve.  

 

pCri

TCri T

pstand

p

TbpTmp

sublimation curve
triple point
(TTri ,pTri)

critical point

va
pour-p

ressu
re

curve

melting-pressure curve

solid liquid

gaseous
gaseous

gaseous

isobar

is
ot

he
rm

al
boiling point

melting point

gaseous

Illustration P2.2-1: T, p − diagram of the real gas in schematic depiction.  
 
In order to obtain the melting point at pstand we must differentiate between two 

cases. 

– The pressure pTri at the triple point is below pstand as shown in P2.2.1. Thus the 
melting point at the intersection curve of the isobars pstand with the melting 
pressure curve, this results in the melting point Tmp which is always close to the 
triple temperature TTri . This is also adverted to gases which boil at a low tem-
perature He, N2, H2, O2 or Ar, a typical example is Xe with pTri = 0.8167 bar 
< pstand. 
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– If  pTri > pstand , then the sublimation point is the one at the intersection point of 
the isobars pstand with the sublimation curve, thus we can give a sublimation 
temperature TSubl which is close to the triple temperature. A typical example is 
CO2 with pTri = 5.185 bar. These relationships imply that the release of CO2 

causes the formation of some carbon dioxide snow. In order to avoid this e.g. 
when mixing it with other gases attention must be paid to the fact that the ex-
pansion pressure is not smaller than pTri (5.2 bar abs. for CO2) or that the ex-
pansion takes place isothermally. 

2.2.1 Equations of State 

In his dissertation in 1873 Van der Waals introduced an equation which reflects 
the liquefaction of real gases qualitatively and corrects the ideal gas equation 
quantitatively. With reference to mole this equation is  

 ( )G,Mol Mol2
G,Mol

a
p V b R T

V

⎛ ⎞
+ − =⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.2.1-1) 

For a = 0 and b = 0 one obtains the state equation of the ideal gas. The correcting 
factor  a/(VG,Mol)

2  is referred to as the internal pressure and takes into considera-
tion the intermolecular attraction force. The constant b stands for the molecules’ 
own volume. The following table expresses the experimentally ascertained nu-
merical values for a and b for some selected gases. The larger these values become 
the greater is the deviation from the ideal behaviour.  

Table T2.2.1-1:. Numerical values of the constants in van der Waals’ equation. 

Gas a   in   103 [N · m4 · kmol–2] b   in   10–2 [m3 · kmol–1] 

He 3.47 2.38 

H2 24.86 2.67 

Air 136 3.66 

CH4 230 4.31 

CO2 366 4.28 

C3H8 937 9.03 

C4H10 1389 11.64 

 
There are a large number of additional state equations which are built up simi-

larly. Thus we achieve a good approximation especially in the boundary area to 
liquefaction. For the calculation and use of such data please refer to the previous 
work of (Baumer 1983) and especially the comprehensive work of (Poling et al. 
2001). The dependence of the intermolecular forces can be represented with a 
compression factor Z (Atkins 2006). An ideal gas has Z = 1. If  Z > 1  then the gas 
is compressed more heavily than an ideal gas. Z is also referred to as a real gas 
factor, there is a dependency on pressure and temperature.  
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 Mol
p,T

p V
Z

R T

⋅
=

⋅
 (2.2.1-2) 

 real
p,T

ideal

V
Z

V
=  (2.2.1-3) 

For  Zp,T < 1  the real molar volume is smaller than the ideal. This means that in 
a pressurised container there is more gas than would be expected according to the 
ideal equation. With  Zp,T > 1  it is vice versa. The dependency of Z on p and T can 
be so extreme that for a gas both  Zp,T < 1  and  Zp,T > 1  are possible. For N2         
Z = 0.9752  for  p = 120 bar  and  T = −10°C, and  Z = 1.0711  for  p = 200 bar  
and T = +50°C. Zp,T is represented as a polynomial of the pressure p. The polyno-
mial is an infinite mathematical series according to increasing powers of p.  

 2
p,TZ 1 p p ...= + β ⋅ + γ ⋅ +  (2.2.1-4) 

with the β, γ, ... as virial coefficients dependent on temperature which has to be 
determined experimentally. The word virial is derived from the Latin vis = power, 
plural vires/virium and is intended to draw attention to the intermolecular forces. 
For reasons of simplification the first virial coefficient was set = 1, in most cases 
the series is terminated after the first power of p. As well as the development of 
powers of p it is also possible to obtain polynomials for the molar density and the 
molar volume with different virial coefficients. The second virial coefficients are 
easily transferable with each other. Using equation (2.1.1-16) we obtain  

 Mol
Mol Mol

Mol

R T
p R T

V

⋅
= ϕ ⋅ ⋅ =  (2.2.1-5) 

 * * 2
p,T Mol MolZ 1 ...= + β ⋅ ϕ + γ ⋅ ϕ +  (2.2.1-6) 

With                                          *
MolR Tβ = β ⋅ ⋅                                           (2.2.1-7) 

 
* *

p,T 2
Mol Mol

Z 1
V V

β γ= + +  (2.2.1-8) 

Using the real gas factor it is now possible to calculate volumes, densities and 
pressures much more accurately than with the ideal gas laws. Using the equation 
(2.1.1-14) we convert to (2.2.1-3)  

 Mol
p,T

Mol

V p
Z

R T

⋅
=

⋅
 (2.2.1-9) 

For the density we obtain  

 Mol
p,T

p,T Mol

M p

Z R T

⋅
ϕ =

⋅ ⋅
 (2.2.1-10) 
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For the comparison of two states we form the quotients of the two Z. 

                           p1,T1 2 1 1 2 2 2 1 1 2

p2,T2 1 2 2 1 1 1 2 2 1

Z V p T M p T

Z V p T M p T

ν ⋅ ⋅ ⋅ ν ⋅ ϕ ⋅ ⋅ ⋅
= =

ν ⋅ ⋅ ⋅ ν ⋅ ϕ ⋅ ⋅ ⋅
              (2.2.1-11) 

Most calculations can be carried out using this equation. 

Example E2.2.1-1: Calculating the gas volume of N2 at p = 200 bar and 15°C 
in a 50 litre cylinder (Vgeom = 0.05 m3). 

The Zp,T  can be taken from the table T10.6-1 including the necessary interpolation 
at 1.050. If one dispenses with a p, T point of reference then one assumes that 
there is Vgeom 0.05 m3 of gas at 1 bar. Thus there are Videal at 200 bar  

 3
ideal geom

p
V V 200 0.05 10 m

1 bar
⎡ ⎤= = ⋅ = ⎣ ⎦   

From equation 2.2.1-3 we obtain a Vreal 

 3ideal
real

p,T

V 10
V 9.522 m

Z 1.050
⎡ ⎤= = = ⎣ ⎦   

As already mentioned in paragraph 1.2.3 many manufacturers of industrial 
gases prefer the operating conditions 15°C and 1 bar. In this case it is necessary to 
calculate a Zreference. As in most cases the density for the point of reference is 
known accurately enough so that we can use equation (2.2.1-10) with the neces-
sary conversion. 

 Mol reference
reference

reference Mol reference

M p
Z

R T

⋅
=

ϕ ⋅ ⋅
  

From the data sheet N2 we obtain  MMol = 28.0134 kg,  φp=1bar,T=15 = 1.170 kg · 
m–3.  In addition T = 288.15 K and RMol = 0.0831441 bar · m3 · kmol–1 · K–1 . 

 referenceZ 0.99938=   

The very small deviation from 1.0000 shows that the operating conditions vary 
only a small amount from the standard state and this is marginal for many calcula-
tions. We now have to determine the volume of gas Vreference at the point of  
reference which would result at the expansion from 200 bar. For this we use the 
equation (2.2.1-11). In addition we can simplify because of the number ν of the 
moles and the T being the same in both states, preference =1 bar.  

 reference reference

p,T geom

Z V

Z p V
=

⋅
  

 3reference
reference geom

p,T

Z 0.99938
V p V 200 10 9.516 m

Z 1.0502
⎡ ⎤= ⋅ = ⋅ = ⎣ ⎦   

Then we should introduce a calculation which cannot be immediately solved 
with the equation (2.2.1-11) but requires the use of two virial coefficients.  
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Example E2.2.1-2: From a pressurised gas cylinder filled with CH4 with V1 = 
50 litres volume and p1 = 200 bar with stable temperature T = T1 = T2 =20°C = 
293.15 K  in a container with V2 = 200 litres pressure equalization takes place. 
We are determined to find p2 . 

The new total volume is V 1+2 = V1 + V2, ν1 = ν2 . According to the equations 
(2.2.1-11) and (2.2.1-4) but only with the linear element  β · p  we obtain: 

 p1,T 1 1 1

p2,T 1 2 2 2

Z V p 1 p

Z V p 1 p+

⋅ + β ⋅
= =

⋅ + β ⋅
 (2.2.1-12) 

It is possible to ascertain Zp1,T  as 0.813 from table T10.6-1 , p2  and Zp2,T=293  can-
not be determined from the equation (2.2.1-11). Thus we use the two virial coeffi-
cients and solve the above-mentioned equation according to p2 . 

 
( )

1 1
2

1 2 1 1 2 1

V p
p

V p V V+ +

⋅
=

+ β ⋅ −
 (2.2.1-12) 

The second virial coefficient β at 20°C is taken to be −1.93 ·10–3 bar–1  including 
interpolation from the data sheet in chapter 9. 

( ) [ ]2 3

200 0.05
p 57.8 bar

0.25 1.93 10 200 0.25 0.05−

⋅= =
− ⋅ ⋅ −

 

The result deviates significantly from the ideal calculation (= 40 bar). 

2.2.2 The Liquefied Gas 

If a substance is in a gaseous state then its internal energy determined by the tem-
perature is greater than the intermolecular (attracting) forces. If the temperature is 
lowered by removing heat from the outside then depending on the pressure at one 
particular temperature the intermolecular forces prevail and liquefaction takes 
place. At pstand = 1013.25 mbar this point is referred to as boiling point Tbp. In or-
der to change the state of aggregation it is necessary to supply energy in the form 
of heat (evaporation) or withdraw energy (liquefaction). This amount of energy 
corresponds with the enthalpy of evaporation or with heat of vaporization ΔHevap  
in kJ · kg–1 mostly given at Tbp . The enthalpy of evaporation depends on the tem-
perature and can be calculated as T between TTri and TCri according to Watson’s 
formula for a particular temperature T using ΔHbp,evap at Tbp . 

 

0.38
1

Cri
T,evap bp,evap 1

bp Cri

1 T T
H H

1 T T

−

−

⎛ ⎞− ⋅
Δ = Δ ⎜ ⎟⎜ ⎟− ⋅⎝ ⎠

 (2.2.2-1) 

When the state of aggregation changes from solid to liquid there is a corre-
sponding melting heat at Tmp. 
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Example E2.2.2-1: 3 m · h–1 are to be removed from a propane gas cylinder in 
a gaseous state at T = 20°C = 293.15 K. How much electrical energy has to be 
used for the water bath? 

First of all, one will ask why it is necessary to have additional heating. The cyl-
inder contains liquid propane, the gaseous propane in the upper part of the cylin-
der is used and must replenished by evaporation. When removing small amounts 
of the substance, the amount of heat supplied by the surrounding air is sufficient 
to achieve more evaporation if the cylinder cools slightly. If larger amounts are 
removed the cylinder will cool significantly which could lead to the propane 
changing to the solid state of aggregation. In this case a water bath controlled by 
a thermostat is the appropriate means. One should use TCri =369.85 K, Tbp = 
231.08 K and ΔHbp,evap = 425.4 kJ · kg–1  from the propane data sheet. 

0.38

1
T 293,evap

293.15
1

369.85H 425.4 339.3 kJ kg
231.08

1
369.85

−
=

⎛ ⎞−⎜ ⎟
⎡ ⎤Δ = = ⋅⎜ ⎟ ⎣ ⎦

⎜ ⎟−⎜ ⎟
⎝ ⎠

 

As 1 kJ = 1 kWs (kilowatt second) the energy E for 3 kg per 1 hour (= 3600 s) 
is shown in usual kWh as  

 [ ]3 339.3
E 0.283 kWh

3600

⋅= =   

An important physical characteristic of the gas which has been liquefied under 
pressure is the vapour pressure pD which is dependent on the temperature. The va-
pour pressures in the temperature range from −10 to +20°C are given in the data 
sheets as a means of orientation. The state equations for the transitional borderline 
between liquid and gaseous was historically derived from Clausius and Clapey-
ron’s (19th century) mole-based differential equation. 

 ( )
Mol,evapD

Mol,D Mol,liq

Hdp

dT V V T

Δ
=

−
 (2.2.2-2) 

As the molar volume VMol,liq in a liquid is very small, it can be neglected it in 
comparison to the molar volume VMol,D of the vapor. One uses the ideal state equa-
tion again.  

 1
Mol,D Mol DV R T p−= ⋅ ⋅   

 Mol,evapD
D 2

D Mol

Hdp
d ln p dT

p R T

Δ
= =

⋅
 (2.2.2-3) 

We will dispense with the mathematical method of integration and obtain as a 
solution for states 1 and 2. 

 Mol,evap2

1 Mol 2 1

Hp 1 1
ln

p R T T

Δ⎛ ⎞ ⎛ ⎞
= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (2.2.2-4) 
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As the enthalpy of evaporation depends on the temperature there are various 
approximations for Eq. (2.2.2-4). Most frequently the following Eq. is applied us-
ing the decade logarithm (lg). A to F are constants which depend on the type of 
gas. They have to be ascertained experimentally (see Table T10.5-1). 

 2
D

B
lg p A D T E T F lgT

C T
= + + ⋅ + ⋅ + ⋅

+
 (2.2.2-5) 

If not indicated otherwise, such Eqs. are always valid between the triple tem-
perature and the critical temperature. 

If a liquefied gas is in a pressurised container it is often necessary to know the 
volume proportion of the liquid phase and the gaseous phase at temperature T. 
With the geometric volumes Vgeom and the contained mass M we obtain the Eqs.  

geom gas liqV V V= +             and            gas liqM M M= +  

In order to calculate the densities depending on T are needed and in the gaseous 
state also on pD. The densities are inserted into the Eq. for M. 

gas gas liq liqM V V= ϕ ⋅ + ϕ ⋅  

                           liq liq
gas

gas

M V
V

− ϕ ⋅
=

ϕ
           and            liq geom gasV V V= −   

After further steps, one obtains  

 gas geom
liq

liq gas

M V
V

− ϕ ⋅
=

ϕ − ϕ
 (2.2.2-6) 

Example E2.2.2-2: According to (ADR 2005) a pressurised gas cylinder with a 
test pressure of 190 bar (g) can be filled with CO2 with a filling factor ffill  of 0.66 
kg/l. The filling is to be effected with cold CO2 at 258 K (approx. −15°C). Later on 
the cylinder is due to be transported at 298 K (approx. +25°C). How large  is the 
Vliq at both temperatures?  

CO2 has been checked thoroughly and there are tables for the material data on  
the vapour pressure curve (T10.4-8). For 258 K we take the vapour pressure pD = 
22.8 bar (abs.),  ϕliq = 1.009 kg · l–1, ϕgas = 60.505 kg · m–3, and for 298 K is pD = 
64.09 bar,  ϕliq = 0.7137 kg · l–1, ϕgas = 240.68 kg · m–3. Vgeom is 10 litres, as well 

as M = ffill · Vgeom = 6.6 kg. 

[ ]liq,258K

6.6 0.0605 10
V 6.32 l

1.009 0.0605

− ⋅= =
−

 

and 

[ ]liq,298K

6.6 0.24068 10
V 8.86 l

0.7137 0.24068

− ⋅= =
−
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As the temperature increases the density of the liquid falls and it takes up more 
and more volume. The filling factors are calculated so that at the maximum per-
mitted temperature range for the pressurised gas cylinders of −20 to +70°C the 
pressure can't be higher than the tested one. If the container has been overfilled 
there is a great safety risk of the liquid filling the whole container and expanding 
through heat. In this case we do not consider the vapour pressure pD any longer 
but we must use the pressure of the incompressible liquid which can rise over 
1000 bar with a temperature increase of only a few K. This then leads to the de-
struction of the cylinder with usually significant damage to personnel and equip-
ment.  

For this reason the filling of liquefied gases is only allowed through gravimetric 
weighing. Accompanying measures require detailed written reports as well as an 
additional weighing by a second person. If an overfilling is discovered the excess 
amount has to be discharged immediately. 

2.2.3 Diverse Properties 

This section introduces the concept of adiabatic (isenthalpic) expansion. This 
means the expansion of a gas without the transfer of heat, thus not isothermally, 
e.g. in a system isolated from heat. The real gas combats the adiabatic expansion 
through cooling by using its internal energy to compensate for the intermolecular 
attraction forces. This effect was discovered by Joule and Thomson, later to be 
Lord Kelvin, in the 19th century. Thus there is the possibility of cooling and lique-
fying a gas with, if possible, isothermal compression and subsequent resultant 
adiabatic expansion. This was the basis of the first liquefaction of air by Carl von 
Linde in 1876. 

One must be advised that the Joule-Thomson effect has an inversion tempera-
ture dependent on the type of gas. Above this temperature heating occurs during 
expansion, the so-called inverse Joule-Thomson effect. Thus H2 has to be initially 
pre-cooled by liquid N2 (−196°C) before the liquefaction is possible.  

The resultant new pressure p2 from the adiabatic expansion of volume V1 at 
pressure p1 into the total volume V2 can be calculated, considering Eq. (2.1-25), 
using the formula 

 1
2 1

2

V
p p

V

ε
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠

        with        p,Mol

V,Mol

c

c
ε =  (2.2.3-1) 

For the temperature T2 after expansion is defined as            

                                1
2 1

2

V
T T

V

φ
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠

       with       1
Mol p,MolR c−φ = ⋅               (2.2.3-2) 
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Example E2.2.3-1: Calculating the pressure p2 and temperature T2 after the 
adiabatic expansion of N2 with V1, p1 = 30 bar and T1 = 293.5 in a V2 = 3 V1. 

Ideally apply        cp,Mol = (7/2) · RMol  and  ε = 7/5. RMol = 8.31441 J · mol–1 · K–1  

1 1
p,Mol

7
c 8.31441 29.10 J mol K

2
− −⎡ ⎤= = ⋅ ⋅⎣ ⎦                 

8.31441
0.2857

29.10
φ = =  

  [ ]
7 / 5

2

1
p 30 6.44 bar

3
⎛ ⎞= =⎜ ⎟
⎝ ⎠

                   [ ]
0.2857

2

1
T 293.15 214.17 K

3
⎛ ⎞= ⋅ =⎜ ⎟
⎝ ⎠

 

We compare the ideal molar heat capacity with the measured value of the spe-
cific heat capacity cp,kg = 1.040  kJ · kg–1 · K–1 =  1.040  J · g–1 · K–1   as per data 
sheet N2. 

1 Mol
p,kg p,Mol Mol

Mol

7 R
c c M

2 M
− ⋅

= ⋅ =
⋅

 (2.2.3-3)

 1 1
p,kg

7 8.31441
c 1.039 kJ kg K

2 28.0134
− −⋅ ⎡ ⎤= = ⋅ ⋅⎣ ⎦⋅

  

One can see that the deviation of the ideal calculation from the measured value 
of 0.1 % rel. is very small. However, one must be aware of the fact that for N2       
cp and cv depend significantly on pressure and temperature. These values have to 
be determined empirically and can be read out of standard tables (Messer 1989). 

We are now considering the so-called transport phenomena of gases. This 
means the movement of particles (diffusion), energy (thermal conductivity) and 
impulse (viscosity). The differential equations which describe these properties are 
all constructed similarly. 

Fick’s first law adverts to diffusion 

 V

dV dC
Q D A

dt dx
= = − ⋅  (2.2.3-4) 

QV is the flow-rate of the volume or the mass (= dM/dt), t the time, and A the area 
contemplated, through which the diffusion is effected. X is the direction consid-
ered and D the diffusion constants in m2 · s–1. 

For the thermal conductivity the function of the energy flow dE/dt on the tem-
perature gradients dT/dx is shown. 

 
dE dT

A
dt dx

= −λ ⋅  (2.2.3-5) 

λ is the heat conductivity coefficient in W · m–1 · K–1, often simply referred to as 
thermal conductivity.  
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To understand viscosity we must consider the internal friction of a gas. If two 
adjacent layers of gas move with different speeds then particles move from one 
layer to the other. The layers become interlocked; this causes the faster layer to 
slow down and vice versa. To maintain the difference in speeds, the internal fric-
tion force Ffriction has to be generated. As the force is equal to the derivation of im-
pulse Imv over the time we obtain 

 mv
friction

dI dv
F A

dt dx
= = −η⋅  (2.2.3-6) 

with dv/dx as speed gradient and η the dynamic viscosity coefficient in kg · m–1 · 
s–1 or  N · s · m–2. To a certain extent we define a deviating kinematic viscosity 
when we consider the density. 

* 2 1m s−η ⎡ ⎤η = ⋅⎣ ⎦ϕ
 (2.2.3-7)

For the ideal gas the coefficients of transport phenomena are calculated via the 
kinetic gas theory. As the diffusion coefficient D plays a central role both for per-
meation (chap. 3.1.4) and for homogenisation (chap. 5.1.3) a short introduction is 
required. Without proof and with the help of Eqs. (2.1.2-1), (2.1.2-2) and (2.1.2-4) 
the diffusion coefficient (m2 · s–1)  is shown to be  

Mol Mol
m,Maxwell particle 2

Mol Avogadro

3 R T R T1 1 8
D v s

3 3 3 M 2 p 4 r k

⋅ ⋅ ⋅
= ⋅ =

⋅ π ⋅ π ⋅ ⋅ ⋅ ⋅
 

3 3
Mol

23
MolAvogadro

R T 1
D

M p r6 k
=

⋅⋅ π ⋅
 

     
(2.2.3-8) 

Here d = 2 r was fixed with r as the particle radius. With respect to D the follow-
ing dependencies are important:  

– Inversely proportional to the pressure, i.e. as the pressure increases the diffu-
sion decreases. 

– Inversely proportional to the root of the molar mass as well as to the square of 
the particle radius. Small particles and particles with little mass diffuse more 
quickly. 

– Proportional to T3/2 and therefore an increase in temperature encourages diffu-
sion. 

The D from Eq (2.2.3-8) only applies for the so-called self diffusion in the cyl-
inder containing only the observed gas. For the diffusion of two gases 1 and 2 in 
each other a binary diffusion coefficient applies. The extended formula, also pro-
vided without proof, is then:  

 
( )

( )
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Mol,1 Mol,2Mol

1,2 23
Mol,1 Mol,2 1 2Avogadro

T M MR 1
D

M M p r r6 k

⋅ +
=

⋅ ⋅ +⋅ π
 (2.2.3-9) 
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For the real gases the dependency of the individual coefficients of p and T dif-
fer from the ideal calculation. The empirical data mostly serve a mathematical rep-
resentation in the form of a series expansion based on p or T, similar to that for the 
real gas factor. 

For flammable gases the so-called burning values (energy values) and heating 
values are interesting. The energy value Henergy is defined as the energy per kg, 
mole or m3 which is produced by complete combustion in pure O2. After combus-
tion the remains are exclusively gaseous CO2, N2, and SO2 as well as liquid H2O. 
For the heating value Hheat burning takes place in the air, it is Hheat < Henergy. After 
combustion the H2O remnants are gaseous. 

Let us now look at the solubility of gases in liquids. The simplest case is pro-
vided by atmospheric air over water. If we consider the main components N2, O2 
and Ar there is a thermodynamic system of 8 phases. Water forms the liquid phase 
with the vapour pressure pD,H2O as a function of T. N2, O2 and Ar each have a 
phase of which is soluble in water with the proportional amounts of substance 
Cν,G,sol 

 G,sol
,G,sol

liq G,sol

Cν

ν
=

ν + ν
 (2.2.3-8) 

and the partial pressures exerted above the water pN2, pO2 and pAr. νG,sol is the 
number of the moles of the gases dissolved in the liquid, νliq is the number of the 
moles of the liquid. For small solubilities and pressures Henry’s Law applies. pG,sat 
is the saturation vapour pressure of the gas G. 

 G,sat Henry,G ,G,solp Cν= δ ⋅  (2.2.3-9) 

Henry’s coefficient δHenry has the dimension of a pressure. The Law describes 
the proportionality of the concentration in the liquid and the pressure above the 
liquid. To differentiate from the normal vapour pressure of a liquid this can also 
be referred to as saturation vapour pressure psat of the soluble phase and is depend-
ent on T. In practice however the technical solubility coefficient δtechn has  
prevailed. 

 G,STP 1
techn

sol

V
l kg

M
−⎡ ⎤δ = ⋅⎣ ⎦  (2.2.3-10) 

δtechn shows how many litres of gases at normal state are dissolved per kg liquid at 
p and T. For the amount of pG,sat we will use Dalton’s Law in our example and 
thus apply ideal behaviour. 

One uses more rarely  

 G,STP* 1 1
techn

G,sol G,sat

V
l kg bar

M p
− −⎡ ⎤δ = ⋅ ⋅⎣ ⎦⋅

 (2.2.3-11) 
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2.3 Gas Mixtures 

In this book we predominantly describe gas mixtures in pressurised cylinders. The 
manufacture is described in chapter 5. Gas mixtures close to atmospheric pressure, 
as required by the user, are mentioned briefly in chapter 8.2. In the case of the 
pure gases it became clear in the previous chapters that the real behaviour leads to 
a great deal of effort as far as the calculating is concerned. This is even more no-
ticeable with the gas mixtures. The “triangular relationship” volume − pressure − 
temperature can be avoided if we can revert to the mass of the gases. One while 
dealing with densities in the area of only a few grams per litre very accurate scales 
are necessary. At the end of the seventies single-pan scales achieved accuracies 
better than 0.1% rel., thus the triumph of the gravimetric production of gas mix-
tures and especially calibration gases could not be sterned. This trend was con-
nected with the use of the relationship of the amounts of substance Cν which we 
have already introduced as the number of moles. This leads to the fraction of mo-
lar concentration, the character of which is obviously a concentration.  

j
, j n

i
i 1

Cν

=

ν
=

ν∑
   

(2.3-1) 

The designation as the fraction of the molar concentration was chosen because 
this information is most frequently used on the analytical certificate for a gas mix-
ture. In addition, the definitions for the volume and mass fractions apply which are 
however often used without misunderstanding as the volume and mass concentra-
tion 
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i
i 1

V
C
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=
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(2.3-2) 

 j
M, j n

i
i 1

M
C

M
=

=
∑

 (2.3-3) 

The conversion of the different kinds of concentration with each other can be 
found in Table T2.3-1. It is complicated because the density φ depends on both p 
and T and has to be calculated from tables or by using virial coefficients. 
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Table T2.3-1: Conversion of the different kinds of concentration 
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To calculate the composition of a calibration gas we introduce the ideal density 

of a gas. 

 G,Mol i
G,ideal

STP i

M M

V V
ϕ = =  (2.3-4) 

Example E2.3-1: Calculating the composition of a test gas with 1% N2, 2% Ar 
in H2 for 2 m3  in a 10-litre cylinder.  

The total volume is V = 2 m3, the supposed concentrations and the fraction of 
molar concentration CN2 = 1 · 10–2, CAr = 2 · 10–2 and  CH2 = 0.97.  The partial 
volumes are correspondingly shown to be  

   i iV C V= ⋅                 and                   3
iV V 2 m⎡ ⎤= = ⎣ ⎦∑  

From this: VN2  =  0.02 m3, VAr =  0.04 m3 and VH2 = 1.94 m3, which are ideal-
ised volumes can be calculated. From the data sheets we take the ideal densities 
as ϕN2 = 1.250 kg ·  m−3 , ϕAr = 1.782 kg ·  m−3  and ϕH2 = 0.090 kg ·  m–3.           
The masses which have to be weighed are therefore provided by the formula        
Mi = ϕi · Vi  . 

Table T2.3-2: Example of the composition of a calibration gas  

gas concentration [%] mass [g] partial volume [m³] 
N2 1 25.0 0.02 
Ar 2 71.3 0.04 
H2 to 100 174.6 1.94 
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It still needs to be proven that one is not dealing with the volume concentration 
but with the desired concentration of the fraction of the molar concentration. 

j j STP

j j j,Mol j jSTP
j n n n n n

i STPi STP
i i i

i 1 i 1 i 1 i 1 i 1i i,Mol

M M V

V M V
C

M VM V
V

M= = = = =

⋅
ϕ ν ν

= = = = =
⋅ ν ν

ϕ∑ ∑ ∑ ∑ ∑
 

Example E2.3-2: Pressure in the gas cylinder T=15°C for the mixture as per 
Example E 2.3-1 

For these small fractions it should be calculated by using the ideal gas law. For 
N2 it is  

 [ ]1bar N2
N2

geom

p V 0.02
p 2 bar

V 0.01

⋅
= = =   

and analogous with pAr = 4 bar. For H2 the ideal calculation is added up to 
194 bar. Nevertheless, it is necessary to carry out the calculation of pressure with 
the real gas factor. Analogous to Example E2.2.1-2 one proceeds:  

1 1 1

2 2 2

V p 1 p

V p 1 p

⋅ + β ⋅
=

⋅ + β ⋅
 

V1 = 1.94 m3, p1 = 1 bar , V2 = 0.01 m3, β = 0.595 · 10–3 bar–1 are inserted into the 
equation and from the data sheet we take 

 
( ) ( ) [ ]1 1

2 3
2 1 2 1

V p 1.94 1
p 219.2 bar

V p V V 0.01 0.595 10 1 0.01 1.94−

⋅ ⋅= = =
+ β⋅ − + ⋅ ⋅ −

  

Altogether for the gas mixture a pressure of 225.2 bar is obtained which is not 
acceptable for the normal cylinder with an operating pressure of 200 bar. There-
fore one reduces the volume from 2 m3 in the ratio 200/225.2 to approximately 
1.77 m3 and calculate the composition again. 

For the real gases and their mixtures we have carried out only relatively simple 
calculations. The handbooks of (Messer 1989) and (Air Liquide 2005) are recom-
mended for more detailed study.  

2.4 Moisture Content 

Of all the impurities in the purest gases moisture has a special position. For most 
users the omnipresent water is a very disturbing substance, the limit concentration 
which must be achieved a moves continually into the lower ppb range. Water is 
often a basic prerequisite for chemical reactions. Thus dry oxygen does not cause 
the internal wall of the steel cylinder to rust but with a moisture content of as little 
as 50 ppm severe rusting can be expected. CO2 and HCl (anhydrous inorganic  
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acids) in connection with liquid water in the steel cylinder cause corrosions nega-
tively which effect safety. The strongly polarised H2O molecule bonds with almost 
every means of adsorption and can be removed, e.g. by heating. 

First of all one must differentiate between two marginal cases in the gas cylin-
der. If water is present in liquid form the vapour pressure pD,H2O

 which is depend-
ent on the temperature is established. The concentration relation for removing the 
water is shown by the Eq. 

D,H2O
H 2O n

i
i 1

p
C

p
=

=
∑

 
(2.4-1)

When pi is the pressure of all n gases in the cylinder. The concentration increases 
sharply at the end of the removal. Liquid water in a gas cylinder is a terrible mis-
take by the filling company and is caused by inadequate preparation of the cylin-
der. For the purest gases this case is not relevant. 

If only gaseous water i.e. water vapour with the partial pressure pH2O is in the 
cylinder then the types of concentration according to section 2.3 apply. The con-
centration, e.g. on the basis of the partial pressure (ideal calculation) remains con-
stant during the removal. 

H 2O
H2O n

i
i 1

p
C k

p
=

= =
∑

 
(2.4-2)

If water vapour has been adsorbed on the internal wall of the gas cylinder then 
there is a saturation pressure pAds,sat for this adsorbed phase. If the partial pressure 
decreases to the level of the saturation one during the removal then there is an in-
crease in concentration as the water vapour is supplied from the adsorbed phase.  

 (Schön 1999) reported about a special case of the concentration relation. If there 
are small amounts of oil (glyceride) in the cylinder, e.g. because the cylinder has 
been filled using compressors which have been lubricated, then a film of water can 
be formed, which is covered by a layer of oil, which is only a few molecules thick. 
In these cases for the concentration relation the following Eq. applies 

k(A)
(A)

H 2O H 2O

p
C C

p

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (2.4-3)

with (A) as the designation of the initial value and k is a constant which depends 
on the geometry of the pressurised container and the temperature. Strangely 
enough the maximum value is 37.2°C which has given rise to the speculation that 
the human brain is thermostatically set at this value.  

Measuring moisture content (humidity) takes place in meteorology in the tem-
perature range surrounding us as well as in the extreme conditions of the upper 
atmosphere. To achieve this dew point is often determined (wet mirror method). 
Thus we are dealing with vapour pressures above water e.g. 6.11 mbar at 0°C 
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which correspond to a concentration of 0.603 volume-% at 1013.25 mbar  in the 
air. The range which is of interest for the purest gases is the one with few ppm or 
ppb. As the wet mirror method has also been used successfully in this area the va-
pour pressures over ice are relevant. 

The phase borderline solid-gaseous is described mathematically similarly to 
Clausius and Clapeyron’s differential equations (Egs 2.2.2-2 and -3) ΔHSubl is the 
sublimation enthalpy. 

 D,Subl Mol,Subl

2
Mol

d ln p H

dT R T

Δ
=

⋅
 (2.4-4) 

The evaporation enthalpy is dependent on the temperature, as it is with subli-
mation. The concept of the sublimation point is connected with the pressure of 
1013.25 mbar. When measuring moisture sublimation points at other pressures 
they are referred to as frost point.  

For the following discussion, documents used were kindly provided by the PTB 
(Physikalisch-Technische Bundesanstalt, Germany) in Brunswick. (Sonntag 1998) 
gave an overview of the historical development of the formulas for the depend-
ence of vapour pressure on the temperature. To calculate it over water or ice one 
often uses the Magnus formula with T in 0C, (Magnus 1844). 

 ( ) 1
D D,0C

2

k T
p T p exp

k T

⋅
= ⋅

+
 (2.4-5) 

One can obtain more recent values k1 and k2 of the Magnus’ formula from (We-
ber  2002) work, pD,0C  is the vapour pressure at 0°C.  

(Sonntag 1990) gave a more exact Eq. with a series expansion, T in K and pD in 
hPa.  

2
D

5 2

6024.5282
ln p 24.7219 1.0613868 10 T

T
1.3198825

0.49382577 ln T
10 T

−= − + + ⋅ ⋅

− − ⋅
⋅

 (2.4-6)

Table T2.4-1 uses Eq (2.4-6) and contrasts: 

– The temperature at the phase borderline solid − gaseous, the frost point temper-
ature TFrost, sometimes also referred to the phase borderline liquid gaseous, 
called the dew point temperature. 

– The pressure pD,Subl, the saturation vapour pressure of the solid phase  
– The fraction of the amount of substance in ppm (p assumed to be ideal, pD,Subl 

in mbar) 

[ ]D,Subl 6
,H2O n

i
i 1 1013mbar

p
C 10 ppm

p
ν

= =

=
⎛ ⎞
⎜ ⎟
⎝ ⎠
∑

 
(2.4-7)
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– The absolute moisture concentration  

3H 2O
abs,H2O n

i
i 1

M
C g m

V

−

=

⎡ ⎤= ⋅⎣ ⎦
∑

 
(2.4-8)

The relationship between the types of concentrations applies with an ideal calcula-
tion and under normal conditions, Cν,H2O  in ppm:  

Mol,H2O 6 3
abs,H2O v,H2O v,H2O

Norm

3 3
v,H2O

M 18.0152
C C 10 C 10

V 22.41383

0.80375 C 10 g m

− −

− −

= ⋅ = ⋅

⎡ ⎤= ⋅ ⋅ ⋅⎣ ⎦

 

 
(2.4-9) 

Table T2.4-1: Frost point temperature, moisture fractions and absolute moisture concentra-
tion for selected values in the temperature range from 0 to −120°C. Interim values can be 
taken from Table T10.7-1. 

TFrost  in [°C] 
at 1013.25 mbar 

pD,Subl  in [mbar] Cν,H2O in [ppm] 
at 1013.25 mbar 

Cabs,H2O  [mg · m–3] 
STP 

0 6.1115 6031.6210 4844.7 

−10 2.5983 2564.3326 2059.7 

−20 1.0324 1018.8904 818.4 

−30 0.3800 375.0246 301.2 

−40 0.1284 126.6910 101.8 

−50 0.03936 38.8433 31.20 

−60 0.01081 10.6656 8.567 

−70 0.002615 2.5812 2.073 

−80 547.2 · 10–6 0.54009 0.434 

−90 96.7 · 10–6 0.09544 0.0767 

−100 14.0 · 10–6 0.01384 0.0111 

−110 1.61 · 10–6 0.001588 0.00128 

−120 0.140 · 10–6 0.000138 0.000111 

2.5 Leak Rate 

With requirements for the purity of gases it was critically necessary to improve 
technical equipment with regards to leak tightness. In 19611 something was classi-
fied leak proof if it did not produce any bubbles when tested with a soap solution. 
Besides this test there was already the ultra-high vacuum technique used in which 
the concept of the leak rate was well established. This was determined for a  

                                                           
1 In 1961 the author started his work at the Ostberliner Technische Gase Werken. 
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geometric volume Vgeom by evacuating it separating it from the vacuum pump and 
measuring the increase in pressure Δp after a time t. We call this the vacuum leak 
rate Lvac . 

geom 1
vac

p V
L mbar l s

t
−Δ ⋅

⎡ ⎤= ⋅ ⋅⎣ ⎦  (2.5-1)

In the pressure technique the relationships are different. The cylinder is under a 
pressure p and the escaping amount of gas QV = dV/dt at STP is measured. It is 
called the pressure leak rate Lp . 

3 1
p V

V
L Q cm s

t
−⎡ ⎤= = ⋅⎣ ⎦  (2.5-2)

If neglecting the small corrections (e.g. cm3 at STP) one obtains  

1 3 11 mbar liter s 1 cm s− −⋅ ⋅ ⋅ ≅ ⋅ ⋅  (2.5-3)

It is important to realize that the pressure leak rate Lp depends on the internal 
pressure of the container in question. This becomes clear when one looks at the 
Eq. for the relationships between the flows. One differentiates between two bor-
derline cases. 

The flow through a capillary with radius r and length l is referred to as laminar 
flow. The Hagen-Poisseuille’s law of 1839/40 applies. p1 is the pressure in the 
container, p2 the atmospheric pressure under normal circumstances.  

 ( )
4 4

V,H P 1 2 1,(g)

r r
Q p p p

8 l 8 l−
π ⋅ π ⋅= − =
⋅η⋅ ⋅η⋅

 (2.5-4) 

The other extreme case is easiest to show with an orifice plate with A as the 
area of the opening. According to Knudsen the molecular flow is given 

 Mol Mol1 2
V,Knudsen 1,(g)

Mol 2 Mol

R T R Tp p
Q A A p

2 M p 2 M

⋅ ⋅−
= =

π⋅ π ⋅
 (2.5-5) 

with p2 = 1 bar. 
Both kinds of flow express the relationship of the pressure difference between 

the container pressure and atmospheric one. Consequently, the pressure leak rate 
has to be supplemented by information about the pressure.  

Vacuum and pressure leak rate can not be calculated from each other with any 
great accuracy. The rule of thumb is  

p vacL p L≈ ⋅  (2.5-6)

Many manufacturers of leak-test mass spectrometers give Lp = 100 Lvac without 
specifying p.  
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When considering the container pressure one peculiarity of the leak must be 
mentioned. At high pressures the form of the pressure containers is changed, 
sometimes leaks only occur at this stage. Thus it makes sense to check an indus-
trial gas plant for leak tightness at the pressure production.  

Eqs. 2.5-4 and -5 show the dependence on the type of gas. From the example of 
selected gases in Table T2.5-1 one can view the sometimes considerable differ-
ences, the QV for He were randomly fixed = 1. It is not possible to give a simple 
relationship of the leak rate to the density because the exact type of leak is nor-
mally unknown and is additionaly a combination.  

Table T2.5-1: The dependence of leak volume flow rate on the type of gas and flow. 

gas η   in 

[Ns · m–2 ] · 10–6 
MMol  in 

[kg] 
         QV 

Hagen-Poisselle 
    QV  
Knudsen 

He 19.2   4.00 1 1 
H2 8.92 2.02 2.20 1.40 
N2 17.9 28.01 1.10 0.38 
Ar 22.8 39.95 0.86 0.32 

CF4 17.4 8.00 1.13 0.21 
Xe 23.0 131.30 0.86 0.17 

 
In general the leak rate serves as a measure of leak tightness and thus the qual-

ity e.g. of a component, it can however also be used to estimate volume flows.  

Example E2.5-1: In a 50 litre gas cylinder with 200 bar (gauge pressure) He a 
leak rate of  5 · 10–3 cm3 · s–1 is measured at the point where the valve is screwed 
in. By how many bars has the pressure in the bottle fallen after 2 years (a)? 

 3 3 3
p 200bar 2aV L t 5 10 60 60 24 365 2 315.360[cm ] 0.3154[m ]−

== ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = =   

We continue to calculate perfectly using the relatively small amount of ideal 
gas. In 2 years the volume has decreased from 10 to 9.684 m3 . Then the pressure 
is (A) = beginning  

( )

[ ]

A 3
geom

(2a) 3
geom 2a

(2a)

p V 0.05 200 10 m

p V 0.05 p 9.684 m

9.684 200
p 193.7 bar

10

⎡ ⎤⋅ = ⋅ = ⎣ ⎦
⎡ ⎤Δ ⋅ = ⋅ = ⎣ ⎦

⋅= =

 

If the filling company gives a 2-year guarantee, there must be complaint about 
this decrease in pressure. In most cases a tolerance of ± 5 bar is guaranteed. 

Example E2.5-2: With a pipeline plant Ar 6.0 is supplied to different customers at 
a pressure of 6 bar (gauge pressure). The pipeline plant contains 40 sealing compo-
nents in the pipes and fittings. The volumetric flow is 10 m3 · h–1. The fraction of air in 
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the Ar should not be increased by more than 0.1 ppm by leakage. How large can the 
leak rate for the individual sealing element be?  
Using Cair = 0,1 · 10–6  and  QV = 10 m3 · h–1 we obtain 

6
air total air V

6
6 3 1 6 4 3 1

Q L C Q 0.1 10 10

10
10 m h 10 2.8 10 cm s

60 60

−

−
− − − − −

= = ⋅ = ⋅ ⋅

⎡ ⎤ ⎡ ⎤= ⋅ = = ⋅ ⋅⎣ ⎦ ⎣ ⎦⋅

 

6 3 1total
single

L
L 7 10 cm s

40
− ⎡ ⎤= = ⋅ ⋅⎣ ⎦  

Now there is a justified question: How can air get into a system which is oper-
ating at an gauge pressure of 6 bar. The answer: The flow through a leak is de-
pendent on the partial pressure. The outside one is the atmospheric pressure of 
air, inside it is virtually = 0. This may seem paradoxical but even for an Ar supply 
pipe at a pressure of 250 or even 400 bar it is true that leaks cause the Ar to flow 
to the outside but air to the inside. If the volumetric flow of Ar is very large it is 
hardly noticeable. At times of less usage, e.g. during weekends the following phe-
nomenon occurs: When the plant is put into operation at the beginning of the week 
a relatively high content of O2 and N2, is found which slowly decreases again. It is 
hardly possible to deal with this mathematically.  

Searching for leaks and establishing specification limits are described in  
chapter 4. 
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