
Non-local Choice and Beyond:
Intricacies of MSC Choice Nodes�

Arjan J. Mooij, Nicolae Goga, and Judi M.T. Romijn

Technische Universiteit Eindhoven,
Department of Mathematics and Computer Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{a.j.mooij, n.goga, j.m.t.romijn}@tue.nl

Abstract. MSC is a visual formalism for specifying the behavior of
systems. To obtain implementations for individual processes, the MSC
choice construction poses fundamental problems. The best-studied cause
is non-local choice, which e.g. is unavoidable in systems with autonomous
processes. In this paper we characterize two additional problematic classes
of choice nodes. Based on these three classes we point out some errors in
related work. Extending our work on pragmatic implementations of non-
local choice, we motivate a different choice semantics which allows a little
more behavior. Finally, inspired by practical case studies, we present the
first implementation approach for non-local choice nodes that can handle
arbitrary numbers of processes.

1 Introduction

Message sequence chart (MSC, see [11, 17]) is a visual formalism that is used
to specify the behavior of a collection of processes. An important property of
MSCs is that behaviors are described from a full-system’s perspective. Then an
immediate question is whether an implementation can be extracted that has the
same behavior but expressed in terms of the processes in the system.

To obtain such an implementation, the behavior specified for the full system
must be established by the independent processes in a distributed way. The
usual way to obtain an implementation for each process is to project the MSC
on each single process. However, in general, implementations with exactly the
same behavior do not exist (see e.g. [13]). Typical problems that arise in naive
implementation attempts are additional behaviors [19] and deadlocks [20].

Then one can conclude that the MSC formalism is inappropriate for protocol
specification, but there are also some approaches to really address the problem.
First, the obtained implementations can be compared with their specifications to
find inconsistencies [20]. A second option is to identify and detect properties of
MSCs that may cause problematic implementations, and then label such MSCs

� This research is supported by the NWO under project 016.023.015: “Improving the
Quality of Protocol Standards”.

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 273–288, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



274 A.J. Mooij, N. Goga, and J.M.T. Romijn

as being pathological [7]. Finally, alternative semantics of the MSC constructions
are studied such that these constructions become implementable [5, 15].

In this paper we address the latter two approaches for the very topical issue
of choice nodes. The best-studied property leading to implementation problems
is non-local choice. In addition to this property about locality of a choice, we
define two classes of problems related to propagation of the choice. These three
classes together arise naturally from a single process’ perspective, and we use
them to point out some errors in related work.

To handle non-local choice we motivate a different kind of choice semantics,
viz. one that allows a little more behavior than the standardized semantics, but
in a controlled way. Based on this modified semantics we address approaches
to implement choice nodes. Such approaches are highly needed, since non-local
choice is inevitable in MSC specifications of systems with autonomous processes.
In our cooperation with protocol standardization committees (see e.g. [15]) we
have noticed that currently there are insufficient applicable solutions.

We present a generalization of our approach [15] to implement non-local
choice in systems with two processes. We also introduce a new implementation
approach for non-local choice that, as far as we know, is the first one that can
deal with arbitrary numbers of processes. The MSC patterns required for both
approaches are inspired by our experience with practical case studies.

Preliminaries. Instead of hMSCs (high-level MSCs or hierarchical MSCs), in this
paper we use the mathematically more convenient notion of a message sequence
graph (MSG). Since these concepts are equally expressive (see [8]) this is a valid
and common strategy. An MSG is a finite directed graph in which each node
is labeled with a bMSC (basic MSC), and there is one initial and one terminal
node. We use the term MSC to refer to an MSG together with its bMSCs.

For simplicity reasons and without loss of generality, we assume the MSG to
be normalized such that if a node has more than one outgoing edge, then the
bMSC associated with the node is an empty bMSC. In this way the choices in
the MSG are made explicit in (choice) nodes without an associated bMSC.

We use the following nomenclature for MSCs. There are four kinds of actions
(or events): an internal action, asynchronously sending a message m (denoted by
!m), receiving a message m (denoted by ?m) and termination. A process is said
to have initiative, if a possible next action for the process is an initiating action
like an internal action, sending a message or termination. Note that finding the
collection of possible next actions of a process might require considering the
entire MSG.

Overview. In Section 2 we give our characterization of three properties that may
cause problems when implementing MSCs with choice nodes, and we discuss
some related literature. In Section 3 we discuss ways to handle the best-known
class, viz. non-local choice. Section 4 contains a summary of our earlier work
[15] on dealing with non-local choice in systems with only two processes, and it
contains a small generalization. This summary also serves as an introduction to
Section 5, in which we present an approach to implement non-local choice for



Non-local Choice and Beyond: Intricacies of MSC Choice Nodes 275

an arbitrary number of processes. Finally Section 6 gives some conclusions and
directions for further work.

2 Problematic Choice Node Properties

In this section we present our characterization of three problematic choice node
properties. On this basis we discuss and comment on some related literature,
and in Section 5 we exploit it to isolate one of the classes.

2.1 Characterization of Choice Synchronization Problems

As mentioned before, the core implementation problem is that one collective
choice is specified, while it must be implemented in a distributed way. If in a
choice node all possible initiating actions can be performed by only one of the
processes, this single process can simply perform the system’s decision about the
choice. However, in general it is not sufficient to ensure that one process makes
the decision. It is also important that the processes agree on the decision, so the
decision must be properly propagated to the other processes. So far this has not
really been recognized, and the propagation issue is frequently ignored.

In the remainder of this section, we study the implementation problem for a
single choice node from the perspective of a single process. An important concept
will be the set of successor nodes for the process, i.e. the nodes that contain the
process’ possible first action after the choice node. Note that the definition of
successor node for a process is not restricted to the direct successors of the
choice node. Namely, if the process is not involved in some direct successors in
the graph, also nodes that can be reached further on must be considered.

Non-local Choice. A first question is whether the process should initiate some
behavior or it should just wait to receive a message. When several processes
independently decide to initiate behavior, they might start executing different
successor bMSCs. This possibility easily leads to non-specified behaviors, and it
is usually called non-local choice (NLC). An example of non-local choice can be
generated with the bMSCs in Figure 1 by constructing a choice node from which
only the bMSCs msc base and msc NLC can be chosen.

More formally, a node is a non-local choice node for the two distinct processes
p and q if the following holds: there are two different successor nodes k and l for
process p and q respectively, such that p has initiative in k and q has initiative in

P Q

msc msc_base

X

P Q

msc msc_NLC

P Q

msc msc_NDC

P Q

msc msc_RC

XY
Z

X

Fig. 1. bMSCs to illustrate the classification



276 A.J. Mooij, N. Goga, and J.M.T. Romijn

l, and such that each (acyclic) path to node k without any action of p is disjoint
with each (acyclic) path to node l without any action of q.

Non-deterministic Choice. Then assume that there is only one process that
has initiative in the node, and this process performs the system’s decision on
the choice. Suppose in each successor node the first action of the process under
consideration is a receipt, and suppose a matching message arrives. A question
is whether this first receipt is sufficient to derive the decision made about the
choice. In case some of the successor nodes have a common first receipt, then this
is clearly not the case; we call it non-deterministic choice (NDC). An example
of non-deterministic choice can be generated by constructing a choice node from
which only the bMSCs msc base and msc NDC in Figure 1 can be chosen.

More formally, a node is a non-deterministic choice node for a process p if
there are at least two different1 successor nodes for p with the same receipt
action as first action of p.

Race Choice. Absence of non-deterministic choice is not enough for a process
to derive the choice decision on the basis of the first arriving message. Namely, in
case messages arrive in a different order than in which their receipt is specified
in the bMSC (which in itself is not an error, just a property of the underlying
communication system), the process may incorrectly derive which decision has
been made. So the first message receipt in one node, may actually have been
sent according to another node in which the receipt is not the first action of
the recipient; we call it race choice (RC). An example of race choice can be
generated by constructing a choice node from which only the bMSCs msc base
and msc RC in Figure 1 can be chosen.

More formally, a node is a race choice node for a process p if the following
holds: there are two different2 successor nodes k and l for process p such that
p’s first action in k is a receipt of message m and in l it is a receipt of a different
message n, and such that starting with node l a message m may be sent to p
before process p performs any action.

Examples with a combination of these properties NLC, NDC and RC can be
generated with the bMSCs in Figure 1 by constructing a choice node from which
only msc base and the bMSCs for the selected properties can be chosen.

Distinguishing between the two propagation-related properties, viz. non-
deterministic choice and race choice, may look somewhat arbitrary, but it is
based on an essential difference. Intuitively, non-deterministic choice is a static
property of the MSC, while race choice takes into account the dynamics of the
communication network.

Finally it needs to be mentioned that MSCs with some of these properties
are not guaranteed to give implementation problems [16]. For example, in case

1 A successor node that can be reached from the choice node via multiple paths, is
considered only once since we assume paths without actions to be irrelevant.

2 Note that we exclude order problems that are not caused by a choice (e.g. within a
bMSC), which falls under implementability of a single bMSC.



Non-local Choice and Beyond: Intricacies of MSC Choice Nodes 277

 

P Q

msc M0

A

R

C

P Q

msc M1

B

R

C

P Q

msc M2

A

R

D

P Q

msc M3

B

R

D

Fig. 2. Non-local choice without implied behaviors

all potential “additional” behavior has already been included in the MSC, or in
case agreeing on the decision is not really important for the further execution.

2.2 Related Problems and Solutions

In this section we discuss various related issues from the literature and we point
out some errors in related work.

Communication Infrastructure. Especially in small systems, the problems
caused by non-local choice and race choice can be solved by extra assumptions
about the underlying communication system [12, 4]. Typical properties that may
help are communication synchrony, message order preservation, bounded buffer
capacities and confirmed communications. In specific cases, such assumptions on
the underlying system are both valid and useful.

Definitions of Non-local Choice. A frequently referenced paper for the def-
inition of non-local choice is [2]. Although much literature suggests the equiva-
lence of the various definitions in [2], we show that they are inconsistent. The
informal introduction contains the following description:

“When the wait-and-see strategy can be used to resolve a non-determinism
within each process, we call the branching a local branching choice. Oth-
erwise, when explicit synchronization between the processes is necessary
to resolve a non-determinism, we call the branching a non-local branching
choice.”

After introducing a formal semantic definition and a formal syntactic char-
acterization (equal to ours), the following informal explanation of the syntactic
version is given:

“An MSC specification has no non-local branching choice iff at each of
its branching points, the first events in all bMSCs are sent by the same
process.”

Usually, this last version is used for definition purposes, but the first one
is assumed when it comes to implementation. It is easy to see that these two
definitions are different by studying a choice node with the two successor bMSCs
msc base and msc RC from Figure 1. Since process P is the only process that can



278 A.J. Mooij, N. Goga, and J.M.T. Romijn

P Q

msc M0

X

Y

P Q

msc M1

X

Z

Fig. 3. Hidden non-local choice

initiate an action, it is local according to the second definition. Then according
to the first definition all non-determinism should be resolved, but process Q
shows the contrary.

Implied Scenarios. Implied scenarios are scenarios that are not contained in
the MSC specification, but that are contained in implementations of the MSC.
Although implied scenarios can result from propagation problems, only the rela-
tion with non-local choices (according to the syntactic definition of [2]) has been
studied. In [18] the following two observations are made:

1. “Non-local choices are implied scenarios;”
2. “nevertheless the converse is not the case.”

In contrast, [16] makes the following two observations:

3. “Notice that a non-local choice is not enough to have an implied scenario.”
4. “To have an implied scenarios these conditions3 hold: i) there is a non-local

branching choice in the MSC specification so that ii) ...”

There are two contradictions here. Observation 3 falsifies observation 1, which
can be shown using a choice node with as successors the bMSCs from Figure 2,
where more than one process has initiative but no implied behaviors result. In
turn, observation 2 falsifies observation 4, which can be shown with a choice node
node with the two successor bMSCs msc base and msc RC from Figure 1. Imple-
mentations of this example, without non-local choice, contain implied scenarios
with the prefix !Z · !X · ?X. Another example can be found in [18].

Delayed Choice. The widely accepted solution to non-deterministic choice is
to use delayed choice semantics instead of ordinary choice semantics. Since this
solution is effective quite often (though not always), it has become part of the
MSC standard. Sometimes, it can even eliminate non-local choice by factoring
out a common non-local prefix of the bMSCs after which a local choice remains.

However, we could not find any warning for its possible side-effects. Namely,
delayed choice can also expose non-local choice, e.g. in a choice node with the
two successor bMSCs from Figure 3. So although the MSG itself contains no
non-local choice, after applying delayed choice the non-local choice pops up.

3 This is the basis of [16]’s procedure for detecting implied behavior.



Non-local Choice and Beyond: Intricacies of MSC Choice Nodes 279

3 Dealing with Non-local Choice Nodes

In this section we address some ways to deal with the best-known choice problem
from Section 2, viz. non-local choice. We motivate a class of solutions, of which
only some instances have been described so far.

3.1 Traditional Approaches

Non-local choice is usually addressed by syntactically detecting (e.g. [2]) the non-
local choice nodes, or by detecting the resulting implied behaviors by generating
them (e.g. [16]). However, these approaches do not really address how to solve
the problems with non-local choice. An obvious approach might be to change
the MSC into a similar MSC with only local choice nodes. Since in that case at
each node only one process has initiative, systems with autonomous processes
cannot be specified. Another way to overcome the problems resulting from non-
local choice is to explicitly include all implied behaviors in the MSC. Although
this eliminates the implicit additional behaviors caused by implementing non-
local choice nodes, the MSC becomes more complicated, which is definitely not
desired from a practical point of view.

The problems with non-local choice nodes can also be seen as implementation
issues, and hence they should not even be addressed in a specification. Then to
obtain an implementation, some additional coordination protocol needs to be
introduced (e.g. [2]). Although this leads to a nice layered design, it is problem-
atic if some processes represent human beings, on which no additional protocol
should be imposed. Also for protocol standardization this approach is undesired,
since the additional protocol is not part of the MSC description.

3.2 Adjusted Semantics for Choice Nodes

The source of the problems with non-local choice nodes is that the underlying
system is distributed. Since the processes are independent computational units,
a coordination problem arises when the processes together need to make a tran-
sition in the MSG. Nowadays this problem is mainly noted in choice nodes, but
in fact, it also arises for pure (or synchronous) sequential composition of bM-
SCs in an MSG. The latter issue has been solved by defining its semantics to
be weak (or asynchronous) sequential composition, which usually corresponds
to the intentions of the developer of the MSC. For choice nodes, the changes in
their semantics (like delayed choice) are not (yet) sufficient.

Suppose all processes have reached a given non-local choice node. Since the
processes are independent, we need to conclude that in general it cannot be
avoided that the execution of several different bMSCs is initiated. This means
that an implementable semantics of choice must allow, to some degree, parallel
execution of the bMSCs. Of course, the amount of additional parallel behavior
should be minimal, and as soon as possible the behavior should converge to the
behavior of a conventional (or synchronous) choice.

As far as we know, this theoretical motivation for starting with parallelism
and converging to synchronous choice has not been revealed before, but two of



280 A.J. Mooij, N. Goga, and J.M.T. Romijn

its instances have been discovered in [5, 15]. These instances mainly differ in
the way in which the additional parallel behaviors are interpreted. In [5] this
behavior is ignored, while in [15] it is stored to be used at the next choice node.
The main limitation of both approaches is that only systems of two processes
can be addressed. In Section 5 we describe the first implementation of such a
semantics for an arbitrary number of processes.

4 Approach from [15] and a Generalization

In this section we summarize the approach for implementing non-local choice
nodes from [15] for two reasons. First, this approach for two processes is a nice
prelude to our approach for multiple processes in Section 5. Second, we show
how the MSG pattern required for [15] can be generalized.

4.1 Pattern and Its Generalization

For application of the approach of [15], the MSC must match a certain pattern
both with respect to its bMSCs and to its MSG. Two special kinds of bMSCs
are distinguished, viz. RC -like bMSCs (Request-Confirm scenario) and A-like
bMSCs (Announce scenario). These bMSCs contain as a prefix the structure as
depicted in Figure 4, in which P and Q denote the names of the two processes.

These two kinds of bMSCs can be seen as negotiation scenarios: process P
can send a Request message to process Q, but Q is the arbiter process that
decides whether to send a Confirm message and continue the execution of the
RC -like bMSC or to send an Announce message and execute an A-like bMSC.
More details are discussed together with the implementation in Section 4.2.

With respect to the MSG, the successor bMSCs of each non-local choice node
M must be partitioned into RC -like bMSCs and A-like bMSCs, but such that
the Request and Confirmation messages in the RC -like bMSCs do not occur in
the A-like bMSCs. The main restriction of [15] is that after an A-like bMSC,
a similar choice node as node M is reached again. This is depicted in Figure 5
(including the dashed arrows): after each A-like bMSC, an S node is reached that
is in fact identical to node M . This MSC pattern turns out to occur frequently.

However, the MSG pattern is too strong, since it only needs to ensure that
when process P has sent a Request message, it still makes sense for process Q

P Q

msc 

P Q

msc 

Confirm

Request

Announce

RC−like A−like

... ...

Fig. 4. Prefixes of the bMSCs for [15]



Non-local Choice and Beyond: Intricacies of MSC Choice Nodes 281

M

S1 Sn

(local choice node)(local choice node)

(non−local choice node)

RC

RC1

A

A1 AnRCm

Fig. 5. MSG pattern for [15] and a generalization

to receive the message after execution of an A-like bMSC. Hence, after an A-like
bMSC, only node RC is required to be reachable and we propose to generalize
the pattern by eliminating the dashed arrows in Figure 5. After each A-like
bMSC an S node is reached from which at least the previous series of RC -like
bMSCs is reachable (via node RC ). In addition, via the open outgoing edge also
extra RC -like bMSCs and an arbitrary series of A-like bMSCs may be reachable.

4.2 Implementation

We summarize the proposed implementation for both the original pattern (see
[15] for more details) and its generalization at the same time. Process Q becomes
a kind of arbiter, with the usual implementation. However, the implementation
for process P is slightly different: If process P receives an Announce message
from process Q, it executes the corresponding A-like bMSC. Even if process
P sends a Request message of an RC -like bMSC, it may still receive Announce
messages from process Q that indicate that some A-like bMSC must be executed.
Eventually, the Confirmation message corresponding to the Announce message
will arrive, and then execution of the RC -like bMSC can be completed.

Note that in this implementation, between sending and receiving a Request
message several executions of A-like bMSCs are possible. Observe also that after
process P has sent a Request message, the remaining choice is in fact a local
choice, viz. for arbiter process Q.

5 A New Approach to Deal with Non-local Choice Nodes

This section describes a way to implement the semantics proposed in Section 3.2
for systems with an arbitrary number of processes. Like in [15], the additional
parallel behavior is interpreted as behavior that must be stored to be used at the
next choice node. As far as we know, this is the first pragmatic implementation of
non-local choice for an arbitrary number of processes. Furthermore this approach
can deal with bMSCs in which several processes have initiative, and it is inspired
from both examples in the literature and industrial protocol standards.



282 A.J. Mooij, N. Goga, and J.M.T. Romijn

The description of our formalization is based on process algebra extended
with two operators. We briefly introduce them using characteristic examples, in
which a and b denote actions and s and t denote terms. The first operator is the
delayed choice operator ∓ (see [1, 17]) with as quantifier Σ:

a · x ∓ b · y =
{

a �= b : a · x + b · y
a = b : a · (x ∓ y)

The second operator is the partial synchronization operator ∩ (see [10, 3])
with a (hidden) set of actions S on which this operator synchronizes:

a · s ∩ b · t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a ∈ S ∧ b ∈ S ∧ a = b : a · (s ∩ t)
a ∈ S ∧ b ∈ S ∧ a �= b : δ
a ∈ S ∧ b �∈ S : b · (a · s ∩ t)
a �∈ S ∧ b ∈ S : a · (s ∩ b · t)
a �∈ S ∧ b �∈ S : a · (s ∩ b · t) + b · (a · s ∩ t)

In the remainder of this section, we first introduce a running example. Then
we address the MSC pattern we assume, followed by a description of our proposed
implementation. Finally we relate it to a proposed MSC extension.

5.1 Running Example

As an example to illustrate our approach, we use a simplified version of the
well-known ATM example [20]. We have restricted it to its core non-local choice
problem, as depicted in Figure 6. For later use, the MSCs contain some extra
annotations; in particular the bMSCs have been split by a horizontal line.

We briefly explain the functionality of this simplified ATM. In node A some
repetitive behavior is started with bMSC Request. It consists of inserting a card
and entering a password, followed by verifying the bank account. Then choice
node B is reached, in which the user can choose to:

– interrupt and cancel the account verification, which corresponds to: bMSC
Interrupt1 → node C → bMSC Interrupt2 → node A;

– wait for a balance report and press the cancel button to end the session:
bMSC Response1 → node D → bMSC Response2 → node A.

5.2 Pattern

To keep non-local choice manageable, we isolate it from other problematic choice
properties. This motivates the classification in Section 2, and from now on we
ignore propagation issues. In the remainder of this section, we exploit that the
MSG is normalized as discussed in Section 1 by interpreting the MSG as a graph
in which the edges are labeled with (concatenated) bMSCs, and in which the
nodes indicate choices.

To apply our approach, each bMSC must be split into a (preferably small)
front part that may be executed in parallel, and the remaining tail part that



Non-local Choice and Beyond: Intricacies of MSC Choice Nodes 283

User ATM Bank

msc Request

s0

t0
CardIn

Password

Verify

(a) bMSC Request

s1

t1

User ATM

msc Interrupt1

Bank

Cancel

CancelMsg

CardOut

(b) bMSC Interrupt1

s2

t2

User ATM

msc Response1

BalanceMsg

Balance

 

Bank

(c) bMSC Response1

t1

s1

DC

B

s0

t0

A

Request

Response2
t’1

s1

t2

s2
Response1

t’2

s2
Interrupt2

Interrupt1

(d) MSG

t’2

s2

User ATM

msc Interrupt2

Balance

Bank

(e) bMSC Interrupt2

 

User Bank

s1

t’1

msc Response2

Cancel

CardOut

ATM

(f) bMSC Response2

Fig. 6. Simplified ATM example

will be part of a real choice. To solve non-local choice, in each node the choice
between the successor bMSCs without their fronts must be a local choice. This
can be achieved as follows:

1. choose a process to become the “arbiter”, which is typically a non-human
process that occurs in each bMSC in an early stage;

2. split the bMSCs into a front and a tail, such that apart from the front, only
the arbiter process has initiative, unless the bMSC can only be reached from
a node with only one outgoing edge. (If the tail is empty for a process, also
successor nodes are involved in deciding which processes have initiative.)

The splitting of the bMSCs must be such that the following conditions hold:

1. for each node and for each two of its outgoing edges e and f with different
fronts, the node reached via edge e is no terminal node and the node has an
outgoing edge with the same front as edge f ;

2. for each two edges e and f with different fronts, the events in the front of
edge e do not occur in the front of edge f ;

3. for each two edges e and f , the events in the front of edge e do not occur in
the tail of edge e nor in the tail of edge f .



284 A.J. Mooij, N. Goga, and J.M.T. Romijn

The first condition reflects that additional front behaviors, which are the
additional parallel behaviors, can indeed be used in next choice nodes. If it does
not hold, a wrong arbiter process might have been chosen. But more likely the
MSC lacks some unavoidable behavior, parts of which must be made explicit for
our approach. Thus this condition can constructively help to improve the MSC
without studying the process implementations. A last option is that the MSC
needs to be slightly rearranged to fit our pattern.

The motivation for the last two conditions is quite technical and it will be
discussed upon their use. Although our pattern contains some restrictions, it
includes the patterns of Section 4 and it fits well-known examples as an ATM
(see the running example), and a producer-consumer pair (see Section 5.4).

Let us apply this to our running example. All choices have been made explicit
in the empty choice nodes A, B, C and D, and the only node with more than
one outgoing edge, viz. node B, suffers from non-local choice.

To check the pattern, an arbiter process must be chosen. Using the heuristics
from the first step, the ATM process should be an appropriate arbiter for node A.
The next step is to split the bMSCs according to this arbiter. This is depicted by
horizontal dashed lines in the bMSCs in Figure 6. This way of splitting turns out
to fulfill the first condition, e.g. in node B after bMSC Interrupt1 it is possible
to execute the front of bMSC Response1 namely as front of bMSC Interrupt2.
The last two conditions also turn out to hold.

For reference purposes, we introduce names s0, s1, s2, t0, t1, t2, t′1 and t′2
for the bMSC parts as indicated in Figure 6. For example, for the User process:

s0 = ε s1 = !Cancel s2 = ε
t0 = !CardIn · !Password t1 = ?CancelMsg · ?CardOut t2 = ?BalanceMsg

t′1 = ?CardOut t′2 = ε

5.3 Implementation

In general it is complicated to directly define our proposed implementation in
terms of a finite state machine. It turns out to be easier to use techniques from
constraint-oriented programming (see e.g. [3]), from which for concrete examples
a finite state machine can be obtained using operational semantics (see e.g. [3]).

In the remainder of this section, we concentrate on only one of the processes
since their implementations are independent. Furthermore we use V for the set
of nodes, and E for the set of labeled edges. More specific, we represent each edge
as a four-tuple (v, m, n, w) ∈ E as follows: the edge is directed from node v to
node w, and m and n are the front and the tail respectively of the corresponding
bMSC projected on the process to be implemented.

Our implementation is described in Figure 7, where the smallest solution of
I.v denotes the implementation of node v for the process. It is defined as the
synchronized execution of the terms Ii.v.m for each individual front m, where
Ii.v.m expresses where front m may be executed in relation with all tails. The
partial synchronization operator ∩ only synchronizes on the events in the tails,
for which we exploit the last two conditions mentioned above.



Non-local Choice and Beyond: Intricacies of MSC Choice Nodes 285

I.v = (
⋂

m:(∃v,n,w:(v,m,n,w)∈E) Ii.v.m)

Ii.v.m =
{

(∃n,w (v, m, n, w) ∈ E) : Ia.v.m.ε

(∀n,w (v, m, n, w) �∈ E) : (Σm′,n′,w′: (v,m′,n′,w′)∈E n′ · Ii.w
′.m)

Ia.v.m.p =
(

Σm′,n′,w′: (v,m′,n′,w′)∈E

{
m �= m′ : Ia.w′.m.(p · n′)
m = m′ : (p‖m′) · n′ · Ii.w

′.m

)

Fig. 7. Formalization of a single process implementation

The term Ii.v.m describes the implementation in node v with respect to the
inactive front m. If m is the front of a successor bMSC of node v, its execution
can be started and hence it becomes active. Otherwise it remains inactive, and
a usual choice is performed on the tails of the successor bMSCs of node v.

The term Ia.v.m.p describes the implementation in node v with respect to
the active front m. The additional parameter p is used to accumulate the series
of executions of tails since front m’s execution was allowed to start. In case the
tail of a bMSC with front m is executed, then it is required that front m was
executed along the path p to node v, which is expressed by the term (p‖m′).

To illustrate this approach on our ATM example, we first apply it to the
high-level description in terms of s and t. Afterwards, the specific details can
be substituted to obtain the final process implementations. First we give the
instantiations of some of the formulas:

I.A = Ii.A.s0 ∩ Ii.A.s1 ∩ Ii.A.s2
Ii.A.s1 = t0 · Ii.B.s1
Ii.B.s1 = Ia.B.s1.ε
Ia.B.s1.ε = (ε‖s1) · t1 · Ii.C.s1 ∓ Ia.D.s1.(ε · t2)
Ii.C.s1 = t′2 · Ii.A.s1
Ia.D.s1.(ε · t2) = ((ε · t2) ‖ s1) · t′1 · Ii.A.s1

After simplification we obtain the following implementation per process:

I.A = Ii.A.s0 ∩ Ii.A.s1 ∩ Ii.A.s2
Ii.A.s0 = s0 · t0 · (t1 · t′2 ∓ t2 · t′1) · Ii.A.s0
Ii.A.s1 = t0 · (s1 · t1 · t′2 ∓ (t2‖s1) · t′1) · Ii.A.s1
Ii.A.s2 = t0 · ((t1‖s2) · t′2 ∓ s2 · t2 · t′1) · Ii.A.s2

By substituting the actions of the three processes and eliminating the ∩
operator, the following final implementations are obtained:

IUser = !CardIn · !Password · (!Cancel · (?CancelMsg + ?BalanceMsg) +
?BalanceMsg · !Cancel) · ?CardOut · IUser

IATM = ?CardIn · ?Password · !Verify ·
(?Cancel · !CancelMsg · !CardOut · ?Balance +

?Balance · !BalanceMsg · ?Cancel · !CardOut) · IATM

IBank = ?Verify · !Balance · IBank



286 A.J. Mooij, N. Goga, and J.M.T. Romijn

Producer Consumer

msc msc_abort

msc_delivermsc_abort

msc msc_deliver

Producer Consumer

abort

deliver

Fig. 8. Producer-consumer example

The implementation for the ATM (which is the arbiter process) and for the
Bank are the usual ones. The possible behavior of the User has been extended,
but it is intuitive in relation to Figure 6. In particular after pressing Cancel,
the user can get a BalanceMsg instead of a CancelMsg. Using the model checker
SPIN [9], we have verified that the normal implementation contains deadlocks,
and that the above implementation is indeed free of deadlocks.

5.4 Relation with Compositional Message Sequence Charts

Our proposed implementation of non-local choice nodes typically contains be-
havior that is difficult to describe efficiently using current MSC. In [6] a syntactic
extension of MSC is proposed called “compositional message sequence chart”.
The example in [14] to illustrate the usefulness of this extension, can also be
generated using our approach and the MSC in Figure 8. Although the version
of [14] gives a more precise specification (i.e. closer to an implementation), our
version is simpler and more intuitive for system specification and still allows a
(unique) implementation using the technique presented in this section.

6 Conclusions and Further Work

We have structured a number of choice node properties that may lead to im-
plementation problems, viz. non-local choice, non-deterministic choice and race
choice. This has resulted in a natural classification of these properties which
covers initiative and propagation problems for choice nodes.

Further work is to address completeness of the classification. It needs to be
studied whether choice nodes without any of these properties can indeed be
implemented without introducing extra deadlocks or implied behaviors.

We have also focused on the best-known problematic property, viz. non-local
choice, which we propose to handle by slightly changing the choice semantics. We
have given the first implementation approach for non-local choice in systems with
an arbitrary number of processes. This is a pure generalization of the current
choice node semantics in the sense that for MSCs without choice problems it
produces the normal implementation.

Further work is to study alternative formalizations of this approach. In par-
ticular the general properties of this approach need to be investigated. It would
be interesting to investigate whether ignoring the additional parallel behavior



Non-local Choice and Beyond: Intricacies of MSC Choice Nodes 287

(as in [5]) can be integrated and also whether other initiative and propagation
issues can be addressed.

Acknowledgements. We thank the anonymous referees for the helpful com-
ments.

References

1. J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining Message
Sequence Charts. In Formal Description Techniques, pages 340–354, 1995.

2. H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-
local choice in Message Sequence Charts. In Tools and Algorithms for the Con-
struction and Analysis of Systems, number 1217 in LNCS, pages 259–274, 1997.

3. H. Brinksma. Constraint-oriented specification in a constructive specification tech-
nique. In REX Workshop on Stepwise Refinement of Distributed Systems, volume
430 of LNCS, pages 130–152, 1990.

4. A.G. Engels, S. Mauw, and M.A. Reniers. A hierarchy of communication models
for message sequence charts. Science of Computer Programming, 44:253–292, 2002.

5. M.G. Gouda and Y.T. Yu. Synthesis of communicating finite-state machines with
guaranteed progress. IEEE Transactions on Communications, COM-32(7):779–
788, July 1984.

6. E.L. Gunter, A. Muscholl, and D.A. Peled. Compositional message sequence charts.
In 7th Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 2031 of LNCS, pages 496–511. Springer, 2001.

7. L. Hélouët. Some pathological message sequence charts and how to detect them.
In 10th SDL Forum, number 2078 in LNCS, pages 348–364, June 2001.

8. J.G. Henriksen, M. Mukund, K. Narayan Kumar, and P. S. Thiagarajan. Towards
a theory of regular MSC languages. BRICS Report RS-99-52, Department of
Computer Science, Aarhus University, Denmark, 1999.

9. G.J. Holzmann. The model checker Spin. IEEE Transactions on Software Engi-
neering, 23(5):279–295, May 1997.

10. International Standards Organization. Information Processing Systems – Open
Systems Interconnection – LOTOS - A Formal Description Technique Based on
the Temporal Ordering of Observational Behaviour, 1989. ISO 8807:1989.

11. ITU-T. Message sequence chart. Recommendation Z.120, ITU-T, 2000.
12. F. Khendek, G. Robert, G. Butler, and P. Grogono. Implementability of message

sequence charts. In Workshop on SDL and MSC. SDL Forum Society, 1998.
13. M. Lohrey. Realizability of high-level message sequence charts: closing the gaps.

Theoretical Computer Science, 309(1–3):529–554, 2003.
14. P. Madhusudan and B. Meenakshi. Beyond message sequence graphs. In 21st Con-

ference on Foundations of Software Technology and Theoretical Computer Science,
volume 2245 of LNCS, pages 256–267, 2001.

15. A.J. Mooij and N. Goga. Dealing with non-local choice in IEEE 1073.2’s standard
for remote control. In SAM 2004: SDL And MSC, LNCS 3319. To appear.

16. H. Muccini. Detecting implied scenarios analyzing non-local branching choices. In
Fundamental Approaches to Software Engineering, number 2621 in LNCS, pages
372–386. Springer Verlag, 2003.

17. M.A. Reniers. Message Sequence Chart: Syntax and Semantics. PhD thesis, Tech-
nische Universiteit Eindhoven, June 1999.



288 A.J. Mooij, N. Goga, and J.M.T. Romijn

18. S. Uchitel. Incremental Elaboration of Scenario-Based Specifications and Behaviour
Models Using Implied Scenarios. PhD thesis, Faculty of Engineering of the Uni-
versity of London, February 2003.

19. S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in message se-
quence chart specifications. In Proceedings of the 8th European software engineering
conference, pages 74–82. ACM Press, 2001.

20. S. Uchitel, J. Kramer, and J. Magee. Synthesis of behavioral models from scenarios.
IEEE Transactions on Software Engineering, 29(2):99–115, February 2003.


	Introduction
	Problematic Choice Node Properties
	Characterization of Choice Synchronization Problems
	Related Problems and Solutions

	Dealing with Non-local Choice Nodes
	Traditional Approaches
	Adjusted Semantics for Choice Nodes

	Approach from [15] and a Generalization
	Pattern and Its Generalization
	Implementation

	A New Approach to Deal with Non-local Choice Nodes
	Running Example
	Pattern
	Implementation
	Relation with Compositional Message Sequence Charts

	Conclusions and Further Work
	References



