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Abstract. A new segmentation scheme is proposed for 3D vascular tree
delineation in CTA data sets, which has two essential features. First, the
segmentation is carried out locally in a small volume of interest (VOI),
second, a global topology estimation is made to initialize a new VOI. The
use of local VOI allows that parameter settings for the level set speed
function can be optimally set depending on the local image content,
which is advantageous especially in vascular tree segmentation where
contrast may change significantly, especially in the distal part of the
vascular. Moreover, a local approach is significantly faster. A comparison
study on five CTA data sets showed that our method has the potential to
segment larger part of the vessel tree compared to a similar global level
set based segmentation, and in substantially less computation time.

1 Introduction

Vessel segmentation in computed tomography angiography (CTA) data sets re-
mains an important image processing task. Usually, segmentation is the first
step in quantification, visualization, pre-operative planning, 3D vessel modeling
or in the design of computer aided diagnostic systems. Given its importancy,
numerous methods have been developed; an attempt in [6] is made to categorize
the different methods that have appeared in literature. In this work we consider
level set based approaches [9,13] for vessel segmentation. Level set evolution is a
way of describing the movement of surfaces by embedding them as the zero level
set of a higher dimensional function, thereby obtaining an intrinsic, i.e. param-
eter free representation, gaining topological flexibility, and allowing for a simple
calculation of geometrical properties, such as curvature, of the moving surfaces.
These properties make the level set framework a suitable choice for describing
the complex structures of vessel trees.

The crucial factor that determines the success of level set segmentation is
the speed function that evolves the surface to the desired boundaries. Typically,
most of these speed functions are of a global nature, i.e. , the same speed function
is used at all voxel locations in the image and is often completely pre-computed.
There are two important reasons for changing from a global to a local perspective,
especially in the case of angiography data sets. First, image contrast is often
varying owing to different concentrations of contrast agent, vessel resolution, or
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in case of magnetic resonance imaging, coil inhomogeneities. Second, the vessel
voxels only count for a few percentage of all voxels in the data sets and therefore a
local approach would be computationally more efficient. In this paper we propose
such a local scheme which is based on level set evolution for carrying out the
local segmentation.

The idea of a local adaptive segmentation scheme is certainly not new. How-
ever, to the best of our knowledge, only very few adaptive local approaches are
proposed in literature. This is perhaps due to the fact that local segmentation
is often considered as merely a technical, or implementation issue of a (global)
segmentation method. Still, the most closely related work we have found, is given
by [5, 11, 1]. Generally speaking, these methods do have a variant of a locally
adapting function for segmentation (for instance, the adaptive thresholding tech-
nique described in Jiang et al. [5] or the speed function based on statistics that
is periodically updated during evolution, in Pichon et al. [11]), but differ essen-
tially in the dependency that exist of each local segmentation function on the
previous functions at every global iteration step, while we assume a complete
independent segmentation function (i.e. speed function) for each local volume
of interest (VOI).

Our contribution is twofold; first, selection of the next local VOI is done in a
novel way by simply estimating the topology of the global segmentation result by
skeletonization, and marking those skeleton points which have largest distance
from the root point as the new seed points for a subsequent local segmentation.
Second, we have applied our proposed method to five realistic, CTA data sets of
the brain vasculature, and evaluated these local results with the result obtained
by evolving a similar, global level set evolution with constant speed function.

2 Method

The proposed method is as follows (see also Figure 1).

0. Initialization. The user is required to place the first seed point at the root
of the vessel tree of interest.

1. VOI selection and local speed function determination. A boxed VOI sym-
metrical around the seed point is determined for carrying out the local seg-
mentation. An intensity histogram from voxels around a rough segmentation
of the vasculature is used to construct the local speed function.

2. Local segmentation by level set evolution. The speed function is used to steer
a level set which is iterated until convergence.

3. Topology extraction and labeling. Topology extraction is performed by skele-
tonization of the global segmentation results, followed by a labeling of the
skeleton points. The selection of the next seed points is based on the re-
sulting labeling and distances. Of interest are these end points having the
largest distances from the seed point.

Steps 1-3 are repeated. The global stopping criteria for a locally adaptive
scheme becomes crucial now, since we want to prevent the method to adapt to
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Fig. 1. The local segmentation result adds up to the global segmentation result of
which the topology is estimated by skeletonization; the end points from this skeleton
are then selected as the next seed points. This way, the orientation of the next volume of
interest is implicitly taken into account. Disadvantage is that subsequent local volumes
may overlap, for at most half their sizes.

background. Since this a research topic on its own, the discussion is postponed,
and we simply set an upper limit on the overall number of local segmentations,
as stopping criteria.

2.1 VOI Selection and Local Speed Function Determination

Given a seed point, the VOI is simply chosen symmetrical around this point, and
its size should be such, that in this volume the intensity values of vessel and back-
ground are approximately homogeneously distributed. This is determined once
for a data set by visual inspection. The size can not be too small since then the
resulting histogram would not be properly defined. This is important, because
the speed function depends on this histogram. The size remains fixed throughout
execution of the algorithm. After the VOI has automatically been selected, an
initial threshold value is applied to get a rough segmentation of vessel voxels.
This initial threshold value is obtained by taking the mean voxel value in a small
neighborhood of a few millimeters around the seed point. This neighborhood is
set approximately equal to the distance of the seed point to the vessel border.
After thresholding, the morphological operations erosion of one voxel width (to
remove any noise voxel that may have occurred) and subsequentially dilation of
three voxels width (to ensure we include the background, i.e. voxels surrounding
the vessel voxels, as well), are applied. The resulting histogram is then used to
construct the speed function - from now on denoted as the external, image based
speed function Fext, as follows1, see also Figure 2 (the derivation follows the line
of a previous paper on this subject [8]).

Two Gaussian distributions gv and gb are fitted, using an expectation maxi-
mization algorithm [2], and the histogram is then described as (approximately)
1 Including spatial and higher order information could in principle, improve the results,

but for showing the the main ideas of our method, intensity information suffices.
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Fig. 2. From histogram to speed functions by classification error functions.

the sum of these functions. The Gaussian distributions overlap and therefore
thresholding the image results in misclassifications of voxels; denote Eb and Ev

as the fraction of voxels erroneously denoted as background and vessel voxels,
i.e. Eb(i) :=

∫ i

0 gv(x) dx and Ev(i) :=
∫ Imax

i
gb(x) dx. We propose the following

function for Fext

Fext :=
Eb − Ev

Eb + Ev
(1)

with range [−1, 1] and with Eb + Ev as a normalization factor. Fext is zero at
the optimal threshold value (optimal with respect to the total error given by the
sum of Eb and Ev), has positive value if the number of misclassified background
voxels is larger than the number of misclassified vessel voxels, and vice versa,
thus giving rise to positive speed function values inside the vessel, zero at the
boundary, and negative values outside the vessel. The negative range of the
speed function combined with a smoothness constraint on the evolving level set,
is particular effective in preventing possible leaking of the level set evolution
through the vessel boundaries when started within the vessel.

2.2 Local Segmentation

Segmentation in the local volume is performed by applying level set evolution
[9,13]. The basic partial differential equation is given by ut + F |∇u| = 0, with u
the signed distance function, ut the partial derivative to time, and F some general
speed function. In image segmentation, F is often defined as F := Fext(c − εκ)
(first proposed in [3,7]) , with Fext the image based term (previously defined in
Equation 1), c := 1 a constant advection term (similar to a balloon force [4]),
and εκ a weighted curvature term assuring smoothness of the surface. See [4,12]
for more detailed derivations and motivations of the same and related PDEs and
related image based speed functions. The curvature on a point on a 3D surface
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can be decomposed in two directions perpendicular to each other, in which the
curvature takes minimal and maximal value; these extremal curvatures are called
the principal curvatures. For vessel structures we prefer a smoothness along the
longitudinal direction in which the curvature term is minimal, and therefore we
define κ as κ := κmin. Together, they yield our final differential equation

ut + Fext(1 − εκmin)|∇u| = 0 (2)

Evolution is started at the seed point and continued until convergence, i.e.
stopped if there was no change in segmented volume.

2.3 Topology and Labeling

After convergence of the level set evolution, the zero level set is extracted and
combined with the previous segmentation results by the boolean operator OR
to get the global segmentation result. OR-ing the results is fast and accurate
enough for topology estimation, however, a much cleaner and consistent ap-
proach, especially for obtaining the final global segmentation result, would be
to merge the borders by applying level set evolutions again, but now initialized
by the local results. For now, we choose the first solution. The topology of the
global segmentation is then estimated by a 3D skeletonization algorithm [10]
based on thinning. Thinning deletes border points of the object satisfying cer-
tain criteria until the resulting object does not change any more. The final result
of the thinning procedure is a connected, topological preserving skeleton of the
original object that is a representation of the central vessel axis part of the vas-
cular tree. In [10] they are called the medial lines, i.e. 1D structures in 3D space,
making this 3D skeleton algorithm particular suitable for representing the vessel
structures.

The resulting medial lines are of only one voxel thick which simplifies labeling.
The purpose of labeling is to provide sufficient information to select the next seed
points for continuation of the global segmentation. A straight forward algorithm
is depicted. First, labeling is started at the root point, which is the seed point or
the nearest skeleton point if the seed point is not in the set of skeleton points.
The root point is then initialized with distance zero. From the root we traverse
the skeleton and for every skeleton point the Euclidean distance is updated and
a label is given, either {(E)nd, (S)egment, (B)ranch}, depending on the number
of neighbors. That is, if the number of neighbors of a given point minus one
equals zero, the point is labeled ’E’, equals one, the point is labeled ’S’, equals
two or more, the point is labeled ’B’. Giving the labeling and distances for each
skeleton point, the next seed points are simply those end points having the
largest distance from the root point.

3 Experiments and Results

The method is applied to cerebral CTA data sets acquired at the radiology
department of the University Medical Center (UMC), Utrecht. A large num-
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ber of scans of patients are made on a 16-slice CT scanner (Philips), result-
ing in data sets of 512×512 by approximately 300 slices, with voxel sizes of
0.3125×0.3125×0.5 mm. Five scans of patients are selected who are examined
for screening and showing no signs of hemorrhage (bleeding). Of each patients
two scans are made; a low dose scan without contrast, showing bone only, and a
high dose scan with contrast, showing bone and vasculature. First bone masking
is applied [14]; which consists of rigid registration (based on mutual information
and trilinear interpolation), erosion/dilation for noise removal and compensating
for inaccuracy of registration, and finally thresholding with Tbone and masking.
Tbone is not critical because the gap between the upper bound of vessel intensity
(∼500 Hounsfield Units HU) and the lower bound of bone intensity (∼800 HU)
is around 300 HU. Bone masking is not mentioned as part of our method since
it is not essential for communicating the main idea of our method. Then, each
data set was split into two region of interests - denoted left and right, because
the method expects only one seed point for initialization (conveniently chosen
at the internal carotid arteries) and which indeed is, of only a technical lim-
itation, and will be removed in a future implementation of our method. The
user required input consist of (i) setting Tbone (we choose Tbone := 600 HU),
(ii) selection of the initial seed point at the root of the vessel tree, (iii) setting
of the global parameters (by lack of an appropriate stopping criteria, the maxi-
mum number of local segmentations is set at 25, the size of the local VOI is set
at 100×100×100) and finally, (iv) setting of the local, i.e. level set parameters.
Their values are empirically determined; the number of iterations n := 1500
(all local level set evolutions converged before n either by reaching the vessel
boundaries, or reaching the bounding box of the VOI in case of adapting to
background that sometimes happened during the last VOIs), time step t := 0.1,
bandwidth b := 6, and ε := 0.35. Initializiation of the level sets occur in a small
sphere of radius two voxels around the seed points. The level set evolution has
been implemented using the narrow band method [13].

The evaluation of segmentation methods is important and difficult, and this
work forms no exception. A comparison study is conducted and we evaluated the
results of our method with the results of a similar global level set evolution, by
visual inspection. This global level set evolution starts at the same seed points
and has the same parameters as the local level set, except for the number of
iterations that now was set at n := 10000. To get an impression of the data sets
and results, maximum intensity projections of three typical results out of five
data sets are shown in Figure 3; the first column gives the original data set (bone
masked), the second column the result of the global level set evolution and the
third column the results of the locally adaptive segmentations. On average and
based on all five results, the local segmentation method captures more vessel
structures than the global level set evolution does. In the figure some typical
regions of interests are denoted with arrows. For example, the arrow of the first
row points at a region the method is erroneously adapting to background. The
arrow of the second row points a vessel at which the method discontinues the
selection of next VOIs. This is due to seed point selection which only consider
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those end points with maximal distance from the root point, thereby running
the risk of missing some important end points. The improvement in computation
time was significant, about 500 minutes on average for the global segmentation
compared to 130 minutes on average for both local segmentations (left and right
summed up) of each data set, on the same machine. Clearly, these results are
very pleminary, but still gives an indication of the potential of the method.

Fig. 3. Three out of five results; first column the original bone masked, second the
global result, third the local results. The local results are splitted for technical reasons.
Some regions of interest are denoted by arrows, see the main text for an explanation.

4 Conclusions

A new local adaptive segmentation scheme is proposed based on level set evolu-
tion for carrying out the local segmentation, and topology estimation by skele-
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tonization of the global segmentation for selection of the next volume of interest.
A comparison study of our method to a similar global level set evolution on five
real, CTA data sets, showed that on average larger parts of the vessel tree are
segmented initialized by a single seed point only, and showed a significant de-
crease in computation time. Future work is to devise a more intelligent, global
stopping criteria, to refine the next seed point selection, to include bone masking
in the local segmentation, and to conduct a better evaluation study based on a
larger patient groups.
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