
Multicollisions in Iterated Hash Functions.
Application to Cascaded Constructions

Antoine Joux

DCSSI Crypto Lab
51, Bd de Latour-Maubourg
75700 Paris 07 SP, France
antoine.joux@m4x.org

Abstract. In this paper, we study the existence of multicollisions in it-
erated hash functions. We show that finding multicollisions, i.e. r-tuples
of messages that all hash to the same value, is not much harder than
finding ordinary collisions, i.e. pairs of messages, even for extremely large
values of r. More precisely, the ratio of the complexities of the attacks
is approximately equal to the logarithm of r. Then, using large multi-
collisions as a tool, we solve a long standing open problem and prove
that concatenating the results of several iterated hash functions in or-
der to build a larger one does not yield a secure construction. We also
discuss the potential impact of our attack on several published schemes.
Quite surprisingly, for subtle reasons, the schemes we study happen to
be immune to our attack.

1 Introduction

One-Way hash functions are widely used cryptographic primitives, they operate
on messages of almost arbitrary length1 and output a fixed size value. Cryp-
tographic hash functions should satisfy many security properties, such as the
impossibility from a given hash to recover an associated message. However, the
main security requirement for a hash function is its collision resistance. Infor-
mally, given a good hash function, no attacker should be able to find a pair of
different messages M and M ′ leading to identical hash values. It is a well-known
fact that all hash functions suffer from a generic birthday paradox based attack.
More precisely, if H is a hash function that outputs n–bit values, then among the
hash values of 2n/2 different messages, there exists a collision with non negligible
probability. For this reason, hash functions that output values smaller than 160
bits are considered as deprecated. Yet, in the past, 128–bit hash functions were
proposed and for legacy reasons they are still encountered in applications.

In practice, building a cryptographic function with an input of variable size
is not a simple task. For this reason, most hash functions are based on an it-
erated construction that makes use of a so-called compression function, whose
inputs have fixed sizes. Examples of such a construction are Snefru [7], MD4 [12],
MD5 [13] or SHA [9]. In this paper, we specifically study one-way hash-functions
built by iterating a compression function.
1 The length is often bounded by a very large number such as 264. However, this is

irrelevant for the attacks presented here.

M. Franklin (Ed.): CRYPTO 2004, LNCS 3152, pp. 306–316, 2004.
c© International Association for Cryptologic Research 2004



Multicollisions in Iterated Hash Functions 307

Our main goal is to solve a long standing open problem: Is the concatenation
of two independent hash values more secure than a single hash-value ? This
question is of general interest and has appeared in many contexts. As far as we
know, this construction first appeared as a generic transform in the PhD thesis
of B. Preneel [10] and was called cascading. It was presented there as a mean to
increase the security level at the cost of a decreased performance.

In fact, this idea of cascading hash functions is likely to be encountered in
applications, for example, a construction called SHA-1x was used at some point
in PGP and involves the computation of two SHA-1 values with a different
set of initial constants. Similarly, the authors of RIPEMD [4] propose optional
extensions of their hash functions to 256 and 320 bits values. In this case, the use
of two hashing is extremely efficient since the original 128 and 160 bits algorithms
already involve two parallel hashing whose results are normally added together.

Yet, according to [4], one should not expect to improve the security level with
these constructions since unwanted dependencies between two slightly different
instances of the same hash function may yield unforeseen attacks. In the same
vein, a length doubling transform is suggested in the hash function chapter
of [14], together with a warning that while no attacks are known several people
have serious reservations about the construct.

As a consequence, the security of hash functions cascading is not very clear.
Roughly, the cryptographic folklore states that the construction is good when
two “independent” hash functions are cascaded. Clearly, this is true for random
oracles and the generalization seems natural. For reference about this folklore
knowledge, the interested reader may look up fact 9-27 in [6], that states that
such a cascade is secure and that one could hope for a security of the order of
the product of the security of the initial hash functions. However, we show in
section 4 that this construction is in fact insecure, whenever an iterated hash
function is involved in the cascading. Even cascading a 160-bit iterated hash
function and a 160-bit random oracle does not really increase security above the
initial 280 level for collision resistance and above 2160 for preimage (or second
preimage) resistance.

In order to solve this problem and prove that cascading two hash values is in
fact insecure, we first address the simpler question of constructed multicollisions
in an iterated hash function. This notion of multicollisions was first used by
Merkle in [8] to study the security of a hash function based on DES. A related
security property, namely r-collision freeness, has been suggested as a useful
tool for building efficient cryptographic primitives. It was used for the micro-
payment scheme Micromint of Rivest and Shamir [11], for identification schemes
by Girault and Stern in [5] and for signature schemes by Brickell and al. in [1].
The intuition behind this problem is that constructing r different messages with
the same hash values should be much harder than constructing only two such
messages. Once again, this is true when using random oracles. However, when
iterated hash functions are involved, this intuition is false and multicollisions
can be easily constructed.

The paper is organized as follows. In section 2 we recall some basic facts
about iterated hash function and the possible security properties of hash func-



308 Antoine Joux

tions. In section 3, we describe the basic attack for constructing multicollisions
in iterated hash functions. In section 4, we use this attack as a tool and show
that the security obtained when cascading several hash values is far from opti-
mal. Unintuitively, this attack works even when two completely unrelated hash
functions are cascaded and does not stem from any unforeseen correlation be-
tween similar hash functions. Finally, in section 5, we study the impact of our
construction on several concrete schemes that rely on cascading or multicolli-
sion resistance. Very surprisingly, in all published examples, we encounter some
obstruction which prevents the attack from working.

2 Basic Facts About Iterated Hash Functions

An iterated hash function H is built by iterating a basic compression function.
The compression function f takes two inputs, a chaining variable and a message
block, it outputs the next value of the chaining variable. Before processing, the
message is first padded and split into elementary blocks. The padding itself is
generally performed by appending a single ’1’ bit, followed by as many ’0’ bits
as needed. To avoid some attacks, the binary encoding of the message length
can also be added to complete the padding. This is called a Merkle-Damgard
strengthening [8, 3]. Once the padded message is split into � blocks, M1, . . . ,
M�, the chaining variable is set to some fixed initial value and the iteration is
performed. To summarize, the hashing process works as follows:

– Pad the original message and split it into blocks M1, . . . , M�.
– Set H0 to the initial value IV .
– For i from 1 to �, let Hi = f(Hi−1, Mi).
– Output H(M) = H�.

Given such an iterated hash function, defining its security is a tricky matter.
Ideally, the hash function is often seen as a concrete substitute for random oracles
in cryptographic construction. Of course, it is well known (see [2]) that this
extreme level of security is in fact impossible to reach. Thus, the security level of
hash function is usually characterized by considering “easier” security goals. The
most frequently encountered goal is the impossibility for a bounded adversary
to find a collision in the hash function. We recall that a collision is a pair of
different messages M and M ′ such that H(M) = H(M ′). Due to the birthday
paradox, there is a generic attack that find collisions after about 2n/2 evaluations
of the hash function, where n is the size in bits of the hash values. The attack
works by randomly choosing messages and computing their hash values until a
collision occurs. Typically, with iterated hash functions, the size of messages’
blocks is often larger than the size of the hash values themselves, and this attack
usually works on the compression function itself. Other important security goals
for hash functions are preimage resistance and second-preimage resistance. An
attack against preimage resistance is an attack that, given some target value
y, finds a message M such that H(M) = y. An attack against second preimage
resistance, given a message M , finds another message such that H(M) = H(M ′).



Multicollisions in Iterated Hash Functions 309

The best generic attacks against these security goals cost about 2n evaluation
of the function H .

The notion of collision can easily be generalized to that of r-way collision
(or, for short, r-collision). A r-collision is simply a r-tuple of messages M (1),
. . . , M (r), such that H(M (1)) = · · · = H(M (r)). Assuming as above that the
hash values behave almost randomly, finding an r-collision could be done by
hashing about 2n·(r−1)/r messages. When r becomes large, this tends to 2n. Due
to this fact, relying on r-collision freeness in cryptographic construction seems a
good way to gain more security without increasing the size of the hash functions.
This is very tempting in some applications such as identification schemes [5] and
signature schemes [1]. The next section demonstrates that, in fact, r-collisions in
iterated hash functions are not much harder to construct than ordinary collisions,
even for very large values of r.

3 Constructing Multicollisions

In this section, we show that constructing multicollisions in iterated hash func-
tion can be done quite efficiently. More precisely, constructing 2t-collisions costs
t times as much as building ordinary 2-collisions. Before describing the attack,
let us remark that the padding process can be ignored as long as we consider
collisions between messages of the same length. Indeed, in that case, the blocks
of padding are identical. Moreover, if the intermediate hash chaining values col-
lide at some point in the hash computation of two messages, the following values
remain equal as soon as the ends of the messages are identical. Thus, on mes-
sages of the same length, collisions without the padding clearly lead to collisions
with the padding.

For simplicity of exposure, we assume that the size of the message blocks is
bigger than the size of the hash (and chaining) values. However, the attack can
be easily generalized to the other case. We also assume that we can access a
collision finding machine C, that given as input a chaining value h outputs two
different blocks B and B′ such that f(h, B) = f(h, B′). This collision finding
machine may use the generic birthday attack or any specific attack based on a
weakness of f . The most relevant property is that C should work properly for
all chaining values2. To illustrate the basic idea, we first show how 4-collisions
can be obtained with two calls to C. Starting from the initial value IV , we use a
first call to C to obtain two different blocks, B0 and B′

0 that yield a collision, i.e.
f(IV, B0) = f(IV, B′

0). Let z denotes this common value and using a second call
to C, find two other blocks B1 and B′

1 such that f(z, B1) = f(z, B′
1). Putting

these two steps together, we obtain the following 4-collision:

f(f(IV, B0), B1) = f(f(IV, B0), B′
1) = f(f(IV, B′

0), B1) = f(f(IV, B′
0), B

′
1).

We now claim that this basic idea can be extended to much larger collisions
by using more calls to the machine C. More precisely, using t calls, we can build
2t-collisions in H . The attack works as follows:
2 Or at least on a fixed proportion of them.



310 Antoine Joux

– Let h0 be equal to the initial value IV of H .
– For i from 1 to t do:

• Call C and find Bi and B′
i such that f(hi−1, Bi) = f(hi−1, B

′
i).

• Let hi = f(hi−1, Bi).
– Pad and output the 2t messages of the form (b1, . . . , bt, Padding) where bi is

one of the two blocks Bi or B′
i.

Clearly, the 2t different messages built as above all reach the same final value.
In fact, they have an even stronger property. Namely, all the intermediate hash
values are equal, since all of the 2t hashing processes go through h0, h1, . . . ,
ht. A schematic representation of these 2t messages together with their common
intermediate hash values is drawn in figure 1.

h0
�

B′
1

�

B1�
� h1

�

B′
2

�

B2�
� h2

�

B′
3

�

B3�
� h3

�

B′
4

�

B4�
� h4

. . . ht−1
�

B′
t

�

Bt�
� ht

Fig. 1. Schematic representation of multicollision construction

Some generalizations. If f works on messages blocks which are smaller that
the chaining values, the natural way to proceed is to group a few consecutive
applications of f . For example, we can consider the function f (2)(h, B1, B2) =
f(f(h, B1), B2) which composes two rounds of the compression function. As soon
as the total size of the input blocks exceed the size of one chaining value, we can
apply the original attack to the composed compression function.

Another generalization is to build 2t-collisions from a 2-collision attack ma-
chine C that works only on a fixed proportion ε of the chaining values. Of
course, this is not the case with the generic birthday attack, however, it may
happen with some specific attacks. In that case, the basic attack described above
only works with probability εt. Indeed, if any of the hi does not belong to
the set of chaining values that C can attack, we are in trouble. However, this
bad behavior can be easily corrected by inserted a randomization step between
two consecutive applications of C. Namely, after finding Bi and B′

i such that
f(hi−1, Bi) = f(hi−1, B

′
i), choose a random block Ri and let:

hi = f(f(hi−1, Bi), Ri).

If hi fails to be in the scope of C, change Ri to get another candidate. Altogether,
this randomization technique leads to a global complexity of the attack of the
order of t/ε calls to C.

4 On the Security of Cascaded Hash Functions

A natural construction to build large hash values is to concatenate several smaller
hashes. For example, given two hash functions F and G, it seems reasonable given



Multicollisions in Iterated Hash Functions 311

a message M to form the large hash value (F (M)‖G(M)). In this construction,
F and G can either be two completely different hash functions or two slightly
different instances of the same hash function3. If F and G are good iterated hash
functions with no attack better than the generic birthday paradox attack, we
claim that the hash function F‖G obtained by concatenating F and G is not
really more secure that F or G by itself. Moreover, this result applies both to
collision resistance, preimage resistance and second preimage resistance.

4.1 Collision Resistance

Assume that F outputs an nf -bit hash value and G an ng-bit value. Then, with
respect to collision resistance, the security level of F is 2nf /2 and the level of
G is 2ng/2. If F‖G was a good hash function, the complexity of the best attack
would be 2(nf+ng)/2. We claim that there exists a much better attack which find
collisions on F‖G with complexity of the order of ng2nf /2 + 2ng/2 if nf ≤ ng

(respectively nf2ng/2 + 2nf /2 if nf ≥ ng). Assuming than nf ≤ ng, the attack
works as follows.

First, using the multicollision algorithm of section 3 with t equal to ng/2
rounded up, construct a 2t-collision on F . This costs t calls to the basic birthday
paradox attack on the compression function of f , i.e. about t2nf /2 operations.
This yields 2t different messages with the same hash value on the F side. Since
t ≥ ng/2, we can perform direct application of the birthday paradox on this set
of 2t elements and, with reasonable probability, expect that a collision occurs
among the ng-bit hashes of these 2t messages by G. To increase the probability
of success, it suffices to increase the value of t and add a few more calls to the
basic attack on F .

Note that when evaluating the complexity of the attack, one must take into
account the contribution of applying G to 2t different messages of size t. With
a naive implementation, this would cost t2t calls to the compression function
of G. However, using the tree structure of the messages, this can be reduced to
2t evaluations, assuming that the compression functions of F and G operate on
the same size of blocks. Otherwise, it is necessary to add some padding between
blocks in order to resynchronize the two functions.

A very important fact about this attack is that it does not require of G to be
an iterative hash function. Any hash function will do, and this attack on cascaded
hash works even when G is replaced by a random oracle4. Since a random oracle
is independent from any function, this shows that the folklore knowledge about
cascading hash functions is false. Thus, at least in that case, cascading two
good and independent hash functions does not significatively improve collision
resistance.

3 E.g., two instances of SHA-1 with different constants.
4 The only difference in that case is the fact that the evaluations of G on the 2t

messages can no longer be simplified. As a consequence, assuming that the cost of
calling the random oracle G is linear in the size of the message, the contribution of
G to the complexity becomes t2t



312 Antoine Joux

4.2 Preimage and Second-Preimage Resistance

Concerning preimage resistance, it is already known that cascading two hash
functions is, at least in some cases, the cascade is no stronger than the weakest
hash function. Indeed, assume that we are hashing messages from a relatively
small set, say a set of 2m messages. Clearly, the best generic attack to find a
preimage in that case is to perform exhaustive search on the set of messages,
which costs 2m steps. Assume that the output of each the two hash functions
being cascaded is larger than m bit and that on this set of messages, one of the
two hash functions, say F , has a shortcut attack. Then, we can clearly use this
attack to recover a candidate preimage. Once this is done, it suffices to check
that this candidate is also a preimage for the other function. The new attack
presented in this section deals with a different case, where the entropy of the
message space is much larger. It shows that even then the cascaded hash is no
more secure than F itself.

Assume again that F outputs an nf -bit hash value and G an ng-bit value.
Then, with respect to preimage resistance, the security level of F is 2nf and the
level of G is 2ng . Indeed, the best known generic algorithm to break preimage
resistance is to try random messages until the expected hash value is reached.
This amounts to exhaustive search on the set of possible hash values. If F‖G
was a good hash function, the complexity of this exhaustive search attack would
be 2(nf+ng). As with collision resistance, there exists a much better attack which
find a preimage on F‖G with complexity of the order of ng2nf /2 + 2nf + 2ng if
nf ≤ ng (respectively nf2ng/2 + 2ng + 2nf if nf ≥ ng). Assuming than nf ≤ ng,
the attack works as follows.

First, using the multicollision algorithm of section 3 with t equal to ng,
construct a 2t-collision on F . This costs t calls to the basic birthday paradox
attack on the compression function of f , i.e. about t2nf /2 operations. Then,
search for an additional block that maps the last chaining value to the target
value of F . Note that when looking for this additional block, we need to compute
the output of the complete F function, including the padding of the message.
However, this is a simple matter. After, this last step, we obtain 2t different
messages with the expected hash value on the F side. Since t = ng, we expect
that, with constant probability, at least one of these 2t messages also match the
expected t-bit value on the G side. Once again, the probability of success can
be improved by adding a few more steps to the attack. Note that this attack
on preimage resistance does not either require for G to be an iterative hash
function. As before, it also works when G is replaced by a random oracle.

Clearly, the above attack finds a preimage for the target value which is essen-
tially random. As a consequence, it can be applied directly without any change
when a second preimage is requested.

4.3 Extensions and Open Problems

Given these attacks, it is natural to ask whether they generalizes to three or more
concatenated hash values. In this section, we focus on the possibility of generaliz-
ing the collision search attack. We show that it does and that the generalization



Multicollisions in Iterated Hash Functions 313

is almost straightforward. Indeed, assume that H is a third hash function on nh

bits, then using the above attack on F‖G a couple of times, say t ≈ nh/2 times,
it is possible as in section 3 to build a 2t-collision on F‖G. Among these 2t mes-
sages, we expect a collision of H . All in all, this yields a simultaneous collision
on F , G and H . When nf = ng = nh = n, the expression of the complexity
simplifies and is of the order of n2 · 2n/2. More generally, a simultaneous colli-
sion on q different n-bit iterative hash functions can be found with complexity
nq−1 · 2n/2. Thus, the security of such a construction stays within a polynomial
factor of the security of a single good iterative hash function of the same size.
Similarly, variants of the attack on preimage resistance can be adapted to the
case of q different hash functions. However, since they are more complicated, we
do not present them here. One possible variant is described in appendix.

Another generalization of the above attack is also worth noting. In [14],
B. Schneier described a different way of building a long hash from a hash function
F . In this method, F (M) is concatenated with G(F (M)‖M) (or G(M‖F (M))).
At first view, this is more complicated than the F‖G construction. However, the
very same attack can be applied. Indeed, when a 2t-collision is found on F (M),
this fixes F (M) in the first half of the big hash and also the copy of F (M)
in the call to G, thus a collision on the G part is expected exactly as before.
The preimage attack also works as before. We leave open the problem of finding
a related construction making q calls to n-bit hash function and with security
higher than nq−1 · 2n/2, with respect to collision resistance.

One can also study a related question, how does the security of the concate-
nated hash F‖G behaves, when F and G have non-generic attacks better than
the birthday paradox collision search ? In that case, can F‖G be significantly
more secure than the best of F and G ?

For the sake of simplicity, assume once again that nf = ng = n. Then, if F has
a collision finding algorithm C as in section 3 with complexity 2n/2/n or better
and G has no shortcut attack better than the birthday paradox, the security of
F‖G is essentially the same as the security of G itself. On the other hand, if
G also admits a shortcut attack (as in section 3), it is unclear whether the two
shortcut attacks may be used together to improve the composed attack against
F‖G. Yet, some other type of attacks against G can be integrated into a better
composed attack on F‖G. To give an example, let g denote the compression
function of G. Assume that there exists a shortcut attack which given a large
set g1, . . . , gN of chaining values finds a message block B and two indices i and
j such that g(gi, B) = g(gj, B) in time N . Clearly, such a merging attack could
be used to turn an N -collision on F into a full collision on F‖G. Thus, it is safer
to assume that F‖G is essentially as secure as the best of F and G, no more.

5 Potential Applications

While the ideas of cascaded construction and multicollisions are frequently en-
countered in the cryptographic folklore, they are somewhat avoided in published
papers. As a consequence, we were not able to find a single research paper that
can be cryptanalyzed using the attacks presented here. In this section, we de-



314 Antoine Joux

scribe some published construction which were likely candidates and explain why
the attacks failed.

Cascaded hash functions. Among the frequently encountered hash function,
RIPEMD is the most suited to the cascaded construction. Indeed, the basic
algorithm already consists of two separate hash computations which are put to-
gether at the end of the round function. Thus, using the result of the two chains
to form a longer hash would be both natural and efficient. In fact, the authors
of RIPEMD propose in [4] optional extensions to 256 and 320 bits by using this
idea. These extensions are not fully specified, but a sketch is given. In this sketch,
the authors of RIPEMD recommend to add to the basic cascade some interaction
between the two parallel compression functions. More precisely, they propose to
swap one register from the first chain and its counterpart in the second chain
after each round of the compression function (5 rounds in RIPEMD-160 and
4 rounds in RIPEMD-128). This interaction was introduced as an additional
security measure and, with respect to our attack, this countermeasure is very
efficient and completely voids it.

Use of multicollisions. Among the published constructions that make use of
multicollisions, one can cite the micropayment scheme Micromint [11], the iden-
tification scheme of Girault and Stern [5] and the signature scheme of Brickell
and al. [1]. In these three applications, multicollisions are indeed used, how-
ever, in the proposed instances of the schemes, no iterated hash functions with
a small internal memory is used. Instead, one encounters either a block cipher
based compression function with a small block size but without iteration or a
truncation of an iterated hash function with a relatively large output size. In
both cases, our attack is unapplicable. In the first case, the required iteration is
not available, in the second, the attack needs collisions on the full internal states
of the hash function, rather than on the truncated states.

6 Conclusion

In this paper, we have shown that multicollisions in iterated hash functions are
not really harder to find than ordinary collision. This yields the first effective
attack against a natural construction that extend the size of hash values by
concatenating several independent results. While considered suspect by some,
especially when used with related hash functions, this construction had never
been attacked before. The cryptanalysis we presented here yields attacks against
collision resistance, preimage resistance and second preimage resistance. As a
consequence, it leaves open the problem of constructing secure hash functions
with variable-output length, which is a important primitive to instantiate some
cryptographic paradigm such as the full domain hash.

Another important theoretical result is the fact that iterated hash functions
cannot be used as entropy-smoothing functions on arbitrary sets of inputs. De-
vising good cryptographic entropy-smoothing functions would be a nice topic for
future research.



Multicollisions in Iterated Hash Functions 315

References

1. E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validation for
siscrete logarithm based signature schemes. In PKC’2000, volume 1751 of Lecture
Notes in Computer Science, pages 276–292. Springer–Verlag, 2000.

2. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
In Proc. 30th Annual ACM Symposium on Theory of Computing (STOC), pages
209–218, 1998.

3. I. Damg̊ard. A design principle for hash functions. In Advances in Cryptology
– Crypto’89, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer–Verlag, 1989.

4. H. Dobbertin, A. Bosselaers, and B. Preneel. RIPEMD-160, a strengthened ver-
sion of RIPEMD. In Fast Software Encryption, volume 1039 of Lecture Notes in
Computer Science, pages 71–82. Springer–Verlag, 1996.

5. M. Girault and J. Stern. On the length of cryptographic hash-values used in
identification schemes. In Advances in Cryptology – Crypto’94, volume 839 of
Lecture Notes in Computer Science, pages 202–215. Springer–Verlag, 1994.

6. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997. Available on line : http://www.cacr.math.uwaterloo.ca/hac.

7. R. Merkle. A fast software one-way hash function. Journal of Cryptology, 3(1):43–
58, 1990.

8. R. C. Merkle. One way hash functions and DES. In Advances in Cryptology
– Crypto’89, volume 435 of Lecture Notes in Computer Science, pages 428–446.
Springer–Verlag, 1989.

9. Secure hash standard. Federal Information Processing Standard Publication 180–1,
1995.

10. B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis,
Katholieke Universiteit Leuven, January 1993.

11. R. Rivest and A. Shamir. PayWord and MicroMint – two simple micropayment
schemes. CryptoBytes, 2(1):7–11, Spring 1996.

12. R. L. Rivest. The MD4 message digest algorithm. In Advances in Cryptology
– Crypto’90, volume 537 of Lecture Notes in Computer Science, pages 303–311.
Springer–Verlag, 1991.

13. R. L. Rivest. The MD5 message-digest algorithm. Network Working Group Request
for Comments: 1321, April 1992.

14. B. Schneier. Applied Cryptography. John Wiley & Sons, second edition edition,
1996.

A Preimage Resistance
with Many Hash Functions Cascaded

While the attack against collision resistance described in section 4.1 is easily
generalized to q hash functions and yields an attack with complexity nq−1 ·2n/2,
assuming that each function outputs n bits, this is not the case for the attack
on preimage resistance. Indeed, the attack we described in section 4.2 is not
straightforward to generalize. The goal of this section is to present a variant
of the attack that can be easily generalized. The drawback is that this variant
is slightly more complicated than the initial attack. In this variant, each hash



316 Antoine Joux

function is attacked in two steps. Each of these steps is constructed in a way
that ensures compatibility with the previous hash functions. The first step within
each hash function is to find two different sequences of blocks that, through the
iterated hash process, sends the initial value back to itself. The cost of this
amounts to twice exhaustive search on the set of possible chaining values. The
second step is to find a terminating sequence of blocks that sends this chaining
value to the target value for the current hash function. This costs about one
exhaustive search on the same set.

When processing the first message, we look for single block sequences. More-
over, the terminating block should be correctly padded. A slight technical prob-
lem is that padding requires a priori knowledge of the final message size. How-
ever, we show at the end of this section that this size can be fixed in advance
before launching the attack. Let T denotes this size, then we consider as inputs
to the first hash functions the 2T−1 messages formed of T −1 blocks, each chosen
among the two basic blocks that send the initial value h0 to itself and one final
block which sends h0 to the target value hF . A representation of these messages
is given in figure reffig:preim

Fig. 2. First step of the preimage attack

With the second hash function, the looping sequences are constructed by
concatenating n blocks chosen among the two (B and B′) that makes the first
hash function loop (a few more blocks can be added to increase the probability
of finding good sequences). Clearly, when applying one of these sequences both
the first and the second hash functions are going back to their initial values. The
final sequence is constructed by concatenating many copies of the looping blocks
B or B′ and a single instance of the final block, in order to send the second hash
function to its expected destination. Clearly, such a sequence also sends the first
hash function to its target value. The advantage of this attack compared to that
of section 4.2 is that additional hash functions can be processed by iterating
the previous procedure. A notable exception is the computation of the last hash
function which requires no looping part and can thus be simplified. The total
runtime is clearly bounded by a polynomial (O(nq)) times the cost of exhaustive
search. The length T of the message can be easily predetermined and is of the
order of nq−1.


	1 Introduction
	2 Basic Facts About Iterated Hash Functions
	3 Constructing Multicollisions
	4 On the Security of Cascaded Hash Functions
	4.1 Collision Resistance
	4.2 Preimage and Second-Preimage Resistance
	4.3 Extensions and Open Problems

	5 Potential Applications
	6 Conclusion
	References
	A Preimage Resistance with Many Hash Functions Cascaded



