Skip to main content

Combining Speed-Up Techniques for Shortest-Path Computations

  • Conference paper
Book cover Experimental and Efficient Algorithms (WEA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3059))

Included in the following conference series:

Abstract

Computing a shortest path from one node to another in a directed graph is a very common task in practice. This problem is classically solved by Dijkstra’s algorithm. Many techniques are known to speed up this algorithm heuristically, while optimality of the solution can still be guaranteed. In most studies, such techniques are considered individually. The focus of our work is the combination of speed-up techniques for Dijkstra’s algorithm. We consider all possible combinations of four known techniques, namely goal-directed search, bi-directed search, multi-level approach, and shortest-path bounding boxes, and show how these can be implemented. In an extensive experimental study we compare the performance of different combinations and analyze how the techniques harmonize when applied jointly. Several real-world graphs from road maps and public transport and two types of generated random graphs are taken into account.

This work was partially supported by the Human Potential Programme of the European Union under contract no. HPRN-CT-1999-00104 (AMORE) and by the DFG under grant WA 654/12-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhan, F.B., Noon, C.E.: A comparison between label-setting and label-correcting algorithms for computing one-to-one shortest paths. Journal of Geographic Information and Decision Analysis 4 (2000)

    Google Scholar 

  2. Barrett, C., Bisset, K., Jacob, R., Konjevod, G., Marathe, M.: Classical and contemporary shortest path problems in road networks: Implementation and experimental analysis of the TRANSIMS router. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 126–138. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Nachtigall, K.: Time depending shortest-path problems with applications to railway networks. European Journal of Operational Research 83, 154–166 (1995)

    Article  MATH  Google Scholar 

  4. Preuss, T., Syrbe, J.H.: An integrated traffic information system. In: Proc. 6th Int. Conf. Appl. Computer Networking in Architecture, Construction, Design, Civil Eng. and Urban Planning, europIA 1997 (1997)

    Google Scholar 

  5. Shekhar, S., Fetterer, A., Goyal, B.: Materialization trade-offs in hierarchical shortest path algorithms. In: Proc. Symp. on Large Spatial Databases, pp. 94–111 (1997)

    Google Scholar 

  6. Barrett, C., Jacob, R., Marathe, M.: Formal-language-constrained path problems. SIAM Journal on Computing 30, 809–837 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM 34, 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  9. Cherkassky, B.V., Goldberg, A.V., Radzik, T.: Shortest paths algorithms: Theory and experimental evaluation. Mathematical Programming 73, 129–174 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Zwick, U.: Exact and approximate distances in graphs - a survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Goldberg, A.V.: A simple shortest path algorithm with linear average time. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 230–241. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Meyer, U.: Single-source shortest-paths on arbitrary directed graphs in linear average-case time. In: Proc. 12th Symp. on Discrete Algorithms, pp. 797–806 (2001)

    Google Scholar 

  13. Pettie, S., Ramachandran, V., Sridhar, S.: Experimental evaluation of a new shortest path algorithm. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 126–142. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Hart, P., Nilsson, N.J., Raphael, B.A.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Sys. Sci. Cybernet. 2 (1968)

    Google Scholar 

  15. Shekhar, S., Kohli, A., Coyle, M.: Path computation algorithms for advanced traveler information system (ATIS). In: Proc. 9th IEEE Int. Conf. Data Eng., pp. 31–39 (1993)

    Google Scholar 

  16. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case study from public railroad transport. ACM Journal of Exp. Algorithmics 5 (2000)

    Google Scholar 

  17. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows. Prentice-Hall, Englewood Cliffs (1993)

    Google Scholar 

  18. Pohl, I.: Bi-directional and heuristic search in path problems. Technical Report 104, Stanford Linear Accelerator Center, Stanford, California (1969)

    Google Scholar 

  19. Kaindl, H., Kainz, G.: Bidirectional heuristic search reconsidered. Journal of Artificial Intelligence Research 7, 283–317 (1997)

    MATH  MathSciNet  Google Scholar 

  20. Holzer, M.: Hierarchical speed-up techniques for shortest-path algorithms. Technical report, Dept. of Informatics, University of Konstanz, Germany (2003), http://www.ub.uni-konstanz.de/kops/volltexte/2003/1038/

  21. Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in railway systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, pp. 43–59. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Jung, S., Pramanik, S.: An efficient path computation model for hierarchically structured topographical road maps. IEEE Transactions on Knowledge and Data Engineering 14, 1029–1046 (2002)

    Article  Google Scholar 

  23. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest paths in large sparse graphs. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 776–787. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Näher, S., Mehlhorn, K.: The LEDA Platform of Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999), http://www.algorithmicsolutions.com

    Google Scholar 

  25. Waxman, B.M.: Routing of multipoint connections. IEEE Journal on Selected Areas in Communications 6 (1988)

    Google Scholar 

  26. Dial, R.: Algorithm 360: Shortest path forest with topological ordering. Communications of ACM 12, 632–633 (1969)

    Article  Google Scholar 

  27. Goldberg, A.V.: Shortest path algorithms: Engineering aspects. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 502–513. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holzer, M., Schulz, F., Willhalm, T. (2004). Combining Speed-Up Techniques for Shortest-Path Computations. In: Ribeiro, C.C., Martins, S.L. (eds) Experimental and Efficient Algorithms. WEA 2004. Lecture Notes in Computer Science, vol 3059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24838-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24838-5_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22067-1

  • Online ISBN: 978-3-540-24838-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics