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Abstract. Flow size based congestion control has the potential to improve user 
perceived Webperformance due to the heavy tailed characteristic offile size dis
tributions in the Web. After discussing the benefits and drawbacks of transport 
protocol and router based solutions for size based congestion control, guidelines 
for algorithm design are developed. Using these guidelines we find that size 
based congestion control needs to incorporate TCP models to avoid undesirable 
user incentives. Basedon this insight we specify enhancements to TCP featuring 
size based congestion control and provide arguments for parameter settings. It is 
shown by simulation that our modified version ofTCP significantly outperforms 
NewReno from a user perspective in seenarios using realistic models for Web 
traffic and topologies with multiple congested links. 

1 Introduction 

Heavy tailed distributions can be considered as one ofthe invariants when analyzing In
ternet perforrnance. The evidence of heavy tails can for instance be found in traffic ar
rival pattems causing burstiness over multiple time scales and thus a variety of head
aches in traffic analysis for researchers and network designers. By exploiting the fact 
that file size distributions on Webserversare heavy tailed this paper can be seen as an 
attempt to draw benefits out ofthe heavy-tail misery. 

As shown first in [1] for seenarios having the computational power in web servers as 
the bottleneck, average response times for Web downloads can be dramatically 
reduced using process scheduling mechanisms giving priority to short flows. The ratio
nale behind this finding lies in a property of Web traffic we will call the "heavy tailed 
property of file sizes" for the remainder of this paper: the majority of files is short (the 
so called web mice) and constitutes only a relatively small portion ofthe Ioad; long 
files are less numerously but constitute the major portion of the load. Thus, because 
short flows are high in number, we may expect to reduce average response times giving 
preference to short flows. Additionally, we expect that average response time improve
ments won't negatively affect perforrnance of long flows because of the minor load 
caused by short flows. 
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TCP congestion control currently adapts the congestion window independently of 
the size ofthe flow tobe transferred. Additionally, it can be shown that TCP through
put for short flows is significantly smaller than for long flows. In other words, TCP 
does the contrary ofwhat the heavy tailed property offile sizes would suggest for max
imization of efficiency and additionally causes unfairness among short and long flows. 

This paper proposes and investigates TCP Vienna, a new version of TCP employing 
flow size based congestion control. The basic motivation is to propose Straightforward 
modifications of TCP alleviating unfairness against short flows and thus increasing 
efficiency. Additionally, it is of major importance to keep congestion control conserva
tive and avoid incentives for misbehaving users togainan unfair high share ofthe link 
capacity due to prioritization of short flows. 

The paper is structured as follows. Section 2 reviews related work. The pros and 
cons of various flow size aware mechanisms to increase Web efficiency and fairness 
are discussed in Section 3. Section 4 explains the Vienna enhancements to TCP con
gestion control. After giving an overview on the simulation scenarios, performance 
evaluation results are shown in Section 5. Finally, Section 6 concludes this paper. 

2 Related Work 

[1], [2], and [3] have proposed and analyzed size based process scheduling in servers to 
improve Weh performance by exploiting the heavy tailed property of file sizes. U sing 
queueing theory and measurements it has been shown that the performance of overload
ed Web servers can be improved by a factor four and more if Shortest Remaining Pro
cessing Time (SRPT) scheduling is employed. SRPT naturally favours short jobs hav
ing shorter remaining processing times than long jobs. The size of a Web object is not 
known a-priori in case of dynamic content. Thus [4] shows that similar web Serverper
formance improvements can be achieved by SRPT process scheduling ofjobs with un
known duration. 

Inspired by the work on web server performance improvements [5] aims at achiev
ing similar goals in case the link bandwidth at an Internet router, and not the computa
tional power at a web server, constitutes the bottleneck resource. The basic idea is to 
keep per flow state at the edge router and mark flows according to their length using a 
few DiffServ Codepoints. A core router can examine Codepoints and assign packet 
drop priorities accordingly. As a metric for the flow length a flow's number of bytes 
received by an edge router is used. For the reminder of the paper we will refer to this 
idea as "the Router Based Approach (RBA)". In [6] it is shown by analysis and simula
tion that RBA can improve response times by an order of magnitude in case of a heavy 
tailed flow size distribution. In case of exponentially distributed flow sizes (light tail) 
average response times can be improved slightly, however, this improvement comes at 
the cost oflong ftows. 

[7] investigates bandwidth allocation criteria using flow size based differentiation. 
As a preliminary implementation ofthese criteria it is shown that an upgraded TCP 
Reno source setting the increase and decrease parameters of the congestion window 
during TCP's congestion avoidance phase according to the residual flow size can 
increase performance in the range of 30-40% compared to standard TCP Reno. With-
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out argumentation for parameter dependency on flow size, round trip time and drop 
probability the multiplicative decrease parameter is varied between 0.01 and 1; the 
additive increase parameter is varied between 0.25 and 10. For the reminder of the 
paper we refer to this kind of approach as "the Transport protocol Based Approach 
(TBA)". 

Other examples for the TBA approach to avoid a retransmission timeout and Slow
start in case of small congestion window sizes at the start of a TCP connection have 
been proposed in (8], [9], and (10]. [8] proposes toset the initial TCP congestion win
dow size to a maximum of 4 segments (see section 4.2 for more details) increasing the 
performance of short flows. [9] proposes to chop TCP segments into smaller chunks 
increasing the congestion window size in units of packets and thus avoiding retrans
mission timeouts in case of small windows. The main idea in [ 1 0] is to allow the TCP 
data sender to transmit new segments already in response to the first and the second 
duplicated ACK, keeping the ACK clock going and thus avoiding Slowstart in case of 
small windows. 

3 Router vs. Transport Protocol Based Approach 

Routerandtransport protocol based approaches both have their benefits and drawbacks 
which shall be highlighted in subsequent high-level considerations. 

Performance gains: RBA has the potential to provide higher performance gains than 
TBA. For instance, TBA exhibits limitations in increasing throughput for flows having 
a size of only a few packets (which is quite common in case ofWeb traffic (15]). RBA 
routers could schedule packets of short flows with strict priority queuing, which corre
sponds to a significantly stronger flow length based differentiation than achievable 
with TBA without violating the conservativeness ofTCP congestion control. However, 
as shown in [7], strict priority queueing would be an undesirable policy for RBA due to 
discrimination oflong ftows in case flow sizes are not heavy tailed and due to undesir
able bandwidth allocation effects. Thus a more conservative policy for flow length 
based discrimination has tobe chosen anyway for RBA (see for instance [6]). 

Incremental deployment: TBA only requires modification of the TCP data sender. lt 
thus supports incremental deployment and would typically be implemented in Web 
server transport protocols. RBA does not support incremental deployment, it rather 
requires standardization as core routers need to be able to correctly interpret code
points set by edge routers. A full RBA implementation in an Autonomous System 
would require upgrading all routers potentially subject to congestion. 

Scalability: RBA requires per microflow state at edge routers. lt is questionable 
whether the performance gains by flow size based congestion control (although 
impressive) would balance the cost for per flow state in routers considering the fact the 
Web and TCP traffic is usually rather low priority traffic. We arenot aware of scalabil
ity problems with TBA. 

Application specific protocol design: Exploiting the heavy tailed property of Web 
file sizes per definition means violating the important paradigm of designing protocols 
for a broad spectrum of applications. In case of RBA this is problematic because edge 
routers are generally not able to distinguish between applications, e.g. if IPsec is used. 



690 T. Ziegler, H.T. Tran, and E. Hasenleithner 

Thus RBA would be performed for all kinds of applications using TCP, independently 
of the characteristic of their flow size distribution. On the contrary, TBA would typi
cally be deployed in Web servers where this problern does not exist. Of course, for 
RBA and TBA the argument that the Web is not "just another Internet application" 
holds. 

Fairness and avoidance of undesirable incentives for misbehaving users: Another 
important problern that might come with TBA and RBA is an undesirable incentive for 
users to chop a long flow into many short flows in order to gain higher throughput. 
This incentive is created in case TBA or RBA were designed to provide short flows 
with higher throughput than long flows. A possible solution to this problern is that 
TBA and RBA like mechanisms need to be designed such that a short TCP flow 
achieves smaller or equal throughput than a long flow under the same network condi
tions, i.e. packet loss probability and round trip time (RTT). In other words, faimess 
should be a design goal not only for congestion control purposes but also to avoid 
undesirable user incentives. Estimating throughput of a long flow under the same net
work conditions is hard to achieve in case ofRBA because routers have no Straightfor
ward possibility to measure path drop probabilities and RTTs. As will be shown in 
Section 4, estimation of drop probability is feasible with TBA; RTT estimation is 
already implemented in TCP. Based on drop probability and RTT estimation conges
tion control parameters can be set such that throughput of short flows approaches, but 
does not exceed throughput of long flows. 

Summarizing above bullets, we observe the dominant advantages of the transport 
protocol based approach in terms of deployment, scalability, application specific proto
col design and potential for avoidance of undesirable user incentives. 

4 Enhancements to TCP Congestion Control 

4.1 Design Guidelines and Basic Idea 

Section 3 provides a design guideline for size based congestion control. Adapting TCP 
congestion control parameters as a function of the tlow size such that throughput of 
short flows approaches but does not exceed throughput oflong flows enables exploita
tion of the heavy tailed property while maximizing faimess and avoiding undesirable 

user incentives 1. 

The basic idea behind TCP Vienna is to estimate the throughput a "long flow exhib
iting typical TCP behavior'' would have under the network conditions a flow of arbi
trary size currently experiences. By network conditions we mean drop probability and 
RTT; a "long flow with typical TCP behavior" means a TCP Reno flow with delayed 
ACKs enabled having infinite flow length. Having estimated drop probability and RTT 
the throughput of such a typical long flow can be computed using an approved model 

I. As shown in figure I , Section 4, throughput as a function of the flow size is a monotonically 
increasing ftmction in case of current versions of TCP. Thus long flows achieve a dispropor
tionally high share ofthe bottleneck capacity compared to short flows. 
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ofTCP [II]. Using the same modei, congestion controi parameters can be adjusted 
suchthat throughput of an arbitrary-length flow approaches throughput of a long flow 
under the same network conditions as closely as possible. 

Model based adoption ofTCP parameters enabling the improvement ofWeb perfor

mance while avoiding undesirable user incentives is the main innovation of TCP 
Vienna compared to the RBA and TBA solutions proposed so far in [6]- [10]. 

4.2 What TCP Parameters to Adjust 

Having defined flow length independent fairness as a design guideline there remains an 
important constraint to be considered when increasing throughput for short flows. TCP 
congestion control must stay conservative in order to avoid congestion collapse in cer
tain scenarios. Keeping this constraint in mind the TCP parameters to be adjusted ac
cording to the flow length and their bounds may be identified. 

Additive increase, multiplicative decrease: the additive increase (a) and multiplica
tive decrease (ß) parameters may be adapted according to the flow size during the con
gestion avoidance phase. Without argumentation the decrease factor is varied between 

O.OI and I and the increase factor is varied between 0.25 and IO in [7], dependent on 
the residual size of a flow. In TCP Vienna parameter adoption happens based on TCP 
models, more conservatively, and taking above design guidelines into account. An arbi
trary sized flow should exhibit congestion control behavior at least as aggressively as a 
typical TCP Reno flow having infinite length to achieve a fair share of the throughput. 
A typical TCP Reno flow increases the congestion window (cwnd) by 1/cwnd at the 
receipt of an ACK and halves the congestion window at fast retransmit, fast recovery 

in case a packet is lost. Thus the decrease parameter is lower bounded by ßmin = 0.5; 

the increase parameter is lower bounded by amin = I. In order to stay conservative, and 

independently of a flow's size, we always want to decrease the window somewhat in 
case a packet is lost. Thus we use ßmax = 0.9 as an preliminary upper bound for the 

multipiicative decrease. We set the upper bound ofthe increase parameter to llmax = 8 

in our simulations, a similar value as proposed in [7]. Note that while lower bounds for 
additive increase and multiplicative decrease are well argued in case of TCP Vienna, 
upper bounds require further substantiation by simulation experiments. Thus, as a first 
step, it is shown in Section 5 that the above parameter settings improve Web perfor
mance without exhaustively increasing loss rates at congested router output ports. 

Window increase during Slowstart: a TCP flow having delayed ACKs disabled dou
bles the congestion window every RTT during Slowstart. A TCP flow having delayed 
ACKs enabled does so roughly every two RTTs due to the reduced ACK frequency. As 

TCP Slowstart behavior without Delayed ACKs is well known and has been identified 

as sufficiently conservative we may increase the congestion window more aggressively 

in case our TCP flow has delayed ACKs enabled in order to increase throughput of 

short flows. Consequently, we define the "Exponential Increase" parameter (y), deter
mining the congestion window increase in units of segments at the receipt of an 
acknowledgement during the Stowstart phase. In case of delayed ACKs disabled y is 

fixed to I *MSS (usual TCP without delayed ACKs; MSS denotes the Maximum Seg
ment Size). In case of delayed ACKs enabled Ymax = 2MSS (imitating TCP behavior 
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with delayed ACKs disabled) and 'fmin = 1MSS (TCP with delayed ACKs enabled) 
define upper and lower bounds for y. 

Initial window: RFC 3390 [8] recommends min(4*MSS,max(2*MSS,4380bytes)) 
as an upper bound for the initial window size of TCP and discusses the benefits and 
drawbacks of increasing the initial window. Obviously, an initial window higher than 
1 *MSS favors short flows and is thus in-line with our goal. Independently ofthe flow 
length the initial window is set as recommended in [8] for TCP Vienna. 

4.3 Modellog TCP Throughput 

Taking constraints on upper and lower bounds for the TCP parameters identified in Sec
tion 4.2 into account, these parameters need to be adapted dynamically such that 
throughput B of a flow with size d approaches throughput of an infinite-length flow hav
ing delayed ACKs enabled and experiencing the same network conditions in terms of 
drop probability p and RTT. Note that B is a function of a., ß, y, d, p, and RTT. 

For computation of B the approved TCP model in [12] which is based on the model 
in [11] is employed. This model computes the expected steady-state TCP transfertime 
for a flow as E(T) = E(l'j + E(FsJ + E(FcaJ + E(TcJ); throughput B = d I E(T). T1 mod
els the time during connection setup, Tss models the time spent during initial Slowstart, 

Tca models the time spent in congestion avoidance, and Td models additional delay 

introduced by delayed ACKs. 
We generalize this model to incorporate arbitrary values for a. and ß instead of fixed 

parameter settings, as for instance ß = 0.5. This generalization requires a modified der
ivation ofthe expression for the expected congestion window size E(W) which is used 
to compute Tca (see eq. 22 in [12]). Due to space limitations we only roughly sketch 
this derivation, based on the analysis in [11]. Let TDP; denote the Tripie Duplicate Ack 

Period i (the time period between two consecutive packet Iosses), ~ denote the con

gestion window size at the end of TDP;, and X; the Iength of a TDP; in units of RTTs. 

We observe that during TDP; the congestion window increases linearly with a slope of 

a/b between ß~-J and ~· Thus, modifying eq. 2.8 in [11] to incorporate arbitrary val

ues for a. and ß, ~ can be written as follows. 

xi 
w. = ß w. 1 + a.-b (1 ) 

l l-

In eq. 1, b equals 2 in case of delayed ACKs, eise it equals 1. Eq. 1 needs to substi
tuted into eq. 2.9 in [11] and simplified resulting in an expression for fi, the number of 

packets transmitted in TDP;. 

r. = xi(w. 1 (2ß-~)+a.(W.-1)) + x:. (2) 
I 2 l- 2 l l 

Ki denotes the number of packets sent in the last RTT of TDP;. From eq. 2 and equa

tion 2.6 in [11] it follows an expression for E(W) by solving the resulting quadratic 
equation (compare to eq. 2.14 in [11] or eq. 23 in [12], respectively): 
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E w _ 1 + aßb + ( 1 + aßb )2 + 2(1 - p) 
( ) - db(4d+a) db(4d+a) pbß(2ß+a/4) 

(3) 

Figure 1 shows throughput B as a function of tlow length calculated by the updated 
model for two settings of a and ß. Other parameters: y = I, initial window = 1 MSS, p 
= 0.1, RTT= 0.2s. 

I :~ /------------ ---------
2 <X=1, ß=0.5 --
.s 4 <X=8, 13=0.9 -------

2 

0 ~~~~~-~~~~-~~~ 
10 100 1000 10000 

flow size [packets] 

Fig. 1. TCP throughput according to model 

4.4 The TCP Vienna Algorithm 

Let a* and ß* define k-dimensional vectors ofincrease and decrease values, and y* be 
a two dimensional vector. In correspondence with the guidelines presented in section 

4.2 we set k = 5, a*= (1,2,4,6,8), ß*= (0.5,0.6,0.7,0.8,0.9), and y*= (1,2). Additionally, 
Iet Bmax denote the throughput of a typical TCP flow with delayed ACKs enabled and 

infinite length, where "infinity" equals a flow size of 10000 packets2. Given above def
initions, the algorithm to compute size based congestion control parameters for a de
layed acks enabled TCP data sender can be outlined as follows. 

Initia lization: 
Set 0: = <lmax; ß = ßmaxi 'Y = 'Ymax 

Every m segments sent to the data receiver : 
Estimate p and RTT 
Bmax = B ( 1, 0 . 5, 1, 1 0 0 0 0, p, RTT) 

Search for i,j: 
Bmax - B(o:/,ß/,yj *,d,p,RTT) is minimaland strictly positive 

Set o: = o:i * ; ß = ßi *; 'Y = 'Yj * 

Fig. 2. Simplified TCP Vienna pseudo code 

2. Figure 1 illustrates that TCP throughput stays constant for flow lengths above a certain Iimit. 
Using the modeland simulations we have verified that 10000 packets is above this Iimit for all 
relevant settings ofp and RTT. Thus it is reasonable to consider 10000 packets as infinite flow 
1ength. 
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The search operation consists of a simple loop scanning a*,ß*, and y*. RTT equals 
the smoothed round trip time as computed in all standard versions of TCP. The dis
tance m in terms of nurober of packets to be transmitted between executions of the 
computations shown in figure 2 is set as an exponentially increasing function ofN, the 
total nurober of packets transmitted so far. The rationale behind this choice is the need 
of frequent throughput estimations for short lived flows to enable correct parameter 
settings. Flows having already transmitted many packets can base their estimations on 
a high nurober of samples thus m may be higher. The exponentially increasing function 
is bounded by a constant M, which is set to 600 packets in our simulations. 

m = min(M, 2N) (4) 

For estimation ofthe drop probability p we employ a simple heuristic. Let L denote 
the nurober of triple duplicate ACK events plus the nurober of partial ACKs seen so 

fa~. L can be considered as a lower bound for the actual nurober of Iosses because it 
does not take lost packets into account which have been transmitted directly after a 
packet for which a partial ACK has been received during Slowstart. Let R denote the 
total nurober of retransmitted packets as counted by TCP. R overestimates the actual 
nurober of Iosses because packets which have already been delivered correctly at their 
first transrnission are counted twice in case they are retransmitted during Slowstart. We 
consider underestimation of the loss probability by L as less erroneous than overesti
mation by R, thus the drop probability p is computed as the weighted average of L and 
R divided by N, the total nurober of packets sent so far: 

25 

20 

15 

10 

5 

0 
10 

p=(a*L+(J-a)*R)IN, a > 0.5 (5) 

8 --------... ,, 
\ cx. -------

ß---

6 \ y -------- -
' \ 

4 
B 

Bmax 2 ---- ·- ---- \\, 
' ' " ---~ 

-
-

0 
100 1000 10 100 1000 

num. packets sent num. packets sent 

Fig. 3. Throughput and TCP parameter adoption 

Figure 3 shows an example of our ns simulation [14] results with a single TCP 
Vienna flow over a single link topology to illustrate and evaluate the basic dynarnics of 
the algorithm. The link enforces a uniformly distributed packet drop probability of 
0.025; link propagation delay equals lOOms; the link bandwidth equals lOMbps; initial 

3. Tripie duplicate ACK events (causing fast retransmit/recovery) and partial acks indicate 
packet losses. A partial ACK acknowledges new data but not the highest-sent packet before 
invocation of Slowstart or fast retransmit, respectively. 



Improving Perceived Web Performance 695 

window = 4 MSS. The left part figure shows the typical evolution of Band Bmax in 

units of packets per second; the right part figure shows a, ß, y parameters during the 
lifetime of a TCP Vienna flow. Comparing the initial phase in the left and right part of 
figure 3 we observe the effect ofthe upper bounds <Xmax• ßmax' Ymax on a, ß, y and thus 

on throughput B. Although TCP Vienna parameters equal their upper bounds ( a = 8, ß 
= 0.9, y = 2), B is smaller than Bmax for N < 50. In the course of the simulation B con

verges to Bmax and a, ß, y are decreased to a = 1, ß = 0.5, y = 1. In case of constant 

RTTs and drop probabilities B and Bmax would both converge to a constant value. This 

is, however, not the case in our simulation due to RTT and drop probability variations. 
Further simulations with different settings for drop probability and propagation 

delays show similar results. In case of shorter propagation delays the decrease of a, ß, 
y parameters is less steep and happens at a later point in time. 

5 Performance Evaluations 

Simulations are performed with ns-2 using the topology shown in figure 4 with n set to 
1, 5, and 9. Links employ Drop Tail queue management; buffer sizes are set to 100 
packets; packet sizes equal 500 octets. To ensure tight confidence intervals, sufficiently 
long simulation times (8000s) are selected. 

-- JOMbps, !Oms 
-- IOOMbps, 15ms 

Simulated network 

Several aggregates ofWeb traffic generating Ioad according to SURGE [15], a state 
of the art model for Web traffic based on real traffic traces, are simu1ated. SURGE 
models the object size as a mixed lognormal/pareto distribution (see [15] for details). 
We evaluate performance of an aggregate having Webservers at host h2n+l and clients 

at h1. Crosstraffic is created in forward direction by aggregates having clients at h2i-l 

and servers at h2i+J (2<=i<=n) andin reverse direction by aggregates having clients at 

h2j+l and servers at h2j, where 1 <=j<=n-1. Load is varied by changing the number of 

users per aggregate. Considering a link between router ri and ri+b the number ofusers 

in the evaluated aggregate equals the number of users in both crosstraffic aggregates 
sharing the link. 

TCP Vienna has been implemented as a modified version of TCP NewReno; see 
Section 4 for details on the algorithm and parameter settings. The a parameter for aver
aging the drop probability is set to 0.75. Delayed ACKs are enabled. The flow length d 
is not known a-priori in case of dynamic Web content or HTTPI.l. Thus two versions 
ofthe algorithm are investigated. In TCP-V1 d corresponds to the total size ofthe flow 
(assuming a-priori knowledge); in TCP-V2 d corresponds to the number ofbytes sent 
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so far. These two versions are compared against TCP NewReno having an initial con
gestion window of 1 MSS (TCP-Rl) and NewReno having an initial congestion win
dow of 4 MSS (TCP-R2) according to [8]. 

In accordance with related work in [1]-[7], we measure mean slowdown, defined as 
the mean ofresponse times divided by Web object sizes. Note that slowdown is best to 
measure user perception of Web performance because it takes into account that abso
lute reponsetime improvements are perceived more dramatically in case of small 
objects. 

3 3 
TCP-V1 --+-- TCP-V1 --+--

c: 
2.5 TCP-V2 ---><--- c 

2.5 TCP-V2 ···)(··· !t TCP-R1 3: TCP·R1 0 ... ,. ... 
0 ...,. ... 

'0 TCP-R2 oooooiJ-••• '0 TCP-R2 ---e--· !t 2 3: 2 .Q 0 
VI 

J< oo .. . ······ 'iii 
c 1.5 ·.:.:.::~~<~--o---·-.. e -----·· c: 1.5 ~,--•i!l'"'"'.,:ljo,-~-~-~-~·-'-1 "' "' Gl Gl 
E E _.x. •.• 
Gl ··--x---- ~ 1 . > 
~ ~ 
~ 0.5 !!! 0.5 

0 0 
100 200 300 400 500 100 200 300 400 500 

number of Web users number of Web users 

Fig. 5. Mean slowdown as a function ofload for n = 1 (left part figure) and n = 9 (right 
part figure) 

Figure 5 shows the mean slowdown ofTCP-V2, TCP-R1, TCP-R2 normalized by 
the slowdown ofTCP-VL TCP-V2 exhibits similar performance to TCP-V1, thus we 
can conclude that there exists no need for a-priori information of the flow size in TCP 
Vienna. The figure shows dramatic improvements in user perceived performance with 
TCP Vienna. With slight dependency on the load we observe improvements of a factor 
L3 up to 1.8. 

~ 
:ö 
~ 
e 
0. 
0. e 
'0 
Cl) 

.2: 
(ij 

~ 

1.2 

.......... 

0.8 

___ __.....e·-·:::.1j:.:.:.::Ff. ......... 

0.6 ................. ,. ...... 

0.4 
TCP-V1 --+--
TCP-V2 ---><---

0.2 TCP·R1 --------TCP-R2 ---e--
0 
100 200 300 400 500 

1.6 r---r----r-.---.--, 

1.4 ... -------0 'o 
~ 1.2 1;:.;-;<''.,.:-:-:<''·.li!""""""'·-,. 
Cl) -- J:\ 
~ 1 ...... --......--===11<-"+t 
~ 0.8 \ 
I!! 
-~ 0.6 
c;; O 4 TCP-V1 --+-
~ · TCP-V2 · ··><··· 

0.2 TCP-R1 ... .., ... 
TCP-R2 ----e ----

0 '--....&..---'--'--....&..--' 

so 60 70 80 90 
number of Web users quantile (percent] 

Fig. 6. Drop probabilities and quantiles ofresponse time 

The left part of figure 6 shows the drop probability as a function of load for n = 1. 
The dramatic performance improvements with TCP Vienna shown in figure 5 come to 
the expense of a slightly increased drop probability compared to TCP-R2, i.e. 
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NewReno with an initial congestion window set as recommended in [8]. TCP-Rl 
shows significantly smaller drop probabilities than the other versions of TCP as its 
congestion control is less aggressive than TCP-R2 and TCP Vienna. 

The right part of figure 6 shows a typical example for the quantiles of the response 
time distribution ofTCP-V2, TCP-Rl, TCP-R2 normalized by the responsetime quan
tiles of TCP-VI. The selected scenario is n = 9 with a Ioad of 300 Web users. As 
expected, both versions of TCP Vienna cause significantly shorter response tim es for 
the majority of short flows. This is indicated in the figure by showing that TCP Vienna 
causes smaller response times up to the 95% quantile. For the Iongest flows TCP 
Vienna causes higher responsetimes because short TCP Vienna flows grab a higher 
portion of the link capacity than TCP-NewReno in comparable scenarios. Thus for 
quantiles greater than 95% NewReno drops below TCP Vienna. Again, both versions 
ofTCP Vienna exhibit similar performance. 

Due to space limitations only a small subset ofthe simulations results shown in [13] 
can be presented in this paper. Simulations in [13] investigate the dependency ofTCP 
Vienna performance on parameter setting. Furthermore, we find that it is beneficial for 
TCP Vienna if the TCP max_burst parameter, limiting the number of back-to-back 
segments sent in response to a single acknowledgement, is set to a value between 4 and 
8. Additionally, comparing seenarios with active queue management and drop-tail in 
the routers, show that active queue management does not have a significant impact on 
the performance ofTCP-Vienna in relation to TCP NewReno. Extensivesimulations 
using topologies with multiple congested hops loaded with a realistic traffic mix of 
peer-to-peer and Web traffic show significant performance improvements ofTCP-Vl 
and TCP-V2 compared to TCP-R2 in terms of response time quantiles and slowdown 
without significantly increasing drop probabilities or decreasing the goodput (through
put at user Ievel) of the peer-to-peer traffic. This finding is in accordance with the 
"heavy tailed property offile sizes" (see section 1). 

6 Conclusions 

Based on high Ievel considerations we find that transport protocol based solutions for 
size based congestion control provide significant advantages compared to router based 
solutions in terms of scalability, ease of deployment, and avoidance ofundesirable user 
incentives. We emphasize that flow size based congestion control needs to stay conser
vative to avoid congestion collapse and must not have a bias against Jong flows but rath
er converge to a state of flow length independent faimess in order to avoid undesirable 
user incentives. The latter design guideline motivates us to enhance a well known TCP 
model for the requirements of size based congestion control. Subsequently, we identify 
the TCP parameters to be adapted as a function of the flow size, provide arguments for 
their parameter setting, and define flow size based enhancements to congestion control 
in TCP Vienna incorporating the enhanced model ofTCP. Simulations illustrate the dy
namics ofparameter adaptations during the lifetime ofa TCP Vienna flow. 

Performance evaluations with realistic Web traffic over topologies with several con
gested hops show that TCP Vienna with and without a-priori information on the flow 
length outperforms TCP NewReno by a factor 1.3-1.8 in terms of user perceived per-
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formance. Additionally, we investigate the effect of TCP Vienna on drop probability 
and response time. 

As a promising future research topic the investigation of TCP-Vienna in combina
tion with TCP-SACK can be mentioned. Additionally, the proposals of [9] or [10] 
could easily be integrated into TCP Vienna. Subsequently to implementing TCP mod
els based on table Iookups for a variety of drop probability and RTT settings, a Web 
server implementation of TCP Vienna is planned. 
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