
Improving Perceived Web Performance by
Size Based Congestion Control

Thomas Ziegler, Hung Tuan Tran, and Eduard Hasenleithner

ftw. Telecommunications Research Center Vienna *
Donaucitystr.1, 1220 Vienna, Austria
{ ziegler, tran, hasenleithner} @ftw.at

Abstract. Flow size based congestion control has the potential to improve user
perceived Webperformance due to the heavy tailed characteristic offile size dis
tributions in the Web. After discussing the benefits and drawbacks of transport
protocol and router based solutions for size based congestion control, guidelines
for algorithm design are developed. Using these guidelines we find that size
based congestion control needs to incorporate TCP models to avoid undesirable
user incentives. Basedon this insight we specify enhancements to TCP featuring
size based congestion control and provide arguments for parameter settings. It is
shown by simulation that our modified version ofTCP significantly outperforms
NewReno from a user perspective in seenarios using realistic models for Web
traffic and topologies with multiple congested links.

1 Introduction

Heavy tailed distributions can be considered as one ofthe invariants when analyzing In
ternet perforrnance. The evidence of heavy tails can for instance be found in traffic ar
rival pattems causing burstiness over multiple time scales and thus a variety of head
aches in traffic analysis for researchers and network designers. By exploiting the fact
that file size distributions on Webserversare heavy tailed this paper can be seen as an
attempt to draw benefits out ofthe heavy-tail misery.

As shown first in [1] for seenarios having the computational power in web servers as
the bottleneck, average response times for Web downloads can be dramatically
reduced using process scheduling mechanisms giving priority to short flows. The ratio
nale behind this finding lies in a property of Web traffic we will call the "heavy tailed
property of file sizes" for the remainder of this paper: the majority of files is short (the
so called web mice) and constitutes only a relatively small portion ofthe Ioad; long
files are less numerously but constitute the major portion of the load. Thus, because
short flows are high in number, we may expect to reduce average response times giving
preference to short flows. Additionally, we expect that average response time improve
ments won't negatively affect perforrnance of long flows because of the minor load
caused by short flows.

* This work is funded by the Austrian Kplus research program.

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 687-698, 2004.
© IFIP International Federation for Information Processing 2004

688 T. Ziegler, H.T. Tran, and E. Hasenleithner

TCP congestion control currently adapts the congestion window independently of
the size ofthe flow tobe transferred. Additionally, it can be shown that TCP through
put for short flows is significantly smaller than for long flows. In other words, TCP
does the contrary ofwhat the heavy tailed property offile sizes would suggest for max
imization of efficiency and additionally causes unfairness among short and long flows.

This paper proposes and investigates TCP Vienna, a new version of TCP employing
flow size based congestion control. The basic motivation is to propose Straightforward
modifications of TCP alleviating unfairness against short flows and thus increasing
efficiency. Additionally, it is of major importance to keep congestion control conserva
tive and avoid incentives for misbehaving users togainan unfair high share ofthe link
capacity due to prioritization of short flows.

The paper is structured as follows. Section 2 reviews related work. The pros and
cons of various flow size aware mechanisms to increase Web efficiency and fairness
are discussed in Section 3. Section 4 explains the Vienna enhancements to TCP con
gestion control. After giving an overview on the simulation scenarios, performance
evaluation results are shown in Section 5. Finally, Section 6 concludes this paper.

2 Related Work

[1], [2], and [3] have proposed and analyzed size based process scheduling in servers to
improve Weh performance by exploiting the heavy tailed property of file sizes. U sing
queueing theory and measurements it has been shown that the performance of overload
ed Web servers can be improved by a factor four and more if Shortest Remaining Pro
cessing Time (SRPT) scheduling is employed. SRPT naturally favours short jobs hav
ing shorter remaining processing times than long jobs. The size of a Web object is not
known a-priori in case of dynamic content. Thus [4] shows that similar web Serverper
formance improvements can be achieved by SRPT process scheduling ofjobs with un
known duration.

Inspired by the work on web server performance improvements [5] aims at achiev
ing similar goals in case the link bandwidth at an Internet router, and not the computa
tional power at a web server, constitutes the bottleneck resource. The basic idea is to
keep per flow state at the edge router and mark flows according to their length using a
few DiffServ Codepoints. A core router can examine Codepoints and assign packet
drop priorities accordingly. As a metric for the flow length a flow's number of bytes
received by an edge router is used. For the reminder of the paper we will refer to this
idea as "the Router Based Approach (RBA)". In [6] it is shown by analysis and simula
tion that RBA can improve response times by an order of magnitude in case of a heavy
tailed flow size distribution. In case of exponentially distributed flow sizes (light tail)
average response times can be improved slightly, however, this improvement comes at
the cost oflong ftows.

[7] investigates bandwidth allocation criteria using flow size based differentiation.
As a preliminary implementation ofthese criteria it is shown that an upgraded TCP
Reno source setting the increase and decrease parameters of the congestion window
during TCP's congestion avoidance phase according to the residual flow size can
increase performance in the range of 30-40% compared to standard TCP Reno. With-

Improving Perceived Web Performance 689

out argumentation for parameter dependency on flow size, round trip time and drop
probability the multiplicative decrease parameter is varied between 0.01 and 1; the
additive increase parameter is varied between 0.25 and 10. For the reminder of the
paper we refer to this kind of approach as "the Transport protocol Based Approach
(TBA)".

Other examples for the TBA approach to avoid a retransmission timeout and Slow
start in case of small congestion window sizes at the start of a TCP connection have
been proposed in (8], [9], and (10]. [8] proposes toset the initial TCP congestion win
dow size to a maximum of 4 segments (see section 4.2 for more details) increasing the
performance of short flows. [9] proposes to chop TCP segments into smaller chunks
increasing the congestion window size in units of packets and thus avoiding retrans
mission timeouts in case of small windows. The main idea in [1 0] is to allow the TCP
data sender to transmit new segments already in response to the first and the second
duplicated ACK, keeping the ACK clock going and thus avoiding Slowstart in case of
small windows.

3 Router vs. Transport Protocol Based Approach

Routerandtransport protocol based approaches both have their benefits and drawbacks
which shall be highlighted in subsequent high-level considerations.

Performance gains: RBA has the potential to provide higher performance gains than
TBA. For instance, TBA exhibits limitations in increasing throughput for flows having
a size of only a few packets (which is quite common in case ofWeb traffic (15]). RBA
routers could schedule packets of short flows with strict priority queuing, which corre
sponds to a significantly stronger flow length based differentiation than achievable
with TBA without violating the conservativeness ofTCP congestion control. However,
as shown in [7], strict priority queueing would be an undesirable policy for RBA due to
discrimination oflong ftows in case flow sizes are not heavy tailed and due to undesir
able bandwidth allocation effects. Thus a more conservative policy for flow length
based discrimination has tobe chosen anyway for RBA (see for instance [6]).

Incremental deployment: TBA only requires modification of the TCP data sender. lt
thus supports incremental deployment and would typically be implemented in Web
server transport protocols. RBA does not support incremental deployment, it rather
requires standardization as core routers need to be able to correctly interpret code
points set by edge routers. A full RBA implementation in an Autonomous System
would require upgrading all routers potentially subject to congestion.

Scalability: RBA requires per microflow state at edge routers. lt is questionable
whether the performance gains by flow size based congestion control (although
impressive) would balance the cost for per flow state in routers considering the fact the
Web and TCP traffic is usually rather low priority traffic. We arenot aware of scalabil
ity problems with TBA.

Application specific protocol design: Exploiting the heavy tailed property of Web
file sizes per definition means violating the important paradigm of designing protocols
for a broad spectrum of applications. In case of RBA this is problematic because edge
routers are generally not able to distinguish between applications, e.g. if IPsec is used.

690 T. Ziegler, H.T. Tran, and E. Hasenleithner

Thus RBA would be performed for all kinds of applications using TCP, independently
of the characteristic of their flow size distribution. On the contrary, TBA would typi
cally be deployed in Web servers where this problern does not exist. Of course, for
RBA and TBA the argument that the Web is not "just another Internet application"
holds.

Fairness and avoidance of undesirable incentives for misbehaving users: Another
important problern that might come with TBA and RBA is an undesirable incentive for
users to chop a long flow into many short flows in order to gain higher throughput.
This incentive is created in case TBA or RBA were designed to provide short flows
with higher throughput than long flows. A possible solution to this problern is that
TBA and RBA like mechanisms need to be designed such that a short TCP flow
achieves smaller or equal throughput than a long flow under the same network condi
tions, i.e. packet loss probability and round trip time (RTT). In other words, faimess
should be a design goal not only for congestion control purposes but also to avoid
undesirable user incentives. Estimating throughput of a long flow under the same net
work conditions is hard to achieve in case ofRBA because routers have no Straightfor
ward possibility to measure path drop probabilities and RTTs. As will be shown in
Section 4, estimation of drop probability is feasible with TBA; RTT estimation is
already implemented in TCP. Based on drop probability and RTT estimation conges
tion control parameters can be set such that throughput of short flows approaches, but
does not exceed throughput of long flows.

Summarizing above bullets, we observe the dominant advantages of the transport
protocol based approach in terms of deployment, scalability, application specific proto
col design and potential for avoidance of undesirable user incentives.

4 Enhancements to TCP Congestion Control

4.1 Design Guidelines and Basic Idea

Section 3 provides a design guideline for size based congestion control. Adapting TCP
congestion control parameters as a function of the tlow size such that throughput of
short flows approaches but does not exceed throughput oflong flows enables exploita
tion of the heavy tailed property while maximizing faimess and avoiding undesirable

user incentives 1.

The basic idea behind TCP Vienna is to estimate the throughput a "long flow exhib
iting typical TCP behavior'' would have under the network conditions a flow of arbi
trary size currently experiences. By network conditions we mean drop probability and
RTT; a "long flow with typical TCP behavior" means a TCP Reno flow with delayed
ACKs enabled having infinite flow length. Having estimated drop probability and RTT
the throughput of such a typical long flow can be computed using an approved model

I. As shown in figure I , Section 4, throughput as a function of the flow size is a monotonically
increasing ftmction in case of current versions of TCP. Thus long flows achieve a dispropor
tionally high share ofthe bottleneck capacity compared to short flows.

Improving Perceived Web Performance 691

ofTCP [II]. Using the same modei, congestion controi parameters can be adjusted
suchthat throughput of an arbitrary-length flow approaches throughput of a long flow
under the same network conditions as closely as possible.

Model based adoption ofTCP parameters enabling the improvement ofWeb perfor

mance while avoiding undesirable user incentives is the main innovation of TCP
Vienna compared to the RBA and TBA solutions proposed so far in [6]- [10].

4.2 What TCP Parameters to Adjust

Having defined flow length independent fairness as a design guideline there remains an
important constraint to be considered when increasing throughput for short flows. TCP
congestion control must stay conservative in order to avoid congestion collapse in cer
tain scenarios. Keeping this constraint in mind the TCP parameters to be adjusted ac
cording to the flow length and their bounds may be identified.

Additive increase, multiplicative decrease: the additive increase (a) and multiplica
tive decrease (ß) parameters may be adapted according to the flow size during the con
gestion avoidance phase. Without argumentation the decrease factor is varied between

O.OI and I and the increase factor is varied between 0.25 and IO in [7], dependent on
the residual size of a flow. In TCP Vienna parameter adoption happens based on TCP
models, more conservatively, and taking above design guidelines into account. An arbi
trary sized flow should exhibit congestion control behavior at least as aggressively as a
typical TCP Reno flow having infinite length to achieve a fair share of the throughput.
A typical TCP Reno flow increases the congestion window (cwnd) by 1/cwnd at the
receipt of an ACK and halves the congestion window at fast retransmit, fast recovery

in case a packet is lost. Thus the decrease parameter is lower bounded by ßmin = 0.5;

the increase parameter is lower bounded by amin = I. In order to stay conservative, and

independently of a flow's size, we always want to decrease the window somewhat in
case a packet is lost. Thus we use ßmax = 0.9 as an preliminary upper bound for the

multipiicative decrease. We set the upper bound ofthe increase parameter to llmax = 8

in our simulations, a similar value as proposed in [7]. Note that while lower bounds for
additive increase and multiplicative decrease are well argued in case of TCP Vienna,
upper bounds require further substantiation by simulation experiments. Thus, as a first
step, it is shown in Section 5 that the above parameter settings improve Web perfor
mance without exhaustively increasing loss rates at congested router output ports.

Window increase during Slowstart: a TCP flow having delayed ACKs disabled dou
bles the congestion window every RTT during Slowstart. A TCP flow having delayed
ACKs enabled does so roughly every two RTTs due to the reduced ACK frequency. As

TCP Slowstart behavior without Delayed ACKs is well known and has been identified

as sufficiently conservative we may increase the congestion window more aggressively

in case our TCP flow has delayed ACKs enabled in order to increase throughput of

short flows. Consequently, we define the "Exponential Increase" parameter (y), deter
mining the congestion window increase in units of segments at the receipt of an
acknowledgement during the Stowstart phase. In case of delayed ACKs disabled y is

fixed to I *MSS (usual TCP without delayed ACKs; MSS denotes the Maximum Seg
ment Size). In case of delayed ACKs enabled Ymax = 2MSS (imitating TCP behavior

692 T. Ziegler, H.T. Tran, and E. Hasenleithner

with delayed ACKs disabled) and 'fmin = 1MSS (TCP with delayed ACKs enabled)
define upper and lower bounds for y.

Initial window: RFC 3390 [8] recommends min(4*MSS,max(2*MSS,4380bytes))
as an upper bound for the initial window size of TCP and discusses the benefits and
drawbacks of increasing the initial window. Obviously, an initial window higher than
1 *MSS favors short flows and is thus in-line with our goal. Independently ofthe flow
length the initial window is set as recommended in [8] for TCP Vienna.

4.3 Modellog TCP Throughput

Taking constraints on upper and lower bounds for the TCP parameters identified in Sec
tion 4.2 into account, these parameters need to be adapted dynamically such that
throughput B of a flow with size d approaches throughput of an infinite-length flow hav
ing delayed ACKs enabled and experiencing the same network conditions in terms of
drop probability p and RTT. Note that B is a function of a., ß, y, d, p, and RTT.

For computation of B the approved TCP model in [12] which is based on the model
in [11] is employed. This model computes the expected steady-state TCP transfertime
for a flow as E(T) = E(l'j + E(FsJ + E(FcaJ + E(TcJ); throughput B = d I E(T). T1 mod
els the time during connection setup, Tss models the time spent during initial Slowstart,

Tca models the time spent in congestion avoidance, and Td models additional delay

introduced by delayed ACKs.
We generalize this model to incorporate arbitrary values for a. and ß instead of fixed

parameter settings, as for instance ß = 0.5. This generalization requires a modified der
ivation ofthe expression for the expected congestion window size E(W) which is used
to compute Tca (see eq. 22 in [12]). Due to space limitations we only roughly sketch
this derivation, based on the analysis in [11]. Let TDP; denote the Tripie Duplicate Ack

Period i (the time period between two consecutive packet Iosses), ~ denote the con

gestion window size at the end of TDP;, and X; the Iength of a TDP; in units of RTTs.

We observe that during TDP; the congestion window increases linearly with a slope of

a/b between ß~-J and ~· Thus, modifying eq. 2.8 in [11] to incorporate arbitrary val

ues for a. and ß, ~ can be written as follows.

xi
w. = ß w. 1 + a.-b (1)

l l-

In eq. 1, b equals 2 in case of delayed ACKs, eise it equals 1. Eq. 1 needs to substi
tuted into eq. 2.9 in [11] and simplified resulting in an expression for fi, the number of

packets transmitted in TDP;.

r. = xi(w. 1 (2ß-~)+a.(W.-1)) + x:. (2)
I 2 l- 2 l l

Ki denotes the number of packets sent in the last RTT of TDP;. From eq. 2 and equa

tion 2.6 in [11] it follows an expression for E(W) by solving the resulting quadratic
equation (compare to eq. 2.14 in [11] or eq. 23 in [12], respectively):

Improving Perceived Web Performance 693

E w _ 1 + aßb + (1 + aßb)2 + 2(1 - p)
() - db(4d+a) db(4d+a) pbß(2ß+a/4)

(3)

Figure 1 shows throughput B as a function of tlow length calculated by the updated
model for two settings of a and ß. Other parameters: y = I, initial window = 1 MSS, p
= 0.1, RTT= 0.2s.

I :~ /------------ ---------
2 <X=1, ß=0.5 --
.s 4 <X=8, 13=0.9 -------

2

0 ~~~~~-~~~~-~~~
10 100 1000 10000

flow size [packets]

Fig. 1. TCP throughput according to model

4.4 The TCP Vienna Algorithm

Let a* and ß* define k-dimensional vectors ofincrease and decrease values, and y* be
a two dimensional vector. In correspondence with the guidelines presented in section

4.2 we set k = 5, a*= (1,2,4,6,8), ß*= (0.5,0.6,0.7,0.8,0.9), and y*= (1,2). Additionally,
Iet Bmax denote the throughput of a typical TCP flow with delayed ACKs enabled and

infinite length, where "infinity" equals a flow size of 10000 packets2. Given above def
initions, the algorithm to compute size based congestion control parameters for a de
layed acks enabled TCP data sender can be outlined as follows.

Initia lization:
Set 0: = <lmax; ß = ßmaxi 'Y = 'Ymax

Every m segments sent to the data receiver :
Estimate p and RTT
Bmax = B (1, 0 . 5, 1, 1 0 0 0 0, p, RTT)

Search for i,j:
Bmax - B(o:/,ß/,yj *,d,p,RTT) is minimaland strictly positive

Set o: = o:i * ; ß = ßi *; 'Y = 'Yj *

Fig. 2. Simplified TCP Vienna pseudo code

2. Figure 1 illustrates that TCP throughput stays constant for flow lengths above a certain Iimit.
Using the modeland simulations we have verified that 10000 packets is above this Iimit for all
relevant settings ofp and RTT. Thus it is reasonable to consider 10000 packets as infinite flow
1ength.

694 T. Ziegler, H.T. Tran, and E. Hasenleithner

The search operation consists of a simple loop scanning a*,ß*, and y*. RTT equals
the smoothed round trip time as computed in all standard versions of TCP. The dis
tance m in terms of nurober of packets to be transmitted between executions of the
computations shown in figure 2 is set as an exponentially increasing function ofN, the
total nurober of packets transmitted so far. The rationale behind this choice is the need
of frequent throughput estimations for short lived flows to enable correct parameter
settings. Flows having already transmitted many packets can base their estimations on
a high nurober of samples thus m may be higher. The exponentially increasing function
is bounded by a constant M, which is set to 600 packets in our simulations.

m = min(M, 2N) (4)

For estimation ofthe drop probability p we employ a simple heuristic. Let L denote
the nurober of triple duplicate ACK events plus the nurober of partial ACKs seen so

fa~. L can be considered as a lower bound for the actual nurober of Iosses because it
does not take lost packets into account which have been transmitted directly after a
packet for which a partial ACK has been received during Slowstart. Let R denote the
total nurober of retransmitted packets as counted by TCP. R overestimates the actual
nurober of Iosses because packets which have already been delivered correctly at their
first transrnission are counted twice in case they are retransmitted during Slowstart. We
consider underestimation of the loss probability by L as less erroneous than overesti
mation by R, thus the drop probability p is computed as the weighted average of L and
R divided by N, the total nurober of packets sent so far:

25

20

15

10

5

0
10

p=(a*L+(J-a)*R)IN, a > 0.5 (5)

8 --------... ,,
\ cx. -------

ß---

6 \ y -------- -
' \

4
B

Bmax 2 ---- ·- ---- \\,
' ' " ---~

-
-

0
100 1000 10 100 1000

num. packets sent num. packets sent

Fig. 3. Throughput and TCP parameter adoption

Figure 3 shows an example of our ns simulation [14] results with a single TCP
Vienna flow over a single link topology to illustrate and evaluate the basic dynarnics of
the algorithm. The link enforces a uniformly distributed packet drop probability of
0.025; link propagation delay equals lOOms; the link bandwidth equals lOMbps; initial

3. Tripie duplicate ACK events (causing fast retransmit/recovery) and partial acks indicate
packet losses. A partial ACK acknowledges new data but not the highest-sent packet before
invocation of Slowstart or fast retransmit, respectively.

Improving Perceived Web Performance 695

window = 4 MSS. The left part figure shows the typical evolution of Band Bmax in

units of packets per second; the right part figure shows a, ß, y parameters during the
lifetime of a TCP Vienna flow. Comparing the initial phase in the left and right part of
figure 3 we observe the effect ofthe upper bounds <Xmax• ßmax' Ymax on a, ß, y and thus

on throughput B. Although TCP Vienna parameters equal their upper bounds (a = 8, ß
= 0.9, y = 2), B is smaller than Bmax for N < 50. In the course of the simulation B con

verges to Bmax and a, ß, y are decreased to a = 1, ß = 0.5, y = 1. In case of constant

RTTs and drop probabilities B and Bmax would both converge to a constant value. This

is, however, not the case in our simulation due to RTT and drop probability variations.
Further simulations with different settings for drop probability and propagation

delays show similar results. In case of shorter propagation delays the decrease of a, ß,
y parameters is less steep and happens at a later point in time.

5 Performance Evaluations

Simulations are performed with ns-2 using the topology shown in figure 4 with n set to
1, 5, and 9. Links employ Drop Tail queue management; buffer sizes are set to 100
packets; packet sizes equal 500 octets. To ensure tight confidence intervals, sufficiently
long simulation times (8000s) are selected.

-- JOMbps, !Oms
-- IOOMbps, 15ms

Simulated network

Several aggregates ofWeb traffic generating Ioad according to SURGE [15], a state
of the art model for Web traffic based on real traffic traces, are simu1ated. SURGE
models the object size as a mixed lognormal/pareto distribution (see [15] for details).
We evaluate performance of an aggregate having Webservers at host h2n+l and clients

at h1. Crosstraffic is created in forward direction by aggregates having clients at h2i-l

and servers at h2i+J (2<=i<=n) andin reverse direction by aggregates having clients at

h2j+l and servers at h2j, where 1 <=j<=n-1. Load is varied by changing the number of

users per aggregate. Considering a link between router ri and ri+b the number ofusers

in the evaluated aggregate equals the number of users in both crosstraffic aggregates
sharing the link.

TCP Vienna has been implemented as a modified version of TCP NewReno; see
Section 4 for details on the algorithm and parameter settings. The a parameter for aver
aging the drop probability is set to 0.75. Delayed ACKs are enabled. The flow length d
is not known a-priori in case of dynamic Web content or HTTPI.l. Thus two versions
ofthe algorithm are investigated. In TCP-V1 d corresponds to the total size ofthe flow
(assuming a-priori knowledge); in TCP-V2 d corresponds to the number ofbytes sent

696 T. Ziegler, H.T. Tran, and E. Hasenleithner

so far. These two versions are compared against TCP NewReno having an initial con
gestion window of 1 MSS (TCP-Rl) and NewReno having an initial congestion win
dow of 4 MSS (TCP-R2) according to [8].

In accordance with related work in [1]-[7], we measure mean slowdown, defined as
the mean ofresponse times divided by Web object sizes. Note that slowdown is best to
measure user perception of Web performance because it takes into account that abso
lute reponsetime improvements are perceived more dramatically in case of small
objects.

3 3
TCP-V1 --+-- TCP-V1 --+--

c:
2.5 TCP-V2 ---><--- c

2.5 TCP-V2 ···)(··· !t TCP-R1 3: TCP·R1 0 ... ,. ...
0 ...,. ...

'0 TCP-R2 oooooiJ-••• '0 TCP-R2 ---e--· !t 2 3: 2 .Q 0
VI

J< oo .. . ······ 'iii
c 1.5 ·.:.:.::~~<~--o---·-.. e -----·· c: 1.5 ~,--•i!l'"'"'.,:ljo,-~-~-~-~·-'-1 "' "' Gl Gl
E E _.x. •.•
Gl ··--x---- ~ 1 . >
~ ~
~ 0.5 !!! 0.5

0 0
100 200 300 400 500 100 200 300 400 500

number of Web users number of Web users

Fig. 5. Mean slowdown as a function ofload for n = 1 (left part figure) and n = 9 (right
part figure)

Figure 5 shows the mean slowdown ofTCP-V2, TCP-R1, TCP-R2 normalized by
the slowdown ofTCP-VL TCP-V2 exhibits similar performance to TCP-V1, thus we
can conclude that there exists no need for a-priori information of the flow size in TCP
Vienna. The figure shows dramatic improvements in user perceived performance with
TCP Vienna. With slight dependency on the load we observe improvements of a factor
L3 up to 1.8.

~
:ö
~
e
0.
0. e
'0
Cl)

.2:
(ij

~

1.2

..........

0.8

___ __.....e·-·:::.1j:.:.:.::Ff.

0.6 ,.

0.4
TCP-V1 --+--
TCP-V2 ---><---

0.2 TCP·R1 --------TCP-R2 ---e--
0
100 200 300 400 500

1.6 r---r----r-.---.--,

1.4 ... -------0 'o
~ 1.2 1;:.;-;<''.,.:-:-:<''·.li!""""""'·-,.
Cl) -- J:\
~ 1 --......--===11<-"+t
~ 0.8 \
I!!
-~ 0.6
c;; O 4 TCP-V1 --+-
~ · TCP-V2 · ··><···

0.2 TCP-R1, ...
TCP-R2 ----e ----

0 '--....&..---'--'--....&..--'

so 60 70 80 90
number of Web users quantile (percent]

Fig. 6. Drop probabilities and quantiles ofresponse time

The left part of figure 6 shows the drop probability as a function of load for n = 1.
The dramatic performance improvements with TCP Vienna shown in figure 5 come to
the expense of a slightly increased drop probability compared to TCP-R2, i.e.

Improving Perceived Web Performance 697

NewReno with an initial congestion window set as recommended in [8]. TCP-Rl
shows significantly smaller drop probabilities than the other versions of TCP as its
congestion control is less aggressive than TCP-R2 and TCP Vienna.

The right part of figure 6 shows a typical example for the quantiles of the response
time distribution ofTCP-V2, TCP-Rl, TCP-R2 normalized by the responsetime quan
tiles of TCP-VI. The selected scenario is n = 9 with a Ioad of 300 Web users. As
expected, both versions of TCP Vienna cause significantly shorter response tim es for
the majority of short flows. This is indicated in the figure by showing that TCP Vienna
causes smaller response times up to the 95% quantile. For the Iongest flows TCP
Vienna causes higher responsetimes because short TCP Vienna flows grab a higher
portion of the link capacity than TCP-NewReno in comparable scenarios. Thus for
quantiles greater than 95% NewReno drops below TCP Vienna. Again, both versions
ofTCP Vienna exhibit similar performance.

Due to space limitations only a small subset ofthe simulations results shown in [13]
can be presented in this paper. Simulations in [13] investigate the dependency ofTCP
Vienna performance on parameter setting. Furthermore, we find that it is beneficial for
TCP Vienna if the TCP max_burst parameter, limiting the number of back-to-back
segments sent in response to a single acknowledgement, is set to a value between 4 and
8. Additionally, comparing seenarios with active queue management and drop-tail in
the routers, show that active queue management does not have a significant impact on
the performance ofTCP-Vienna in relation to TCP NewReno. Extensivesimulations
using topologies with multiple congested hops loaded with a realistic traffic mix of
peer-to-peer and Web traffic show significant performance improvements ofTCP-Vl
and TCP-V2 compared to TCP-R2 in terms of response time quantiles and slowdown
without significantly increasing drop probabilities or decreasing the goodput (through
put at user Ievel) of the peer-to-peer traffic. This finding is in accordance with the
"heavy tailed property offile sizes" (see section 1).

6 Conclusions

Based on high Ievel considerations we find that transport protocol based solutions for
size based congestion control provide significant advantages compared to router based
solutions in terms of scalability, ease of deployment, and avoidance ofundesirable user
incentives. We emphasize that flow size based congestion control needs to stay conser
vative to avoid congestion collapse and must not have a bias against Jong flows but rath
er converge to a state of flow length independent faimess in order to avoid undesirable
user incentives. The latter design guideline motivates us to enhance a well known TCP
model for the requirements of size based congestion control. Subsequently, we identify
the TCP parameters to be adapted as a function of the flow size, provide arguments for
their parameter setting, and define flow size based enhancements to congestion control
in TCP Vienna incorporating the enhanced model ofTCP. Simulations illustrate the dy
namics ofparameter adaptations during the lifetime ofa TCP Vienna flow.

Performance evaluations with realistic Web traffic over topologies with several con
gested hops show that TCP Vienna with and without a-priori information on the flow
length outperforms TCP NewReno by a factor 1.3-1.8 in terms of user perceived per-

698 T. Ziegler, H.T. Tran, and E. Hasenleithner

formance. Additionally, we investigate the effect of TCP Vienna on drop probability
and response time.

As a promising future research topic the investigation of TCP-Vienna in combina
tion with TCP-SACK can be mentioned. Additionally, the proposals of [9] or [10]
could easily be integrated into TCP Vienna. Subsequently to implementing TCP mod
els based on table Iookups for a variety of drop probability and RTT settings, a Web
server implementation of TCP Vienna is planned.

References

[I] M.E. Crovella, R. Frangioso, M. Harchol-Balter, "Connection Scheduling in Web Serv
ers", USENIX Symposium on InternetTechnologiesand Systems (USITS '99), Boulder,
Colorado, October '99

[2] M. Harchoi-Balter, M.E. Crovella, S. Park, "The Case for SRPT Scheduling in Web Serv
ers", MIT-LCS-TR-767, October 1998.

[3] N. Bansal and M. Harchoi-Balter, "Analysis of SRPT Scheduling: Investigating Unfair
ness", Proceedings of ACM Sigmetrics 2001 , Conference on Measurement and Modeling
ofComputer Systems, 2001.

[4] M. Harchol-Balter, "Task Assignment with unknown Duration", Proceedings ofiCDCS
2000

[5] L. Guo and I. Matta, "The War between Mice and Elephants", Proc. 9th IEEE International
Conference on Network Protocols (ICNP'01), Riverside, CA, November, 2001.

[6] L. Guo and I. Matta, "Scheduling Flows with Unknown Sizes: Approximate Analysis",
Proceedings of ACM SIGMETRICS'02, poster session.

[7] S.J. Yang and G.D. Veciana,'" Size Based Adaptive Bandwidth Allocation: Optimizing
the Average QoS for Elastic Users", Proceedings of IEEE INFOCOM 2002.

[8] M. Allman, S. Floyd, C. Partrige, "lncreasing TCP's initial Window", RFC 3390, Oct.
2002

[9] M. Mellia, M. Meo, C. CAsetti, "TCP Smart Framing: using smart segments to enhance
the performance ofTCP", Proceedings ofGlobecom 2001

[10] M. Allman, H. Balakrishnan, S. Floyd, "Enhancing TCP's Loss Recovery Using Limited
Transmit", RFC 3042, January 2001

[ll] J. Padhye et ai.,"Modeling TCP Troughput: A simpleModeland its empirical Validation",
Proceedings of ACM SIGCOMM 1998, August 1998

[12] N. Cardwell, S. Savage, T. Anderson, "Modeling TCP Latency", Proceedings ofiEEE In
focom 2000, Tel Aviv, Israel, 2000

[13] T. Ziegler, "Investigating size Based Congestion Control", techn. Report, Oct. 2003,
www.userver.ftw.at/-ziegler

[14] NS Simulator Homepage, http://www.isi.edu/nsnam/ns/

[15] P. Barford, M.E. Crovella, "Generating Representative Web Workloads for Network and
Server Performance Evaluation", Sigmetrics 1998.

