
Rational Server Selection for Mobile Agents: 
Problem Solution and Performance Analysis 

Carsten Pils, Jan Kritzner, and Stefan Diepolder 

Informatik 4 ( Communications Systems) 
RWTH Aachen, 52056 Aachen, Germany 

{pils, kritzner, diepolder}~informatik.rwth-aachen.de 

Abstract. Since agents have the ability to migrate to outperforming re­
sources they can potentially balance the load of heterogeneaus systems. 
However, to balance resources efficiently agents must take the load into 
account. Thus, to support the agent migration strategy the application 
of server selection systems has been proposed recently. Server selection 
systems keep track of the load of network and host resources and hence 
predict the performance of different migration strategies. Yet, server se­
lection comes at a cost and therefore agents must take care when apply­
ing it. This paper presents a decision strategy for the agent's decision 
problem. The performance of the approach is analysed with the help of 
a simple queuing model. 

1 lntroduction 

Basically, the advantage of mobile agent technology is that it allows applica­
tion designers to decide where an agent is processed. In that sense, developers 
can optimise the performance of an application by carefully selecting process­
ing resources. Yet, approaches proposing an automatic selection of destination 
systems [1] [2] [3] have not gained much attention. A similar problern is server 
selection in the Internet. The deployment of mirrar sites has motivated users to 
select a mirrar affering the best performance. With gaining significance of bulk 
document, audio, and video file transfer, smart mirrar site selection has become 
a compelling task and thus motivated numerous automatic server selection ap­
proaches. Lately, we discussed in [4] the application of server selection to mobile 
agents. It has been pointed out that due to the rather small resource require­
ments of mobile agents, these must be careful when applying server selection. 
That is, since agents are idle while the server selection system processes their 
requests, server selection comes at a cost. Thus, agents will only access a server 
selection system if the utility function U is positive: 

(1) 

where d0 is the average service time, drnin is the service time of a server recom­
mended by a selection system, and 8 is the agent idle time while the selection 
system processes its request . In the remainder of the paper, this problern will be 
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referred to as the rational server selection problem. In [4] we presented a decision 
algorithm which solves the rational server selection problem. This paper briefly 
summarises our findings in [4] and analyses the performance of the algorithm 
with the help of a queuing model. 

2 Rational Server Selection 

The problern in developing a decision algorithm for the server selection problem is 
that the agents neither know the server resource capacities nor the waiting time 8. 
Yet, it is assumed that they have a basic knowledge of the system heterogeneity. 
Thus, let R be the resource capacity distribution describing the probability that 
a randomly selected server has a resource capacity c E 9'\).'0 , with x ::; c (where 
::; is a componentwise comparison and x E 9'\).'0 ). With the help of R, d0 can be 
estimated by: -

where r is the resource requirement and \7 is the resource consumption operator 
defined as: the mapping of a process's resource requirement to the requirements 
remaining after consuming a specified capacity is defined as \7 : 9'\)..'0 x 9'\)..'0 H 

9'\).'0 • That is, if capacity c is required to satisfy a resource requiremeiit r equation 
r'\l c = 0 holds. According to the definition of R, its average value E[R] is the 
resource capacity an agent expects when it selects a server randomly or the 
number of alternative servers is 1. To estimate dmin, the random distribution Rn 
giving the maximum resource capacity c, with x ::; c out of n randomly selected 
servers is required (again, ::; is the componentwise comparison). Obviously, Rn 
is an order statistic distribution [5] and thus it is given by: Rn(x) = R1(x)n = 
R( )n d dRn(x) _ • R( )n-1 . dR(x) x an dx -n X dx. 

E[Rn] is the average maximum server capacity when a server is selected out 
of n. Consequently, dmin can be estimated by function drnin(r, n) as follows: 

drnin(r, n) = min { d E 9'\~olr \7(E[Rn] · d) = 0} 

Finally, given the random distribution Err(x) (prediction error distribution) 
that a prediction has a deviation of e with e ::::: ( for an interval of length h the 
estimated utility function is: 

E[U(r, n)J = d0(r)- drnin(r, n)- b- E[Err(d0(r)- dmin(r, n))] (2) 

3 Performance Analysis 

Given that rational server selection is widely deployed it does not only improve 
the performance of individual agents. Just as much it influences the performance 
of the overall system: As server selection systems struggle to assign agents to the 
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Fig. 1. Customer responsetime versus customer resource requirement 

Table 1. Queuing model: Parameters 

jPara. jDescription IIPara. jDescription 

m Number of servers (2) /-ti deterministic serv1ce rate of 
server i (J-tl = 1, P,2 = 6) 

.A customer arrival rate ( exponen- -". 

"' 
Average service requirement 

tially distributed, A = 1) ( exponentially distributed, 
a = 0.55) 

f break-even resource require- 8 latency of server selection sys-
ment tem interaction (8 = 10) 

best performing destination system, they effectively balance the server load and 
thus increase the throughput rate ofthe whole system. In general, load-balancing 
is just oriented at a single resource. Therefore, only one resource is considered in 
the analysis which is shared by the agents as is the case for network or processor 
resources. Thus, to compare random, native (server selection without application 
of the decision algorithm), and rational server selection (i.e. application of the 
decision algorithm) a simple MjMjm queuing model is used: The service rates 
/-ti are deterministic, yet the customer's resource requirements are exponentially 
distributed with rate a. Table 1 summarises all model parameters and their 
settings in this analysis. To ease the analysis, it is assumed that customers, i.e. 
agents respectively, compete for the same kind of resource and that the server 
selection time is constant. Moreover, all servers are able to satisfy the customer's 
service requirements. Thus, on each request, the server selection system evaluates 
all servers. Finally, errors of the selection system have not been considered. Next 
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a performance model for rational server selection is developed. This model will 
finally be compared with random and native server selection. 

If only a single resource is considered equation 2 can be simplified to: 

r r [ r r J E[U(r,n)] = E[R]- E[Rn]- o- E Err(E[R]- E[Rn]) (3) 

Consequently, for a fixed n there exists a break-even resource requirement f 
which meets U(f, n) = 0. That is, customers having resource requirement smaller 
than f select servers randomly; on the contrary, customers applying server se­
lection have a requirement greater than f. The break-even resource requirement 
is given as: 

, (o + E[Err(efRr- EJkJ)J) · E[R] · E[Rn] 
r = E[Rn] - E[R] (4) 

Thus, to model rational server selection two customer classes must be distin­
guished, namely customers which apply random selection and those which apply 
server selection. Looking at a server i the fraction of customers with resource 
requirement greater than f depends on its load share. To model the ratio be­
tween the two customer classes the divided exponential distribution is derived 
(see appendix) . Its density function f is: 

fwax = · 
1 {w · a · e-a·x 

f( ' ' ' ) w · (1 - e- a·r ) + (1- w) · e-a·r (1- w) · a · e-a·x 
x<f 
x?_f 

(5) 

where w reflects the ratio between the customer classes. Thus, the mean E[Si](f) 
of a system's i service time is given by: 

E[Si ](f) = 1oo J(f,wi ,a ,x) · (:Jdx 

With the help of density function f the ratio between two customer classes can be 
modelled. Yet, this approach requires a model transformation, i.e. an adaptation 
of the individual arrival rates. However, at first the weights Wi must be derived. 
Preconditioned that none of the servers is overloaded when random selection is 
applied, customers with a requirement smaller than f are equally distributed 
among the servers. The others are fairly distributed among the servers where 
each server i receives a share of L.f=: P.i • Thus the relation wi at server i is: 

1 

The arrival rate of customers at server i, .Ai, is: 
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where the first summand is the fraction of customers with resource requirements 
lower than f arriving at i and the second the fraction of those with require­
ments greater or equal thanf. By applying the Pollaczek-Kinchin formula [6], 
the average response time of a customer with resource requirement r E ~~0 , 

E[R]rat(f, r) is: 

m {..!. · (E[W·] t(f) + ..!:...) 
E[R]rat(f, r) = L m /!i • ra ~i r 

i=l ~j=l /1-i • ( E[Wi]rat(r) + 1".) + 8 

r<f 
(6) 

where the average service time at server i is given by: 

E[W·J (A) = >-7 · E[SlJ(r) 
• rat r 2 . (1 - Prat) 

Prat(f) = f ~2 · E[Si](f) 
i=l 

E[Sl](r) is the second moment ofthe servicetime at server i. Apparently, at the 
break-even point f there is no difference between selecting customers randomly 
or server selection. Therefore, it can easily calculated by solving the equation: 

The random and native server selection performance models are special cases 
of the rational server selection model. That is, random selection corresponds to a 
rational server selection setting where the break-even point is infinite. Likewise, 
native server selection corresponds to rational server selection with a break-even 
point of zero. Thus, based on equation 6 derivation of the average response times 
ofrandom server selection E[R]rand(r) and native server selection E[R]native(r) 
are straightforward and are given by: 

E[R]rand = )im E[R]rat(f, r) E[R]nativ = E[R]rat(O, r) 
r-+oo 

The performance evaluation has been restricted to a queuing system compris­
ing only two servers. Though this scenario is quite simple, it is suffi.cient to illus­
trate the characteristics of rational server selection. Figure 1 shows the average 
customer response time versus customer resource requirements of the random, 
native and rational server selection approach. Apparently, the server selection 
approaches outperform random selection if a customer's resource requirement 
exceeds the breakeven point. However, those customers which use server selec­
tion even though their resource requirements are less than the breakeven point 
perform poor. Comparison of rationalandnative server selection shows: If ratio­
nal selection is used customer's having less resource requirements perform well 
at the costs of those customers having significant requirements. But if native 
server selection is used, customer's having considerable requirements perform 
well at the costs of those having small. 
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4 Conclusions and Future Work 

With the help of a simple performance model the performance characteristics 
of rational server selection have been discussed. According to this analysis, a 
relaxed load-balancing results in improved agent performance. Future work will 
focus on implementation of the decision algorithm in a server selection system 
and its evaluation in a real world scenario. 
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Appendix 

The divided exponential distribution models two customer streams arriving at 
a server A which are distinguished by different resource requirements. Basically, 
the resource requirements are exponentially distributed. However, dividing the 
customers in a number of streams according to weights P(Air < f) and P(Air ~ 
f) their resource requirements result in the divided distribution. Preconditioned, 
that the fraction of customers with resource requirement r < f and r ~ f are 
known, i.e. P(Air < f) and P(Air ~ f) respectively, the probability that a 
customer arriving at A has a resource requirement s is: 

P( A) 
{ 

P(r,A,r<f) 
- r, - P(I) 

P(riA) - P(A) - P(r,A,r>f) 
P(I) 

r<f 

r?:.f 
(7) 

Since the streams descend from an exponential distribut ion with rate a, P(A) = 
P(Air < f) ·I: a · e- a·xdx + P(Air ~ f) · Iroo a · e-a·xdx. Moreover , P(r, A, r < 
f) = P(Air < f) · a · e-a·x, P(r, A, r ~ f) = P(Air ~ f) · a · e- a·x. Finally, giving 
that w = P(Air < f) the density function of P(riA) is f (see equation 5). 


