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Abstract. Traditionally, secure cryptographic algorithms provide secu-
rity against an adversary who has only black-box access to the secret
information of honest parties. However, such models are not always ad-
equate. In particular, the security of these algorithms may completely
break under (feasible) attacks that tamper with the secret key.
In this paper we propose a theoretical framework to investigate the algo-
rithmic aspects related to tamper-proof security. In particular, we define
a model of security against an adversary who is allowed to apply arbi-
trary feasible functions f to the secret key sk, and obtain the result of
the cryptographic algorithms using the new secret key f(sk).
We prove that in the most general setting it is impossible to achieve
this strong notion of security. We then show minimal additions to the
model, which are needed in order to obtain provable security. We prove
that these additions are necessary and also sufficient for most common
cryptographic primitives, such as encryption and signature schemes.
We discuss the applications to portable devices protected by PINs and
show how to integrate PIN security into the generic security design.
Finally we investigate restrictions of the model in which the tampering
powers of the adversary are limited. These restrictions model realistic
attacks (like differential fault analysis) that have been demonstrated in
practice. In these settings we show security solutions that work even
without the additions mentioned above.

1 Introduction

Motivation and Our Main Questions. Traditionally, cryptographic algo-
rithms have been designed to provide security against an adversary who has
only black-box access to the secret information of honest parties. That is, the
adversary can query the cryptographic algorithm on inputs of his choice and an-
alyze the responses, which are always computed according to the correct original

M. Naor (Ed.): TCC 2004, LNCS 2951, pp. 258–277, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Algorithmic Tamper-Proof (ATP) Security 259

secret information. By now, cryptographic design has become so advanced that
all the major cryptographic primitives can be proven secure against black-box
attacks under very weak complexity assumptions. Proofs of security for such
cryptographic algorithms assume (as an abstraction) that there is some secure
hardware in which the algorithm and secret key of the honest parties are stored,
thus denying the adversary any form of access to this data other than exchanging
messages. If this assumption is violated, all guarantees are off.

At a closer analysis, the secure hardware assumption encompasses two dif-
ferent components, informally: (1) Read-proof hardware; that is, hardware that
prevents an enemy from reading anything about the data stored within it; and (2)
Tamper-proof hardware; that is, hardware that prevents an enemy from changing
anything in the data stored within it.

In particular, traditional cryptographic schemes consist of an algorithm which
the adversary knows, but cannot change (i.e., stored in tamper-proof hardware),
and a secret key, which the adversary does not know and cannot change (i.e.,
stored in hardware which is both read-proof and tamper-proof).

It is clear that each of these components is necessary, at least to some ex-
tent, in order to achieve security of a cryptographic algorithm. If the adversary
can read all information belonging to an honest party, he can also perform all
the same functionalities. If the adversary can arbitrarily change the algorithm
implemented by the honest party, he can cause the algorithm to output all the se-
cret information. Thus, both read-proofness and tamper-proofness are necessary
assumptions. This raises the following natural questions:

Is it necessary to have a component which is both read-proof and tamper-
proof? Can we decouple these assumptions and achieve security when the
adversary has arbitrary tampering powers for any secret information, and
complete knowledge of any unchangeable information? What are the min-
imal physical assumptions necessary for the existence of provably secure
implementations of major cryptographic primitives?

Clearly, if the secret data is only secured via a read-proof hardware then the
adversary can destroy the information by overwriting it. Our goal, however, is to
prevent the adversary from compromising the security of the card with respect
to the original secret data (e.g., by forging a valid digital signature).

In addition to being a natural next step in a line of research aiming to
achieve security against ever stronger adversaries, these questions also have di-
rect significance to reducing the gap between cryptographic proofs and practical
implementations. The motivation for decoupling is further driven by the current
state in secure hardware design. There are two fronts which support the need
for decoupling: attacks on, and manufacturing of, the devices.

Known attacks show that it is hard to preserve the security of the cards.
Works such as [KJJ99,AARR03] show that a wide variety of “side channels”
exist that enable an adversary to read off secret keys. On the other hand, many
physical tampering attacks have proved successful, see for example [AK96,SA03].
Boneh, DeMillo, and Lipton [BDL01] show how to use a small number of random
faults to break specific, public-key based schemes. Biham and Shamir [BS97]
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show how to break even unknown secret-key schemes, using a specific kind of
random faults. They give these attacks the name differential fault analysis.

These types of attacks are of particular concern in light of the way cryptog-
raphy is used today. For one, many cryptographic applications are carried out by
small devices outside the security of a protected environment (e.g., smartcards
and PDAs). Such gadgets may fall into the wrong hands with great ease, giving
an adversary ample opportunity to apply a battery of physical attacks. More-
over, today’s widespread use of cryptography, by virtue of its ubiquity, opens
the door to increased vulnerabilities, such as opportunities for insider attacks by
naive or malicious users. Thus it is important to reduce as much as possible the
assumptions on the adversary’s limitations.

On the manufacturing front, if we wish to store data which is both hardwired
and secret this would need to be done at manufacturing time. This implies that
the user’s secret key should, at some level, be known to the device manufacturer,
and this is clearly not desirable. Moreover, producing one-of-a-kind hardware for
each of many users, which would be required if a unique key is hardwired in each
device, may be totally impractical.

This body of evidence argues that to assume hardware that is both read-proof
and tamper-proof is a big leap of faith. From this perspective, granted that both
tamper-proof and read-proof security are assumptions, we wish to understand
their relative strength. We are asking whether, for a fixed cryptographic algo-
rithm, and a secret key which is stored in a read-proof hardware, the read-proof
hardware can be bootstrapped via an algorithm to provide tamper-proofness?
We introduce the notion of Algorithmic Tamper-Proof (ATP) Security which
addresses security in the decoupled environment.

Our Model. We will model devices with two separate components, one being
tamper-proof yet readable, and the other being read-proof yet tamperable. These
components may be thought of as corresponding to the traditional notions of a
hardware (circuitry) and software (memory) components of a given device. We
allow only data that is common to all devices (and considered universally known)
to be hardwired beyond the tampering reach of the adversary.

We define a very strong tampering adversary and the notion of security in our
new model. The adversary considers the device’s memory, M , as an n-tuple of
individual bits, x1, . . . , xn, and knows the functionality of each bit-position (e.g.,
where a given secret key begins and ends). We allow the adversary to specify any
polynomial-time computable function f : {0, 1}n → {0, 1}n and transform M to
f(M). More precisely, we envisage that the adversary may adaptively interact
with the device by repeating the following a polynomial number of times:

1. choose a polynomial-time computable function f and replace the current
memory content, M , with the new content f(M); and

2. interact with the device with memory content f(M) (e.g., input a message
to be signed with the current secret key, enter a PIN. etc.)

We define the notion of algorithmic tamper-proof security and require that what-
ever such an attacker can achieve, could also be achieved by a black-box attack
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on the system. This definition may be formulated either as a simulation-based
definition, or by a direct definition of security for the cryptographic primitive
(signature or encryption) with a tampering adversary.

We believe this to make a clear and attractive model for studying our prob-
lem. The model unifies and provides a theoretical framework for practical attacks
such as differential fault analysis, while at the same time maintaining a more
general view of security. The model also provides the next natural step in secu-
rity against strong adversaries (e.g., for encryption, this is the next step after
CCA2 attacks). Further applications may be possible.

Our Answers. We first show that in the model as described above ATP security
cannot be achieved. That is having secret data stored in read-proof only hardware
does not even preserve the secrecy of the data, let alone provide security for the
cryptographic function.

Thus, we consider modifications to the model which still preserve the decou-
pling property in order to achieve ATP security. The modifications are done in
two directions, one to enhance the physical design and the second to limit the
tampering capabilities of the adversary.
Enhancing the Physical Design. We show that ATP security in the above model
can be achieved iff the device is enhanced with: (1) a self-destructing capability,
and (2) some hardwired data (public parameter) which is produced by a separate
server that cannot be tampered with.

Specifically, we show that without (1), any cryptographic algorithm can be
completely broken by a memory tampering attack, and that without (2), there
are signature and encryption schemes that cannot be implemented securely in
the face of a tampering attack.

Then we proceed to show that the two enhancements are sufficient. We
achieve algorithmic tamper-proof security with respect to arbitrary, feasible func-
tions f , for fundamental public-key applications such as signing and decryption;
but our techniques also apply in the secret-key setting.

One way to interpret these results, is that to achieve general ATP for crypto-
graphic schemes (e.g., signature or decryption), we do need a component which
is both read-proof and tamper-proof (the memory of the server used for condi-
tion 2). However, this component need not be part of every device instantiating
the scheme, as assumed in traditional models (where the secret key is stored
in that component). Rather, it is sufficient to have one such component, used
only at setup time, in order to provide algorithmic tamper-proof security for all
instantiations of the scheme on different devices.

Restricting the Power of Tampering. We then initiate a study of tampering
attacks under a restricted class of functions. We show that the situation is not
hopeless even with a more basic device, that is not enhanced with self-destruct
and an external public key. In particular, we show how to achieve ATP security
when the adversary is limited to choosing functions f from some restricted, yet
useful, classes of functions. The results presented have some practical significance
as they address precisely such classes of functions that were successfully used
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before to attack existing systems [BS97,BDL01]. These include random hardware
faults (differential fault analysis), and flipping (or “zapping”) specified bits.
PIN-Protected Hardware. The main direct application of our results is in the
protection of portable devices such as smartcards or PDAs. Indeed tampering
attacks are most likely to be feasible when the device storing the secret key is
completely in the hands of the adversary (though one can envision other scenar-
ios). Portable devices are commonly protected by PIN numbers or passwords, to
prevent unauthorized access by an adversary. We show how to incorporate PIN
numbers in our model and how to make sure that the tampering powers of the
adversary are not used to circumvent this extra layer of protection.

Related Work. In addition to the related work mentioned above, there are
several works that address the physical (as opposed to algorithmic) aspects of
tamper-proofing a specific device (typically a smartcard), such as [QS01]. There
are many approaches that address security when the read-proof (as opposed to
tamper-proof) assumption is relaxed in some way. Most relevant in our context,
are the recent works of [ISW03], who consider security when the adversary may
read part of the inputs going through the circuitry of the device, and of [MR03],
who consider a general new model for security against an adversary that can ob-
serve arbitrary physical characteristics of a computation (“side channels”). The
work of [CGGM00] on resettable zero knowledge can be viewed as a special case
of algorithmic tamper-proof security, where the adversary’s tampering powers
are limited to resetting the randomness.

2 The New Model

2.1 The Device and Adversarial Capabilities

We consider a system with two components: (1) secret content, sc (containing
some secret key, sk, randomness, and possibly state information), and (2) a
cryptographic algorithm A which uses the secret content (we may think of A as
the circuitry component).

We say that the system implements a certain function F , if for any input
a, A(sc, a) = F (a). We say that A implements a keyed cryptographic function
F (·, ·), if for every key sk (from the appropriate domain) there exists a setting
scsk of the secret data, such that the system (A, scsk) implements the function
F (sk, ·). An algorithm computing scsk will be called a software setup algorithm.
Finally, a device setup protocol implementing F (·, ·) is a pair of algorithms. The
first generates the algorithm A, possibly with some additional state information
to be passed to the second algorithm. The second is a software setup algorithm:
given input sk and A, and possibly an additional state information input, the
algorithm generates an appropriate scsk. If the software setup algorithm is state-
ful, we say that the device uses public parameters. We will consider devices with
efficient setup algorithms.

Consider A which implements some F (·, ·) (e.g., a signature algorithm). We
define a tampering adversary who can request three commands to be carried out:
Run(·) and Apply(·), and Setup.
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– The command Run(a), invokes the cryptographic computation A using the
software content sc on input a. The output is the output of such computation,
i.e., A(sc, a). For example, if the cryptographic algorithm is a signature then
the output is a signature on the message a using the secret key stored in sc.

– The command Apply(f) takes as input a function f , and modifies the software
content sc to f(sc). From this point on, until a new Apply(f) is requested,
all Run(a) operations will use f(sc) as the new software content. f can be
a probabilistic function. Note that the next invocation of Apply(f ′) would
change f(sc) to f ′(f(sc)), i.e. it does not apply f ′ to the original sc. There
is no output for this command.1

– The command Setup(sk) invokes the software setup algorithm, outputting
sc such that the device (A, sc) implements the function F (sk, ·).

The device may also have a self-destruct capability, called by the algorithm A.
If this happens, every Run command from then on will always output ⊥.

As mentioned above, security of smartcards and other portable devices is one
of the motivations for considering this model. For convenience, throughout this
paper we refer to the system interchangeably as a “card” or a “device”.

Incorporating PIN Numbers. Consider the application of the model to
smartcards. One goal is to prevent a tampering adversary from learning infor-
mation about the contents of the card, so that he cannot duplicate and distribute
devices with the same functionality (e.g., decryption cards for pay-TV applica-
tions). However, it is also often desirable to prevent the adversary from using
the functionality of the device himself .

Towards this goal, we propose that the card be augmented with a short
memorizable PIN, to be entered by the user before any application. That is, a
Run query, where it previously took one input, now should take two: the PIN
and the input (such as a message m to be signed). The card will only function if
the PIN is correct, and, moreover, it will permanently stop functioning (or self-
destruct) after a certain (not too big) number of wrong attempts. This requires
a counter mechanism.

It is not hard to show that if the adversary cannot tamper with the counter,
all our results carry through by considering the PIN as part of the secret key.
In Section 5 we show how to achieve ATP security in the setting with PIN, by
showing a cryptographic implementation of a counter which is ATP secure, based
on one-way permutations or on forward-secure signature schemes. (We thus will
not directly deal with the PIN setting in the other parts of the paper.)

1 It is clear that if this command was allowed any output, then it could just output the
secret key. Moreover, we cannot even allow f to produce outputs by making calls to
Run, or security would be unachievable. Consider the following attack. The adversary
chooses two inputs x0 and x1. Given that the secret key on the card is s1s2...sl, the
function f is “for i = 1 to l Run(xsi)”. Clearly, by executing this function, we extract
the whole secret key.
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2.2 The Notion of Security

Intuitively, we would like that the extra power given to the adversary to be
useless. We present definitions of security for signature and encryption schemes,
and discuss the simulation technique that we use to achieve these goals.

Signature Cards. The classical definition of security for signature schemes is
security against adaptive chosen-message attack introduced by [GMR88]. In our
terminology, this corresponds to an adversary who is given a public key pk and
the opportunity to issue as many Run commands as he wants on input messages
m1, . . . , mn, chosen adaptively, and get the corresponding signatures. Then we
say that the scheme is unforgeable if the adversary is not able to produce a new
message m �= mj and a valid signature on it.

In our model we augment the power of the adversary by allowing him to also
issue Apply commands. That may change the key pair corresponding to the card;
namely, instead of the original key pair (pk, sk), the card may now be working
relative to various different key pairs (pk′, sk′). Yet, we will consider as relevant
only Run queries for which the adversary gets a valid signature relative to the
original public key pk. After interacting with the card, the adversary should not
be able to produce a new message m and its valid signature under the public
key pk. We count as a forgery a pair (m, s) even if m was asked before, but the
card outputs an invalid signature because it had an incorrect secret key stored
inside as a consequence of some Apply command.

Formally, let S = 〈Gen, Sig, Ver〉 be a signature scheme, where Gen is the
key-generation algorithm, Sig is the signature algorithm, and Ver is the verifi-
cation algorithm. We say that S is algorithmically tamper-proof unforgeable if
for every probabilistic polynomial-time adversary A, there exists a negligible
function negl() such that

Pr




(pk, sk)← Gen(1k);
H ← {}; I ← {}; State← ε
for i = 1 . . . n

(State, Cmd)← A(State, pk, H);
if Cmd = Run(mi) then si ← Sig(sk, mi);

if Ver(pk, mi, si) = yes then I ← I ∪ {mi};
if Cmd = Setup(ski) then si ← Setup(ski);
if Cmd = Apply(fi) then sk ← fi(sk);
H ← H ∪ {(Cmd, si)};

(m, s)← A(pk, H);
m /∈ I and Ver(pk, m, s) = yes




= negl(k)

Decryption Cards. In the full version of this paper, we give the definition of
security for decryption cards. Here, we give an informal sketch of this definition.

Recall that security for encryption schemes comes in at least three different
levels: semantic security (security against passive adversary) [GM84], security
against lunchtime attacks (security against an adversary who can interact with
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the decryption oracle during a training stage, before receiving a challenge cipher-
text) and security against adaptive chosen ciphertext attacks (CCA-2, where an
adversary has a training stage before he receives a challenge ciphertext; once
he receives the challenge ciphertext, he can ask the decryption oracle additional
queries which must be distinct from his challenge ciphertext).

We say that a scheme is secure against adaptive chosen-ciphertext attack with
lunchtime tampering (or tamper-proof CCA-2 secure) if we allow the adversary
to issue both Run and Apply commands during the training stage. Then the ad-
versary outputs two messages m0, m1 and is given the target ciphertext c, which
is the encryption of either m0 or m1, chosen at random. Then the adversary
can perform only Run queries on any ciphertexts other than c. We say that the
scheme is secure, if the adversary cannot guess (with probability better than
1/2) the correct decryption of c.

Note that we do not allow the adversary to modify the secret key after the
target ciphertext is released. This is because, for a challenge ciphertext c, and
Apply query may be of the form “If c decrypts to 0, self-destruct,” and therefore
it leaks information about the plaintext.

Proofs by Simulation. The above security goal would follow if we were able to
prove that this powerful adversary does not learn any more information about
the secret key than an adversary who is simply limited by an input/output
relationship with the card (because then, if we start from a card secure in the
old model, it is also ATP secure).

We can use the concept of simulation to capture the above idea. Our theorems
will be proven according to the following approach. We will construct simulators
which have only Run(·) access to the card and Setup(·) access to the issuer, and
make them interact with the tampering adversary. The card is resistant to the
tampering powers of the adversary (namely Apply commands) if the adversary
is not able to distinguish between the case that he interacts with the real card,
and the case that he interacts with the simulator.

3 Enhancing the Physical Design

As stated in the Introduction we augment our model with two additions: public
parameters and self destruct, and show that these additions are both necessary
and sufficient to achieve ATP security.

These results are shown by exhibiting attacks when the enhancements are not
available. First, we show an attack that extracts the entire secret key from any
cryptographic algorithm, as long as the card never self-destructs. Then, we show
that there is a signature scheme for which there is an attack that can extract the
entire secret key, for any implementation without public parameters (even with
self-destruct). This can be viewed as a very powerful and simple generalization
of previous specific attacks such as [BDL01,BS97].
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3.1 Self-Destruct Is Necessary

Testing for Malfunctioning. Intuitively, for any meaningful cryptographic func-
tionality, we should be able to determine, perhaps with some degree of error,
whether a given device functions properly, i.e., whether the secret content sc
stored on the device gives rise to the right functionality.

If no one can tell that a given device is doing its job correctly, then this
device can be replaced with another one, based on a secret content sc′ that was
generated by a separate invocation of the Setup algorithm, and no one will notice
the difference. Hence sc is useless, since sc′ works just as well, and there is no
need to protect it!

For example, suppose that we have a signature device. Provided that we
have the corresponding public key, we can test whether the device functions as
prescribed by querying the device for a signature on some message, and then
checking the validity of the signature. Similarly, for a decryption device in the
public-key setting, whether or not it maintains its functionality can be deter-
mined by encrypting many messages and checking whether the device decrypted
all of them correctly.

Such test may not be perfect. It is possible that, even though the device does
not have the correct secret content sc, but some sc′ that is close to the correct
content, the device will still pass our test with non-negligible probability. It is
easy to come up with schemes that still work, even if their secret keys have been
altered slightly, but provide the correct output with decreased probability.

Let us assume that for the functionality at hand, we have a testing procedure
Test-Dev such that (1) Test-Dev will always accept when given a device whose
sc is correct; (2) if Test-Dev accepts a device with secret content sc′ with non-
negligible probability ε, then discovering sc′ constitutes a successful attack on
the functionality of the device.

The tests described above for signature and decryption functionalities satisfy
these two conditions: discovering sc′ that allows to generate correct signatures
only an ε fraction of the time is still an attack on the signature functionality:
now the adversary can create an existential forgery. Similarly, being able to
decrypt with an ε advantage over random guessing constitutes an attack on a
cryptosystem. We show the following claim (informally stated):

Claim. No cryptographic device that can be efficiently tested for malfunctioning,
can be made tamper-proof without the self-destruct capability.

Sketch of Proof: The Key-Extraction Procedure. Suppose that we are given a
procedure Test-Dev as described above. Suppose that the secret content sc of the
device consists of n bits. Finally, suppose that the only operation the attacker
is allowed to carry out on the secret component of the device is the Set(i, b)
operation that sets the i’th bit of sc to b.

Consider the following procedure, that outputs a candidate value C =
C1...Cn for the secret content sc: Initialize i = 1. While i ≤ n: (1) Set(i, b),
b ∈ {0, 1} and run Test-Dev. Let b∗ be the value such that, when sci = b∗,
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Test-Dev accepted more often than when sci = b̄∗. (2) Set(i, b∗), Ci = b∗. (3)
Increment i. Upon completing the while-loop, output C.

The value C outputted at the end is identical to the value sc′ stored on the
device at the end of the procedure. Note that on each iteration of the loop, this
procedure maintains the invariant that, with probability 1− ν(n) (where ν(n) is
a negligible function), the value currently stored in the secret component sc′ of
the device is accepted by Test-Dev with non-negligible probability. This can be
seen by induction: when i = 1, the secret component has not been altered yet,
and so we are given that Test-Dev accepts. Suppose that i > 1. We know that the
current sc is accepted by Test-Dev with non-negligible probability. Let b be the
current bit sci. Suppose that setting sci = b̄ results in Test-Dev accepting with
only negligible probability ν. Then the probability that b∗ = b̄ is also negligible.
Therefore, the device accepts with non-negligible probability when its secret
content is C, thus discovering C constitutes a successful attack.

The above attack relies on the adaptiveness of the adversary, who decides
which Apply command to issue next, depending on the result of the previous Run
command. In the full version of this paper we show that even a non-adaptive ad-
versary can extract the secret key using a fixed list of Run and Apply commands.
The functions applied simply exchange pairs of specified bits in the string. 
�

3.2 Hardwiring an External Public Key Is Necessary

Let us start with some intuition. For simplicity, consider a card implementing a
signature algorithm F (·, ·) (the same techniques will work for decryption cards).
Having no public parameters means that there is a software setup function g,
such that for any sk′, g(sk′) outputs a corresponding sc′ for a card implementing
F (sk′, ·).2 In particular, for a given card whose software sc corresponds to some
sk, the adversary may be able to replace sc by sc′ corresponding to another,
“adversarial” sk′. Such an sk′ might have the property that when the adversary
now issues a Run command, the output will include the original sk, which will
allow the adversary to completely break the signature scheme. Indeed, we will
show below a signature scheme for which this is exactly the case, and thus there is
no ATP method which works for this scheme. It follows that for any general ATP
method, the software content cannot be computed solely from the information
held by the device. Instead, it must make use of some hardwired cryptographic
public key Π, such that the corresponding secret key is needed in the setup
of sc.3 Concretely, we prove that for any general algorithmic tamper-proofing
method we can view the hardwired content of the device, A, as a public key for
a weak signature scheme, secure against universal forgery (i.e., not all messages
2 It may seem that this does not grant the adversary any special powers, since he

can always compute this by issuing a Setup(sk′) command. However, such a Setup
command requires that the adversary knows sk’.

3 It will be convenient to identify Π as the public key of the card manufacturer, though
in reality the corresponding secret key may be held by a third party, or distributed
among several parties who participate in the setup stage.
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can be forged), in the face of a single known-message attack. We refer the reader
to [GMR88] for definitions and discussion of these and other security levels for
signature schemes.4

Towards making the above intuition formal, for any signature scheme F
that has a tamper-proof implementation, consider the following weak signature
scheme WF . The key generation algorithm is the device’s setup algorithm for a
tamper-proof secure card implementing F . The public key Π is set to the entire
content of the card’s hardware (the algorithm A), and the secret key is the ran-
domness used to generate the public key. The signing algorithm, upon receiving
a message m, checks if m is of the form (pk, sk) which are valid public and secret
key pairs for F . If so, output sc as appropriate for a tamper-proof-secure card for
a user holding (pk, sk). To verify a signature sc on (pk, sk), the verifier checks if
a card containing the hardware Π and the software sc would perform correctly
as a signature card for (pk, sk) (this can be done by trying to sign). Accept if
the check succeeds.

Claim. There exists a secure signature scheme F such that, if its tamper-proof
implementation exists, then WF (described above) is a weak signature scheme
secure against universal forgery in the face of a single known-message attack.

Sketch of Proof. It suffices to show a secure signature scheme F and two mes-
sages a and b such that given a valid signature of WF on a, it is computationally
infeasible to compute a valid signature on b.
Consider any secure signature scheme comprised of Gen, Sig, Ver and a security
parameter k. We define F = Gen′, Sig′, Ver′ as follows.

– Gen′ runs Gen to obtain the key pair pk, sk. Let R be a random string of
length k. Let sk′ = sk ◦R and pk′ = pk.

– Sig′(sk′, m): for sk′ = sk ◦ R, if R �= 0k, obtain σ ← Sig(sk, m). Otherwise,
output sk.

– Ver′(pk, m, σ) just runs the algorithm Ver.

The resulting signature scheme F is secure as long as the original one was secure
(the probability that R = 0k happens to be chosen is negligible).
We now turn to WF , and let a = (pk, sk◦R) and b = (pk, sk◦0k) for some (pk, sk)
generated by Gen and for R �= 0k. Assume towards contradiction that given a
signature sc = WF (a) one could forge a signature ŝc = WF (b) by applying some
feasible function f . It follows that a card for F containing sc, can be tampered
with to produce a forgery. Indeed, the adversary can apply f to the content
of the card, thus resulting with ŝc which is valid for the key-pair (pk, sk ◦ 0k).
Now the adversary can issue a Run command on any message. The card extracts
4 We note that security against universal forgery with known-message attacks is not

a strong enough notion of security for signature schemes (the standard one, which
is our default definition for signature security, is security against existential forgery
in the face of adaptive chosen-message attacks [GMR88]). Nevertheless, this weak
signature scheme already implies that there is some cryptographic key Π which must
be hardwired into the card, and thus in some sense “certifies” sc.
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ŝk = sk ◦ 0k, runs Fŝk on the selected message, resulting in the output sk. Now
the adversary can forge signatures with respect to F (with respect to the original
pk). This contradicts the tamper-proof security of the card. (Note that even if
the card contains self-destruct capability, it is not useful since there is no way
the card can detect any problem, as ŝc encodes a valid ŝk). 
�

3.3 ATP for Signature and Decryption Schemes

In this section we show how to realize ATP for signature and decryption schemes.
Our results meet the definitions of Section 2 in the model enhanced with public
parameters and self-destruct (as shown necessary above).

Consider a scheme F which is either a signature scheme or a public-key
encryption scheme, and let sk be a secret signing or decryption key. We would
like to store sk in the secret storage of the card, so that an adversary cannot
tamper with it in any useful way. A very natural approach is for the card issuer
to digitally sign sk and store the signature together with sk in sc, and have
the card verify the signature against the issuer’s public key before using sk for
signing or verifying.

This is indeed the approach that we use, with a few details that need to be
taken care of. First, as we already discussed, in order for this to work we must
ensure that the card contains the public key of the issuer hardwired into its
circuitry, and that the card self-destructs if the check does not succeed. However,
it turns out that this is not enough: even if the card issuer uses a signature scheme
secure against chosen message attack in the standard sense of [GMR88], we will
see an attack that completely recovers sk.

Instead, we will assume that the signature scheme used by the card is-
suer satisfies a stronger property: not only is it hard to forge a signature on
a new message, it is hard to forge a new signature on an old message. Although
this is stronger than the traditional definition, most signature schemes known
(c.f., [GMR88,FS87,GQ88,Sch91,CS99,GHR99]) already satisfy it. We call this
notion strong security against chosen message attack (the formal definition is
straight forward and omitted here). The scheme is described in Figure 1.

Theorem 1. If strong unforgeable signature schemes exist, then there exist ATP
unforgeable signature schemes. Specifically, if I is a strong signature scheme, and
F is a standard signature scheme (unforgeable against adaptive chosen message
attack), then the implementation in Figure 1 is an ATP unforgeable signature
scheme.

The proof is given in the full version. Very briefly, the proof proceeds by con-
structing a simulator that, for any adversary, launches an adaptive chosen mes-
sage attack on the underlying signature scheme F . The simulator guesses which
query of the adversary changes sc, and guesses that this query in fact replaced
sc with some pair (sk′, σΠ(sk′)) which is one of the queries the adversary issued
to the card issuer’s signing oracle. For these guesses, the simulator can now an-
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Let I = (G, σ, V ) be a strong signature scheme (used by the card issuer). Let F
be either a signature scheme of the form F = (Gen, Sig, Ver) or an encryption
scheme of the form F = (Gen, Enc, Dec), and let F be the algorithm Sig or
Dec, respectively. Let (Σ, Π) ← G(1k) be the secret and public signing keys
of the card issuer, and let (sk, pk)← Gen(1k) be secret and public (signing or
encryption) keys for F .

During card setup, Π is hardwired into the card’s circuitry (as part of the
algorithm below), and the pair (sk, σΠ(sk)) is stored in the protected memory
sc (where σΠ(·) = σ(Σ, ·) is the issuer’s signing algorithm).

Upon receiving a Run(a) query, the card performs the following algorithm:
(1) Checks that the storage is of the form (sk, σΠ(sk)) (using the verification
algorithm V ).
(2) If so, run F (sk, a) (either signature or decryption) and output the result.
Otherwise: self-destruct.

Fig. 1. Tamper-Proofing a Signature or Decryption Scheme

swer all of the adversary’s queries, as it knows the content of sc.5 We then prove
that either: (1) the simulator succeeds in producing a forgery with probability
polynomially related to that of the adversary (thus breaking the underlying sig-
nature scheme), or (2) another simulator can be constructed which produces a
forgery to the card issuer’s signature scheme.

Theorem 2. If CCA2 (resp., CCA1) secure encryption schemes and strong un-
forgeable signature schemes exist, then there exist cryptosystems that are ATP
CCA2-secure with lunchtime tampering (resp., ATP CCA1-secure). Specifically,
if I is a strong signature scheme, and F is a CCA2 (resp., CCA1) secure en-
cryption schemes, then the implementation in Figure 1 is secure against CCA2
with lunch time tampering (resp., tamper-proof CCA1 secure).

The proof of this theorem is slightly more complicated than the proof for the
signature scheme, but it follows the same general idea. It also appears in the full
version of this paper.

A strong signature scheme is necessary for this construction. The
following attack works in the case where the issuer’s signature scheme is un-
forgeable according to the traditional definition. In other words, assume that it
is possible, given a valid message/signature pair (m, σ), to construct a new valid
pair (m, σ′) with σ′ �= σ.
5 Intuitively, the only useful change to sc that the adversary can make is by replacing

it with a signed pair. This is where the proof requires that the signature scheme for
the issuer is strong: this property guarantees that the only signatures the adversary
can get are exactly those directly queried, thus allowing the simulator to answer
Apply queries from the adversary.
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Assume that the issuer’s signature scheme has the following property: a sig-
nature σ consists of two parts, σ1 and σ2. The second component is ignored by
the verification algorithm, which really uses only σ1 to authenticate messages.
Thus, the pair (sk, σ) is stored on the card, where σ(σ1, σ2) is the manufacturer’s
signature on sk.

The adversary does the following: first he obtains, from the issuer via a Setup
query, a signature σ′ = (σ′

1, σ
′
2) on a secret key sk′. Then he replaces the value

σ2 in the card, with the values (sk, σ1). Note that this will not have any effect
on the card’s functionality and will not cause the card to self-destruct. Then for
each bit ski of the secret key he will do the following: if ski = 0 then do nothing,
otherwise replace sk with sk′, σ1 with σ′

1, but do not touch the modified σ2 (this
way a record of the old secret key remains). Now by simply querying the card on
a given message m, the adversary will be able to see if sk or sk′ is being used,
and thus if ski = 0 or not. The adversary then restores sk and σ1 and repeats
the above process for i + 1.

On Private Card Setup. In the above solutions, we need to have the issuer’s
signature on the secret key sk . It is important to note that this does not imply
that the card’s issuer must know sk. Indeed, one solution is running generic
secure two-party protocols [Yao82,GMW87,Gol98], as a result of which the user
obtains σΠ(sk), and the issuer obtains nothing. The proof of security can be
extended to this case as well, by having the simulator extract the value sk from
the adversary (who no longer sends sk in the clear to the signing oracle). The
drawback of this general solution described above is that it may be expensive.
Another existing solution is blind signatures. Although providing the desired
property that the issuer learns nothing about sk , they are an overkill because
neither does the issuer learn σ! A more efficient solution follows.

Tight commitment scheme. Recall that a non-interactive commitment
scheme Com is (informally) a function such that for all x, for a random r, it
is hard to infer any information about x from the value Com(x, r), and it is in-
feasible to find (x, r) and (x′, r′) such that Com(x, r) = Com(x′, r′), and x �= x′.
Let Com be a secure non-interactive commitment scheme with a special security
property that is similar to the special security scheme of the signature scheme
that we use for the device issuer. Namely, not only is it infeasible to open a
commitment in two different ways, but it is infeasible to even find a value x and
values r �= r′ such that Com(x, r) = Com(x, r′). Let us call a commitment scheme
with this property a tight commitment scheme. Pedersen commitment [Ped92]
is an example of a tight commitment scheme.

Suppose that we are given a tight commitment scheme with an efficient zero-
knowledge proof of knowledge of how to open a commitment. For example, the
Pedersen commitment has such a protocol. Then the issuing protocol can be
implemented as follows: the user forms a commitment c = Com(sk , r). He then
proves knowledge of the commitment opening. Finally, the issuer sends to the
user the value σ = σΠ(c). The secret component sc of the device will consist of
(sk , r, σ).
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The proof that a tight commitment scheme is necessary for the security of
this construction is similar to the proof that a strong signature is necessary, and
is omitted here.

4 ATP via Restricted Classes of Functions

In this section, we consider an adversary that is limited to issuing Apply com-
mands from some restricted, yet useful, class of functions. It turns out that in this
case, ATP results are possible even without self-destruct and public parameters.

The results presented below have some practical significance, not only be-
cause the model they require is more realistic (e.g., without the self-destruct
requirement), but also since we address precisely such classes of functions that
were successfully used before to attack existing systems [BS97,BDL01]. These
include random hardware faults termed differential fault analysis, and flipping
(or zapping) specified bits. Using our solutions, attacks like the above ones can
be protected against.

Since our definition of security requires the functionality of the card to re-
main secure even when the adversary knows the PIN, we concentrate below on
protecting the functionality of the card. Adding PIN protection can be done in
a similar manner to our above general solutions.

Differential Fault Analysis. The following results holds for cards with any cryp-
tographic functionality, with neither self-destruct nor a hardwired external key.

Suppose the adversary is limited to the following attack: He specifies two
values p0, p1 ∈ [0, 1]. fp0,p1(x) transforms each bit xi of x as follows: if xi = b,
leave it that way with probability pb otherwise flip it. Note that this transfor-
mation is exactly the same for each bit. (In information-transmission terms, this
transformation can be viewed as sending x through an adversarial memoryless
channel.)

Although seemingly benign compared to other attacks we have considered,
this is in fact a very powerful attack, invented by Biham and Shamir [BS97]
(following Boneh, DeMillo, and Lipton[BDL01]), and known as the differential
fault analysis. Biham and Shamir use it to recover the entire secret key of a
decryption card, such as DES.6

Securing a smart-card against such an attack does not require any enhance-
ment to the minimal model. Rather, we can just encode the secret s using an
error-detecting code whose distance d is such that 1/2d is negligible. Before run-
ning its intended application, the card sees if there are any errors in its storage.
If so, it does nothing, otherwise, it works as intended.

It is easy to see that this is sufficient, because if the card’s storage changes,
it is very unlikely that it will change into a valid encoding; therefore, a simulator
that just computes the probability that the card is unusable after a given Apply
query and acts accordingly is sufficient for the proof.
6 Their attack uses asymmetric memory, where p0 = 1, and p1 is relatively large, but

less than 1. That is, a bit which is 1 has a small non-negligible probability to flip.
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We note that using error-detecting codes follows the approach alluded to by
Boneh, DeMillo, and Lipton [BDL01], who suggest that a cryptographic compu-
tation needs to be checked before the output is given.

The Flip Function in the Model Without Self-Destruct. Suppose the external
public key of the issuer is wired in, but there is no self-destruct.

Consider the function Flip(x, i) = x′ where x′ is equal to x in all the bits
except the ith one which is complemented. (This generalizes differential fault
analysis by giving the adversary control over which bits to flip, and the certainty
that the bit has been flipped). If the adversary is limited to issuing commands
of the form Apply(Flip(x, i)), then the self-destruction property is not required.

Suppose sk is the secret that needs to be stored on the card. Each bit sk i of
sk is encoded using two random bits, ei,1 and ei,2 such that ei,1⊕ei,2 = sk i. The
resulting encoding, e(sk), is then signed by the card manufacturer. The values
(e, σ(e)) are stored on the card.

For each Run command, the card first checks that in its storage, (e, σ), σ is
a valid signature on e. If so, the card reconstructs the secret key sk from e(sk)
and performs whatever operation is required. Otherwise, the card does nothing.

A sketch of the proof that the latter solution provides ATP security against
an adversary limited to flipping bits can be found in the full version of this paper.

5 ATP of Devices Using PIN Numbers

We saw that security of portable devices, such as smart-cards, provides strong
motivation for considering ATP security. Indeed, one goal is to prevent an adver-
sary capable of tampering with the device from learning information about its
contents, so that such an adversary cannot duplicate and distribute devices with
the same functionality (e.g., decryption cards for pay-tv applications). However,
it is also often desirable to prevent the adversary from using the functionality of
the device himself .

To address this problem, we propose that the device be augmented with a
short memorizable PIN to be entered by the user before any application. That is,
a Run query, where it previously took one input, now should take two: the PIN
and the input (such as a message m to be signed). The device will only function
if the PIN entered is correct, and, moreover, it will permanently stop functioning
(or self-destruct) after a certain (not too big) number of wrong attempts. This
can be implemented by a counter which is incremented with every failed attempt.
We may consider a model where the device self-destructs once the counter has
reached a certain number. A better model, but harder to achieve, is one where
the number of consecutive wrong attempts is also limited (this limit could then
be very small, such as 3).

As a starting point, assume that the adversary cannot tamper with the
counter implementation. In this case, all the results we saw so far can be ex-
tended to the PIN setting, by considering the PIN as part of the secret key. In
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particular, in the model with public parameters the signature of the card issuer
will be on the secret key together with the PIN .

We now turn to addressing the implementation of the counter. Clearly, if the
counter is kept in regular tamperable memory, the adversary can recover the PIN
by trying all possible PIN combinations, zeroing the counter after each failure.
In order to avoid this attack, we suggest two types of counter implementations.

Hardware Implementation. In some situations it may be reasonable to assume
that the counter is implemented in hardware, in such a way that the adversary
cannot tamper with it. Note that this assumption is more reasonable than as-
suming all of the secret key is in non-tamperable hardware. Indeed, the counter
mechanism is the same for all cards, and is not secret, making it easier to mass
produce on hardware. However, the counter (unlike our other public parameters)
cannot be implemented by a write-once memory, since it needs to be incremented
with every failed attempt. This can be addressed by using an asymmetric type
of memory, where incrementing (e.g. by zeroing one bit) is easy, while undoing
it is very hard. For example, an operation akin to cutting a wire would be very
appropriate. We note that [BS97] also use, in a different way, an asymmetric
type of memory where flipping a bit from 1 to 0 is much easier than flipping it
from 0 to 1.

Counter Implementation in Tamperable Memory. Consider now the case that
the counter can only be implemented in regular (tamperable) memory. Below
we provide a solution which is tamper-proof secure, based on any one-way permu-
tation. In the full version we generalize the idea to construct a solution based on
any forward-secure digital signature scheme. This generalization provides more
flexibility in obtaining good trade-offs among the time and space parameters
according to the constraints of the given application, and can allow for better
performance overall. All our solutions rely on the mechanisms of self-destruct
and public parameters, as described in previous sections. We start by assuming
that the model requires a limit M on the total number of failed attempts.

Intuitively, our goal is to construct a counter such that even a tampering
adversary can only increment it (or destroy it), but not decrease it. Consequently,
such an adversary will not be able to try more than the specified number of
guesses for the PIN before the device self-destructs. Our solution will use the
existence of one-way permutations, namely, informally, permutations which are
easy to compute but hard to invert (for formal definitions see, e.g., [Gol01]).

It works as follows: Let f be a one-way permutation, and let M be the total
number of failed attempts we are willing to tolerate. Let R0 be a random string
from the domain of f , generated by the Setup algorithm. For j = 1, . . . , M we
define Rj = f(Rj−1), namely Rj = f j(R0). The setup algorithm will output
counter value (R0, 0) as part of the secret component sc, and the value RM

to be stored and signed together with sk and the PIN. Every failed attempt
to enter the PIN will result in replacing the current counter value (Ri, i) with
(f(Ri), i + 1).
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Every time the device is invoked, it checks the validity of the current value
in the counter, and in particular whether fM−j(Rj) = RM . This can generally
be done by applying f M − j times. Depending on f , this computation may be
done much more efficiently. For instance, assume f is the Rabin function, namely
squaring modulo a product of two Blum primes, or the RSA function with a
small exponent (both are standard candidates for a one-way permutations). In
this case, raising a number to a small power T times can be done efficiently,
requiring O(log T ) multiplications.

A more detailed description and proof of security are given in the full ver-
sion, where we also give a more general implementation based on forward-secure
signatures.

Limiting the Number of Consecutive Failed Attempts. Limiting the number of
consecutive failed attempts to some small number m can be done whenever the
adversary is restricted to a certain class of functions, which does not include
functions allowing to update the counter (e.g., in our solution above, the one-
way permutation f or any power of it). In this case, we can change the device
algorithm as follows: Before the validity check, check whether the counter value
modm = 0 and if so self-destruct. Also, after the PIN check step, if the PIN is
correct, update the counter to the next value which equals 1 mod m.

It is not hard to prove that this implementation is ATP secure against a
restricted adversary which cannot apply the update function. We leave it as an
open problem to construct general tamper-proof counters which limit number of
consecutive failed attempts (or conversely to prove that this is not possible in
this strong model).
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