Skip to main content

Designing and Understanding Building Blocks for Molecular Spintronics

  • Chapter
  • First Online:
Atomic- and Nanoscale Magnetism

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Designing and understanding spin coupling within and between molecules is important for, e.g., nanoscale spintronics, magnetic materials, catalysis, and biochemistry. We review a recently developed approach to analyzing spin coupling in terms of local pathways, which allows to evaluate how much each part of a structure contributes to coupling, and present examples of how first-principles electronic structure theory can help to understand spin coupling in molecular systems which show the potential for photo- or redoxswitching, or where the ground state is stabilized with respect to spin flips by adding unpaired spins on a bridge connecting two spin centers. Finally, we make a connection between spin coupling and conductance through molecular bridges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ideal local spin quantum numbers would be \(S_A=\frac{1}{2}\) for a spin center with formally one unpaired electron, while local spins reflect the decrease of this number that results from delocalization of unpaired spin density onto neighboring atoms such as ligands.

References

  1. M.M. Waldrop, Nature 530, 144 (2016)

    Article  ADS  Google Scholar 

  2. A.A. Khajetoorians, B. Chilian, J. Wiebe, R. Wiesendanger, Science 332, 1062 (2011)

    Article  ADS  Google Scholar 

  3. A. DiLullo, S.H. Chang, N. Baadji, K. Clark, J.P. Klöckner, M.H. Prosenc, S. Sanvito, R. Wiesendanger, G. Hoffmann, S.W. Hla, Nano Lett. 12, 3174 (2012)

    Article  ADS  Google Scholar 

  4. M. Bazarnik, B. Bugenhagen, M. Elsebach, E. Sierda, A. Frank, M.H. Prosenc, R. Wiesendanger, Nano Lett. 16(1), 577 (2016)

    Article  ADS  Google Scholar 

  5. E. Sierda, M. Abadia, J. Brede, M. Elsebach, B. Bugenhagen, M.H. Prosenc, M. Bazarnik, R. Wiesendanger, ACS Nano. (2017)

    Google Scholar 

  6. J. Girovsky, J. Nowakowski, M.E. Ali2, M. Baljozovic, H.R. Rossmann, T. Nijs, E.A. Aeby, S. Nowakowska, D. Siewert, G. Srivastava, C. Wäckerlin, J. Dreiser, S. Decurtins, S.X. Liu, P.M. Oppeneer, T.A. Jung, N. Ballav, Nat. Commun. 8, 15388 (2017)

    Google Scholar 

  7. M. Garnica, D. Stradi, S. Barja, F. Calleja, C. Diaz, M. Alcami, N. Martin, A.L.V. de Parga, F. Martin, R. Miranda, Nat. Phys. 9, 368 (2013)

    Article  Google Scholar 

  8. T. Steenbock, C. Herrmann, J. Comput. Chem. (2017). Accepted

    Google Scholar 

  9. A.I. Liechtenstein, M.I. Katsnelson, V.P. Antropov, V.A. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987)

    Article  ADS  Google Scholar 

  10. D.W. Boukhvalov, V.V. Dobrovitski, M.I. Katsnelson, A.I. Lichtenstein, B.N. Harmon, P. Kögerler, Phys. Rev. B 70, 054417 (2004)

    Article  ADS  Google Scholar 

  11. D.W. Boukhvalov, A.I. Lichtenstein, V.V. Dobrovitski, M.I. Katsnelson, B.N. Harmon, V.V. Mazurenko, V.I. Anisimov, Phys. Rev. B 65, 184435 (2002)

    Article  ADS  Google Scholar 

  12. M. Han, T. Ozaki, J. Yu, Phys. Rev. B 70, 184421 (2004)

    Article  ADS  Google Scholar 

  13. T. Steenbock, J. Tasche, A. Lichtenstein, C. Herrmann, J. Chem. Theory Comput. 11, 56515664 (2015)

    Article  Google Scholar 

  14. K. Matsuda, M. Irie, J. Am. Chem. Soc. 122, 7195 (2000)

    Article  Google Scholar 

  15. K. Matsuda, M. Irie, Chem. Eur. J. 7, 3466 (2001)

    Article  Google Scholar 

  16. K. Takayama, K. Matsuda, M. Irie, Chem. Eur. J. 9, 5605 (2003)

    Article  Google Scholar 

  17. S. Nakatsuji, Chem. Soc. Rev. 33, 348 (2004)

    Article  Google Scholar 

  18. W.R.B. Ben L. Feringa, Molecular Switches (Wiley VCH, Hoboken, 2007)

    Google Scholar 

  19. A. Escribano, T. Steenbock, C. Stork, C. Herrmann, J. Heck, Chem. Phys. Chem. 18, 596 (2017)

    Article  Google Scholar 

  20. A. Ito, R. Kurata, D. Sakamaki, S. Yano, Y. Kono, Y. Nakano, K. Furukawa, T. Kato, K. Tanaka, J. Phys. Chem. A 117, 12858 (2013)

    Article  Google Scholar 

  21. M.E. Ali, V. Staemmler, F. Illas, P.M. Oppeneer, J. Chem. Theor. Comput. 9, 5216 (2013)

    Article  Google Scholar 

  22. E.D. Piazza, A. Merhi, L. Norel, S. Choua, P. Turek, S. Rigaut, Inorg. Chem. 54, 6347 (2015)

    Article  Google Scholar 

  23. S. Demir, I.R. Jeon, J.R. Long, T.D. Harris, Coord. Chem. Rev. 289, 149 (2015)

    Article  Google Scholar 

  24. C. Herrmann, J. Elmisz, Chem. Commun. 49, 10456 (2013)

    Article  Google Scholar 

  25. J. Proppe, C. Herrmann, J. Comput. Chem. 36, 201 (2015)

    Article  Google Scholar 

  26. M.L. Kirk, D.A. Shultz, E.C. Depperman, C.L. Brannen, J. Am. Chem. Soc. 129, 1937 (2007)

    Article  Google Scholar 

  27. M.L. Kirk, D.A. Shultz, D.E. Stasiw, G.F. Lewis, G. Wang, C.L. Brannen, R.D. Sommer, P.D. Boyle, J. Am. Chem. Soc. 135(45), 17144 (2013)

    Article  Google Scholar 

  28. G. Blondin, J.J. Girerd, Chem. Rev. 90, 1359 (1990)

    Article  Google Scholar 

  29. P. Bertrand, Chem. Phys. Lett. 113(1), 104 (1985)

    Article  ADS  Google Scholar 

  30. T.C. Brunold, D.R. Gamelin, E.I. Solomon, J. Am. Chem. Soc. 122, 8511 (2000)

    Article  Google Scholar 

  31. A.E. Clark, E.R. Davidson, Int. J. Quantum Chem. 93, 384 (2003)

    Article  Google Scholar 

  32. S.M. Bachrach, in Reviews in Computational Chemistry, vol. 5, ed. by K.B. Lipkowitz, D.B. Boyd (VCH Publishers, New York, 1994)

    Google Scholar 

  33. A.E. Clark, E.R. Davidson, J. Chem. Phys. 115(16), 7382 (2001)

    Article  ADS  Google Scholar 

  34. C. Herrmann, M. Reiher, B.A. Hess, J. Chem. Phys. 122, 034102 (2005)

    Article  ADS  Google Scholar 

  35. E. Ramos-Cordoba, E. Matito, I. Mayer, P. Salvador, J. Chem. Theory Comput. 8, 1270 (2012)

    Article  Google Scholar 

  36. L. Groß, C. Herrmann, J. Comput. Chem. 37, 2324 (2016)

    Article  Google Scholar 

  37. L. Groß, C. Herrmann, J. Comput. Chem. 37, 2260 (2016)

    Article  Google Scholar 

  38. A. Krawczuk, D. Prez, P. Macchi, J. Appl. Cryst. 47, 1452 (2014)

    Article  Google Scholar 

  39. G.C. Solomon, C. Herrmann, T. Hansen, V. Mujica, M.A. Ratner, Nat. Chem. 2, 223 (2010)

    Article  Google Scholar 

  40. T.H.T. Hansen, G.C. Solomon, J. Chem. Phys. 146, 092322 (2017)

    Article  ADS  Google Scholar 

  41. N. Sai, N. Bushong, R. Hatcher, M. di Ventra, Phys. Rev. B 75, 15410 (2007)

    Google Scholar 

  42. M. Ernzerhof, J. Chem. Phys. 125, 124104 (2006)

    Article  ADS  Google Scholar 

  43. T.N. Todorov, J. Phys.: Condens. Matter 14, 3049 (2002)

    ADS  Google Scholar 

  44. A. Pecchia, A.D. Carlo, Rep. Prog. Phys. 67, 1497 (2004)

    Article  ADS  Google Scholar 

  45. V. Pohl, L.E.M. Steinkasserer, J.C. Tremblay, arXiv:1707.07635

  46. J.N. Onuchic, D.N. Beratan, J.R. Winkler, H.B. Gray, Ann. Rev. Biophys. Biomol. Struct. 21, 349 (1992)

    Article  Google Scholar 

  47. W. Hug, Chem. Phys. 264, 53 (2001)

    Article  Google Scholar 

  48. C. Herrmann, K. Ruud, M. Reiher, Chem. Phys. 343, 200 (2008)

    Article  Google Scholar 

  49. M.U. Delgado-Jaime, S. DeBeer, M. Bauer, Chem. Eur. J. 19, 15888 (2013)

    Article  Google Scholar 

  50. S.W. Oung, J. Rudolph, C.R. Jacob, Int. J. Quantum Chem. (2017)

    Google Scholar 

  51. J.E. Peralta, V. Barone, J. Chem. Phys. 129, 194107 (2008)

    Article  ADS  Google Scholar 

  52. J.J. Philips, J.E. Peralta, J. Chem. Phys. 138, 174115 (2013)

    Article  ADS  Google Scholar 

  53. P.O. Löwdin, J. Chem. Phys. 18(3), 365 (1950)

    Article  ADS  Google Scholar 

  54. G. Bruhn, E.R. Davidson, I. Mayer, A.E. Clark, Int. J. Quantum Chem. 106, 2065 (2006)

    Article  ADS  Google Scholar 

  55. L. Noodleman, J. Chem. Phys. 74(10), 5737 (1981)

    Article  ADS  Google Scholar 

  56. E. Ruiz, J. Cano, S. Alvarez, P. Alemany, J. Comput. Chem. 20, 1391 (1999)

    Article  Google Scholar 

  57. I. de P. R. Moreira, F. Illas, Phys. Chem. Chem. Phys. 8, 1645 (2006)

    Article  Google Scholar 

  58. J. Perdew, A. Savin, K. Burke, Phys. Rev. A 51, 4531 (1995)

    Article  ADS  Google Scholar 

  59. C. Jacob, M. Reiher, Int. J. Quantum Chem. 112, 3661 (2012)

    Article  Google Scholar 

  60. A.J. Cohen, D.J. Tozer, N.C. Handy, J. Chem. Phys. 126, 214104 (2007)

    Article  ADS  Google Scholar 

  61. J. Wang, A.D. Becke, V.H. Smith Jr., J. Chem. Phys. 102(8), 3477 (1995)

    Article  ADS  Google Scholar 

  62. C.J. Cramer, D.G. Truhlar, Phys. Chem. Chem. Phys. 11, 10757 (2009)

    Article  Google Scholar 

  63. A.P. Gingsberg, Inorg Chim. Acta Rev. 5, 45 (1971)

    Article  Google Scholar 

  64. N. Pagels, O. Albrecht, D. Görlitz, A.Y. Rogachev, M.H. Prosenc, J. Heck, Chem. Eur. J. 17, 4166 (2011)

    Article  Google Scholar 

  65. Y.O. Kvashnin, R. Cardias, A. Szilva, I. Di Marco, M. Katsnelson, A. Lichtenstein, L. Nordström, A. Klautau, O. Eriksson, Phys. Rev. Lett. 116(21), 217202 (2016)

    Article  ADS  Google Scholar 

  66. D.M. Korotin, V. Mazurenko, V. Anisimov, S. Streltsov, Phys. Rev. B 91(22), 224405 (2015)

    Article  ADS  Google Scholar 

  67. M. Deffner, L. Groß, T. Steenbock, B.A. Voigt, M.S. Zöllner, G.C. Solomon, C. Herrmann (2008–2017)

    Google Scholar 

  68. S. Trtica, M.H. Prosenc, M. Schmidt, J. Heck, O. Albrecht, D. Grlitz, F. Reuter, E. Rentschler, Inorg. Chem. 49, 1667 (2010)

    Article  Google Scholar 

  69. S. Puhl, T. Steenbock, R. Harms, C. Herrmann, J. Heck, Dalton Trans. (2017). (Under revision)

    Google Scholar 

  70. M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 114, 12174 (2014)

    Article  Google Scholar 

  71. T. Steenbock, A. Escribano, J. Heck, C. Herrmann, Chem. Phys. Chem. 16, 1491 (2015)

    Article  Google Scholar 

  72. A. Escribano, T. Steenbock, C. Herrmann, J. Heck, Chem. Phys. Chem. 17, 1881 (2016)

    Article  Google Scholar 

  73. T. Steenbock, D.A. Shultz, M.L. Kirk, C. Herrmann, J. Phys. Chem. A 121, 216 (2017)

    Article  Google Scholar 

  74. Y. Tsuji, R. Hoffmann, M. Strange, G.C. Solomon, Proc. Natl. Acad. Sci. 113(4), E413 (2016)

    Article  ADS  Google Scholar 

  75. J.C. Cuevas, E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment. World Scientific Series in Nanotechnology and Nanoscience, vol. 1 (World Scientific, Singapore, 2010)

    Google Scholar 

  76. L. Groß, M.P. Bahlke, T. Steenbock, C. Klinke, C. Herrmann, J. Comput. Chem. 38, 861 (2017)

    Article  Google Scholar 

  77. R. Hayakawa, M.A. Karimi, J. Wolf, T. Huhn, M.S. Zöllner, C. Herrmann, E. Scheer, Nano Lett. 16, 4960 (2016)

    Article  ADS  Google Scholar 

  78. M.M.R. Moayed, T. Bielewicz, M.S. Zöllner, C. Herrmann, C. Klinke, Nat. Commun. 8, 15721 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

For funding, we thank the DFG via SFB 668 (project B17). We are grateful for the support by and discussions with our collaborators within the SFB 668 and beyond, in particular Jürgen Heck, Alexander Lichtenstein, Elke Scheer, Christian Klinke, Martin L. Kirk, David A. Shultz, and their groups. Furthermore, we thank all Ph.D., master and bachelor students who have contributed to this project during the last years, in particular: Marc Philipp Bahlke, Martin Sebastian Zöllner, Joscha Nehrkorn, Conrad Stork, Aaron Bahde, Mariana Hildebrandt, Jos Tasche, Jonny Proppe, Jan Elmisz, Lea Freudenstein, Lawrence Rybakowski. We also gratefully acknowledge administrative support by Andrea Beese, Heiko Fuchs, and Beate Susemihl, and IT support and computing power by HLRN, the HPC cluster and team at the Regional Computing Center at University of Hamburg, and the chemistry IT service at University of Hamburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Herrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herrmann, C., Groß, L., Voigt, B.A., Shil, S., Steenbock, T. (2018). Designing and Understanding Building Blocks for Molecular Spintronics. In: Wiesendanger, R. (eds) Atomic- and Nanoscale Magnetism. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-99558-8_6

Download citation

Publish with us

Policies and ethics