Skip to main content

Use of Two Reference Points in Hypervolume-Based Evolutionary Multiobjective Optimization Algorithms

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XV (PPSN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11101))

Included in the following conference series:

Abstract

Recently it was reported that the location of a reference point has a dominant effect on the optimal distribution of solutions for hypervolume maximization when multiobjective problems have inverted triangular Pareto fronts. This implies that the use of an appropriate reference point is indispensable when hypervolume-based EMO (evolutionary multiobjective optimization) algorithms are applied to such a problem. However, its appropriate reference point specification is difficult since it depends on various factors such as the shape of the Pareto front (e.g., triangular, inverted triangular), its curvature property (e.g., linear, convex, concave), the population size, and the number of objectives. To avoid this difficulty, we propose an idea of using two reference points: one is the nadir point, and the other is a point far away from the Pareto front. In this paper, first we demonstrate that the effect of the reference point is strongly problem-dependent. Next we propose an idea of using two reference points and its simple implementation. Then we examine the effectiveness of the proposed idea by comparing two hypervolume-based EMO algorithms: one with a single reference point and the other with two reference points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theoret. Comput. Sci. 425, 75–103 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19, 45–76 (2011)

    Article  Google Scholar 

  3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181, 1653–1669 (2007)

    Article  Google Scholar 

  4. Brockhoff, D.: Optimal μ-distributions for the hypervolume indicator for problems with linear bi-objective fronts: exact and exhaustive results. In: Deb, K. (ed.) SEAL 2010. LNCS, vol. 6457, pp. 24–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17298-4_2

    Chapter  Google Scholar 

  5. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7_71

    Chapter  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of IEEE CEC 2002, pp. 825–830 (2002)

    Google Scholar 

  8. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_5

    Chapter  MATH  Google Scholar 

  9. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10, 477–506 (2006)

    Article  Google Scholar 

  10. Ishibuchi, H., Akedo, N., Nojima, Y.: Behavior of multi-objective evolutionary algorithms on many-objective knapsack problems. IEEE Trans. Evol. Comput. 19, 264–283 (2015)

    Article  Google Scholar 

  11. Ishibuchi, H., Doi, K., Nojima, Y.: On the effect of normalization in MOEA/D for multi-objective and many-objective optimization. Complex Intell. Syst. 3, 279–294 (2017)

    Article  Google Scholar 

  12. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Hypervolume subset selection for triangular and inverted triangular Pareto fronts of three-objective problems. In: Proceedings of FOGA 2017, pp. 95–110 (2017)

    Google Scholar 

  13. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: Reference point specification in hypervolume calculation for fair comparison and efficient search. In: Proceedings of GECCO 2017, pp. 585–592 (2017)

    Google Scholar 

  14. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison. Evolutionary Computation (in press)

    Google Scholar 

  15. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  16. Ishibuchi, H., Setoguchi, Y., Masuda, H., Nojima, Y.: Performance of decomposition based many-objective algorithms strongly depends on Pareto front shapes. IEEE Trans. Evol. Comput. 21, 169–190 (2017)

    Article  Google Scholar 

  17. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18, 602–622 (2014)

    Article  Google Scholar 

  18. Jiang, S., Zhang, J., Ong, Y.-S., Zhang, A.N., Tan, P.S.: A simple and fast hypervolume indicator-based multiobjective evolutionary algorithm. IEEE Trans. Cybern. 45, 2202–2213 (2015)

    Article  Google Scholar 

  19. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 16, 504–522 (2012)

    Article  Google Scholar 

  20. Sierra, M.R., Coello Coello, C.A.: A new multi-objective particle swarm optimizer with improved selection and diversity mechanisms. Technical report, CINVESTAV-IPN (2004)

    Google Scholar 

  21. Tanabe, R., Ishibuchi, H., Oyama, A.: Benchmarking multi- and many-objective evolutionary algorithms under two optimization scenarios. IEEE Access 5, 19597–19619 (2017)

    Article  Google Scholar 

  22. Wagner, T., Beume, N., Naujoks, B.: Pareto-, aggregation-, and indicator-based methods in many-objective optimization. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 742–756. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_56

    Chapter  Google Scholar 

  23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  24. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the design of Pareto-compliant indicators via weighted integration. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 862–876. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_64

    Chapter  Google Scholar 

  25. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056872

    Chapter  Google Scholar 

  26. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7, 117–132 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Innovation Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Ishibuchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ishibuchi, H., Imada, R., Masuyama, N., Nojima, Y. (2018). Use of Two Reference Points in Hypervolume-Based Evolutionary Multiobjective Optimization Algorithms. In: Auger, A., Fonseca, C., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds) Parallel Problem Solving from Nature – PPSN XV. PPSN 2018. Lecture Notes in Computer Science(), vol 11101. Springer, Cham. https://doi.org/10.1007/978-3-319-99253-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99253-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99252-5

  • Online ISBN: 978-3-319-99253-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics