
    
    
    
        
            
            
                
            

            
        
    


    
        Skip to main content

        
        

        
            
                Advertisement

                

            

        

        

    
    
        
            
                
                    
                        [image: SpringerLink]
                    
                
            
        


        
            
                
    
        Log in
    


            
        
    


    
        
            
                
                    
                        
                            
                        Menu
                    
                


                
                    
                        
                            Find a journal
                        
                    
                        
                            Publish with us
                        
                    
                        
                            Track your research
                        
                    
                


                
                    
                        
                            
                                
                                    
                                Search
                            
                        

                    
                    
                        
 
  
   
  Cart
 


                    
                

            

        
    






        
            
                
                    
                        
                    

                
                
                    
[image: Book cover]


International Conference on Principles and Practice of Constraint Programming
CP 2018: Principles and Practice of Constraint Programming
                                        pp
                                         276–294Cite as






                

                
    
        
            	
                        Home



	
                        Principles and Practice of Constraint Programming

	
                        Conference paper


                            
                                
                                    Evaluating QBF Solvers: Quantifier Alternations Matter
                                

                                
                            

                        

                    
                    
                        
                            
                                Evaluating QBF Solvers: Quantifier Alternations Matter

                                	Florian Lonsing13 & 
	Uwe Egly13 


                                	Conference paper
	First Online: 23 August 2018



                                
                                    
    
        
            	
                        1622 Accesses

                    
	
                            14
                                Citations

                        
	
                        4
                            
                                Altmetric

                            
                        


        

    



                                


                                
    
        
            
                
                    
                

                
                    
                        Part of the book series:
                        Lecture Notes in Computer Science ((LNPSE,volume 11008))
                    

                

            

        

    

                                
                            

                        
                        

                            
                                 Abstract
We present an experimental study of the effects of quantifier alternations on the evaluation of quantified Boolean formula (QBF) solvers. The number of quantifier alternations in a QBF in prenex conjunctive normal form (PCNF) is directly related to the theoretical hardness of the respective QBF satisfiability problem in the polynomial hierarchy. We show empirically that the performance of solvers based on different solving paradigms substantially varies depending on the numbers of alternations in PCNFs. In related theoretical work, quantifier alternations have become the focus of understanding the strengths and weaknesses of various QBF proof systems implemented in solvers. Our results motivate the development of methods to evaluate orthogonal solving paradigms by taking quantifier alternations into account. This is necessary to showcase the broad range of existing QBF solving paradigms for practical QBF applications. Moreover, we highlight the potential of combining different approaches and QBF proof systems in solvers.
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                                        1 Introduction
The logic of quantified Boolean formulas (QBFs) [33] extends propositional logic by existential and universal quantification of propositional variables. Consequently, the QBF satisfiability problem is PSPACE-complete [49]. QBF satisfiability is a restricted form of a quantified constraint satisfaction problem (QCSP), cf. [13, 16, 17, 41], where all variables are defined over a Boolean domain.
The polynomial hierarchy (PH) [42, 48, 53] allows to describe the complexity of problems that are beyond the classes P and NP. The satisfiability problem of a QBF \(\psi \) in prenex conjunctive normal form (PCNF) with \(k \ge 0\) quantifier alternations is located at level \(k+1\) of PH [48, 53] and either \(\varSigma _{k+1}^{P}\)-complete or \(\varPi _{k+1}^{P}\)-complete, depending on the first quantifier in \(\psi \). Due to this property, practically relevant problems from any level of PH up to the class PSPACE (here with arbitrarily nested quantifiers) can succinctly be encoded as QBFs.
Efficient solvers are highly requested to solve QBF encodings of problems. Competitions like QBFEVAL or the QBF Galleries have been driving solver development [23, 29, 39]. State-of-the-art solvers are based on solving paradigms like, e.g., expansion [2, 10, 30] or Q-resolution [34]. These two paradigms are orthogonal by proof complexity [7, 31, 50]. Informally, orthogonal paradigms have complementary strengths on certain families of formulas.
Motivated by the variety of available QBF solving paradigms and solvers, we present an experimental study of the effects of quantifier alternations on the evaluation of QBF solvers. To this end, we consider benchmarks, solvers, and preprocessors from QBFEVAL’17 [44]. As our main result, we show that the performance of solvers based on different and, notably, orthogonal solving paradigms substantially varies depending on the numbers of alternations. Instances with a particular number of alternations may be overrepresented (i.e., appear more frequently) in a benchmark set, thus resulting in alternation bias. In this case, overall solver rankings by total solved instances may not provide a comprehensive picture as they might only reflect the strengths of certain solvers on overrepresented instances, but not the (perhaps orthogonal) strengths of other solvers on underrepresented ones.
In related work [40], the correlation between solver performance and various syntactic features such as treewidth [1, 45] was analyzed. In contrast to that, we do not study such correlations. By our study we a posteriori highlight diversity of solver performance based on the single feature of alternations, which are naturally related to the theoretical hardness of instances in PH. Recently, alternations have become of interest also in theoretical work on QBF proof complexity [6, 9, 18].
We aim at raising the awareness and importance of quantifier alternations in comparative studies of QBF solver performance and the potential negative impact on the progress of QBF solver development. If solvers are evaluated on benchmark sets with alternation bias and alternations are neglected in the analysis, then future research may inadvertently be narrowed down to only exploring approaches that perform well on overrepresented instances with a certain number of alternations. The risk of such detrimental effects on a research field driven by empirical analysis has been pointed already in the early days of propositional satisfiability (SAT) solving [27] and also with respect to more recent SAT solver competitions [3,4,5]. In contrast to the NP-completeness of SAT, the complexity landscape of QBF encodings defined by PH is more diverse, which gives rise to several sources of inadvertent convergence of research lines.
In addition to focusing on alternations, we report on virtual best solver (VBS) statistics, where the VBS solved between 50% and 70% more instances than the single overall best solver on a benchmark set. These results indicate the potential of combining orthogonal QBF proof systems in solvers. Moreover, we point out that overall low-ranked solvers potentially solve more instances uniquely and have larger contributions to the VBS than high-ranked ones. Similar observations were made in the context of SAT solver competitions [54].
The majority of benchmarks in QBFLIB [23], the QBF research community portal, has no more than two quantifier alternations. Hence problems from the first three levels in PH have been, and are, of primary interest to practitioners. However, to strengthen QBF solving as a key technology for solving problems from any levels of PH up to PSPACE-complete problems, QBF solvers must be improved on instances with any number of alternations. Our empirical study motivates the development of methods to evaluate orthogonal solving paradigms by taking quantifier alternations into account. This is necessary to showcase the broad range of existing paradigms for practical QBF applications.


2 Preliminaries
We consider QBFs \(\psi := \varPi .\phi \) in prenex conjunctive normal form (PCNF) consisting of a quantifier prefix \(\varPi := Q_1B_1 \ldots Q_nB_n\) and a quantifier-free propositional formula \(\phi \) in CNF. A CNF consists of a conjunction of clauses. A clause is a disjunction of literals. A literal is either a propositional variable x or its negation \(\lnot x\). The prefix \(\varPi \) is a linearly ordered sequence of quantifier blocks (qblocks) \(Q_iB_i\), where \(Q_i \in \{\forall ,\exists \}\) is a quantifier and \(B_i\) is a block (i.e., a set) of propositional variables with \(B_i \cap B_j = \emptyset \) for \(i \not = j\). The notation \(Q_iB_i\) is shorthand for \(Q_ix_1 \ldots Q_ix_m\) for all \(x_j \in B_i\). Formula \(\phi \) is defined precisely over the variables that appear in \(\varPi \). If \(Q_i = Q_{i+1}\) then \(B_i\) and \(B_{i+1}\) are merged to obtain \(Q_i(B_{i} \cup B_{i+1})\). Hence adjacent qblocks are quantified differently. Without loss of generality, we assume that the innermost quantifier \(Q_n = \exists \) is existential. (If \(Q_n = \forall \) then \(B_n\) is eliminated by universal reduction [34]). A PCNF with n qblocks has \(n-1\) quantifier alternations.
The semantics of PCNFs are defined recursively. The PCNF consisting only of the syntactic truth constant \(\top \) (\(\bot \)) is satisfiable (unsatisfiable). A PCNF \(\psi := Q_1B_1 \ldots Q_nB_n.\phi \) with \(Q_1 = \exists \) (\(Q_1 = \forall \)) is satisfiable iff, for \(x \in B_1\), \(\psi [x]\) or (and) \(\psi [\lnot x]\) is satisfiable, where \(\psi [x]\) (\(\psi [\lnot x]\)) is the PCNF obtained from \(\psi \) by replacing all occurrences of x by \(\top \) (\(\bot \)) and deleting x from \(B_1\).
To make the presentation of our experimental study self-contained, we introduce QBF proof systems only informally and refer to a standard, formal definition of propositional proof systems [20]. A QBF proof system \(\mathcal {PS}\) is a formal system consisting of inference rules. The inference rules allow to derive new formulas (e.g. clauses) from a given QBF \(\psi \) and from previously derived formulas. A QBF proof system \(\mathcal {PS}\) is correct if, for any QBF \(\psi \), it holds that if the formula \(\bot \) (false, e.g., the empty clause) is derivable in \(\mathcal {PS}\) from \(\psi \) then \(\psi \) is unsatisfiable.Footnote 1 A QBF proof system \(\mathcal {PS}\) is complete if, for any QBF \(\psi \), it holds that if \(\psi \) is unsatisfiable then \(\bot \) is derivable in \(\mathcal {PS}\) from \(\psi \). A proof P of an unsatisfiable QBF \(\psi \) in \(\mathcal {PS}\) is a sequence of given formulas and formulas derived by inference rules ending in \(\bot \). The length |P| of a proof P is the sum of the sizes of all formulas in P.
Let \(\mathcal {PS}\) and \(\mathcal {PS'}\) be QBF proof systems and \(\varPsi \) be a family of unsatisfiable QBFs. Let P be a proof of some QBF \(\psi \in \varPsi \) in \(\mathcal {PS}\) such that the length |P| of P is polynomial in the size of \(\psi \). Assume that the length \(|P'|\) of every proof \(P'\) of \(\psi \in \varPsi \) in \(\mathcal {PS'}\) is exponential in the size of \(\psi \). Then \(\mathcal {PS}\) is stronger than \(\mathcal {PS}'\) with respect to family \(\varPsi \). Two QBF proof systems \(\mathcal {PS}\) and \(\mathcal {PS'}\) are orthogonal if \(\mathcal {PS}\) is stronger than \(\mathcal {PS}'\) with respect to a family \(\varPsi \) and \(\mathcal {PS}'\) is stronger than \(\mathcal {PS}\) with respect to some other family \(\varPsi '\). The relation between QBF proof systems in terms of their strengths is studied in the research field of QBF proof complexity.
QBF proof systems are the formal foundation of QBF solver implementations. Expansion [2, 10, 30] and Q-resolution [34] are traditional QBF proof systems that are orthogonal [7, 31, 50]. Orthogonal proof systems are of particular interest for practical QBF solving since they give rise to solvers that have individual, complementary strengths on certain families of formulas. In our experiments, we highlight the potential of combining orthogonal proof systems in QBF solvers.


3 Experimental Setup
For our experimental study we use the set \(S_{17\mid 523} \) containing 523 PCNFs from QBFEVAL’17 [44]. Partitioning \(S_{17\mid 523} \) by numbers of qblocks results in 64 classes. Table 1 shows a histogram of \(S_{17\mid 523} \) by the numbers of formulas (#f) in classes defined by the number of qblocks (#q). Instances with up to three qblocks (row “1–3”) amount to 62% of all instances and hence are overrepresented in \(S_{17\mid 523} \). To generate \(S_{17\mid 523} \), instances were sampled from instance categories in QBFLIB in addition to newly submitted ones based on empirical hardness results from previous competitions. We also computed a histogram of a QBFLIB snapshot containing 16,748 instances (column \(\# f _{ L }\) in Table 1). Instances with no more than three qblocks (row “1–3”) are also overrepresented (69%) in that snapshot. Hence alternation bias in \(S_{17\mid 523} \) follows from a related bias in QBFLIB, which is due to the focus of QBF practitioners on problems located at low levels in PH. Moreover, the bias does not result from a flawed selection of competition instances. We use the terminology “overrepresented” and “bias” for the statistical fact that instances with few qblocks appear more frequently in \(S_{17\mid 523} \).
Table 1. Histograms.Full size table


In order to evaluate the impact of qblocks on solver performance, we consider 11 solvers that participated in QBFEVAL’17 and were top-ranked.Footnote 2 The solvers implement the following six different solving paradigms:
	
                      1.
                      
                        Expansion [2, 10] eliminates variables from a PCNF \(\psi \) until the formula reduces to either true or false. RAReQS  1.1 [30] applies recursive expansion based on counterexample-guided abstraction refinement (CEGAR) [19], while Ijtihad operates in a non-recursive way. Rev-Qfun  0.1 [28] extends RAReQS by machine learning techniques, and DynQBF  [15] exploits QBF tree decompositions. Theoretical properties of expansion as a proof system, which underlies implementations of expansion solvers, have been intensively studied [7, 31].

                      
                    
	
                      2.
                      
                        QDPLL [14] is a backtracking search procedure that generalizes the DPLL algorithm [21]. GhostQ  [30, 35] combines QDPLL with clause and cube learning (a cube is a conjunction of literals) based on the Q-resolution proof system [34]. Additionally, it reconstructs the structure of PCNFs encoded by Tseitin translation [51], and applies CEGAR-based learning.

                      
                    
	
                      3.
                      
                        Nested SAT solving uses one SAT solver per qblock in a PCNF, where universal quantification is handled as negated existential quantification. The solver QSTS  [11, 12] combines nested SAT solving with structure reconstruction. Propositional resolution is the proof system that underlies SAT solving.

                      
                    
	
                      4.
                      
                        Clause selection and clausal abstraction as implemented in the solvers QESTO  1.0 [32] and CAQE  [46, 50], respectively, decompose the given PCNF into a sequence of propositional formulas and apply CEGAR techniques. The proof system implemented in CAQE has been presented recently [50].

                      
                    
	
                      5.
                      
                        Backtracking search with clause and cube learning (QCDCL) [24, 25, 36, 55] based on Q-resolution extends the CDCL approach for SAT solving [47] to QBFs. The solver DepQBF  [37] implements QCDCL with generalized Q-resolution axioms allowing for a stronger calculus to derive learned clauses and cubes. Qute  [43] learns variable dependencies lazily in a run.

                      
                    
	
                      6.
                      
                        Heretic is based on a hybrid approach that combines expansion and QCDCL in a sequential portfolio style. Thereby, the QCDCL solver DepQBF is applied to learn clauses from the given QBF, which are then heuristically added to the expansion solver Ijtihad.

                      
                    




4 Experimental Results
We illustrate a substantial performance diversity of the above solvers from QBFEVAL’17 on instances with different numbers of quantifier alternations. To this end, we rank solvers based on instance classes given by numbers of qblocks similar to Table 1. Our empirical results are consistent on instances with and without preprocessing by the state-of-the-art tools Bloqqer  [26] and HQSpre  [52]. Alternation bias in original instances is present also in preprocessed ones. Unless stated otherwise, all experiments were run on Intel Xeon CPUs (E5-2650v4, 2.20 GHz) with Ubuntu 16.04.1 using CPU time and memory limits of 1800 s and seven GB. Exceeding the memory limit is counted as a time out.
It is well known that preprocessing may have positive effects on the performance of certain solvers while negative effects on others (cf. [39, 40]). To compensate for these effects, we applied preprocessing both to filter the original benchmark set \(S_{17\mid 523} \) and to preprocess instances. Many preprocessing techniques used to simplify a QBF by eliminating clauses and literals are restricted variants of solving approaches, hence instances might be solved already by preprocessing.
We ran Bloqqer (version 37) with a time limit of two hours as a filter on set \(S_{17\mid 523} \) to obtain the set \(S_{17\mid 437} \) containing 437 original PCNFs, where we discarded 76 instances from \(S_{17\mid 523} \) that were solved already by Bloqqer and ten instances that became propositional, i.e., which ended up having a single quantifier block of existential variables only. Bloqqer exceeded the time limit on 39 instances, which we included in their original form in set \(S_{17\mid 437} \).
In a similar way, we filtered set \(S_{17\mid 523} \) using HQSpre to obtain the set \(S_{17\mid 312} \) containing 312 original instances, where we discarded 183 instances solved by HQSpre and 28 which became propositional, and we included 42 original ones in \(S_{17\mid 312} \) where HQSpre exceeded the resource limits. We did not consider a variant of HQSpre that applies a restricted form of preprocessing to preserve gate structure present in formulas [52]. Compared to the unrestricted variant of HQSpre we used, the restricted one did not improve overall solver performance.
Fig. 1.[image: figure 1]
Numbers of qblocks before (“original”) and after preprocessing by Bloqqer (a) and HQSpre (b) on filtered (x-axes) and preprocessed instances (y-axes), respectively.


Full size image


By applying Bloqqer and HQSpre to the filtered sets \(S_{17\mid 437} \) and \(S_{17\mid 312} \) again, we generated the sets \(S_{17\mid 437}' \) and \(S_{17\mid 312}' \), respectively, containing preprocessed instances and those original instances where the preprocessors exceeded the resource limits. We disabled any additional use of Bloqqer or HQSpre as separate preprocessing modules integrated in some solvers. In the following, we focus our analysis on the four sets \(S_{17\mid 437} \), \(S_{17\mid 437}' \), \(S_{17\mid 312} \), and \(S_{17\mid 312}' \).
Table 2. Histograms of the benchmark sets \(S_{17\mid 437} \) and \(S_{17\mid 437}' \) (filtered and preprocessed by Bloqqer), and \(S_{17\mid 312} \) and \(S_{17\mid 312}' \) (filtered and preprocessed by HQSpre) illustrating the numbers of formulas (#f) in classes given by the number of qblocks (#q).Full size table


The application of Bloqqer and HQSpre to sets \(S_{17\mid 437} \) and \(S_{17\mid 312} \) reduces the number of qblocks in instances considerably. This is illustrated by the scatter plots in Figs. 1a and b, respectively. The average number of qblocks decreases from 29 in set \(S_{17\mid 437} \) to 10 in set \(S_{17\mid 437}' \). Likewise, the average decreases from 24 in set \(S_{17\mid 312} \) to 14 in set \(S_{17\mid 312}' \). As an extreme case, the number of qblocks in an instance in \(S_{17\mid 437} \) was reduced by Bloqqer from 1061 to 19.
In all sets \(S_{17\mid 437} \), \(S_{17\mid 437}' \), \(S_{17\mid 312} \), and \(S_{17\mid 312}' \), the median number of qblocks is three. This is due to alternation bias like in the original set \(S_{17\mid 523} \) (Table 1). The related histograms are shown in Tables 2a to d, where instances with no more than three qblocks are overrepresented (rows “2–3”) as they amount to between 63% and 68% of all 437, respectively, 312 instances. Set \(S_{17\mid 437} \) has 59 classes by numbers of qblocks compared to 45 in set \(S_{17\mid 437}' \), and set \(S_{17\mid 312} \) has 42 compared to 40 in set \(S_{17\mid 312}' \). Bloqqer reduces the number of instances with 21 or more qblocks (lines “21–”) from 60 in \(S_{17\mid 437} \) to 42 in \(S_{17\mid 437}' \) (Tables 2a and b). HQSpre reduces this number from 41 in \(S_{17\mid 312} \) to 31 in \(S_{17\mid 312}' \) (Tables 2c and d).
Table 3. Solvers and corresponding paradigms (P) from Sect. 3, solved instances (S), unsatisfiable (\(\bot \)) and satisfiable ones (\(\top \)), total CPU time including time outs, and uniquely solved instances (U) on sets \(S_{17\mid 437} \) (a), \(S_{17\mid 437}' \) (b), \(S_{17\mid 312} \) (c), and \(S_{17\mid 312}' \) (d).Full size table


Table 4. Solvers and corresponding solving paradigms (P) as listed in Sect. 3, solved instances (S, cf. Tables 3a to d), average (\(\overline{q}\)) and median number (\(\tilde{q}\)) of qblocks of respective solved instances in the considered benchmark sets. Rows “\(\bigcup \)” show statistics for the total number of instances solved by any solver based on a particular paradigm.Full size table


4.1 Solved Instances: Overall Rankings
We first analyze overall solver performance by ranking solvers according to total numbers of instances solved in the benchmark sets \(S_{17\mid 437} \), \(S_{17\mid 437}' \), \(S_{17\mid 312} \), and \(S_{17\mid 312}' \). Then we show that the strengths of certain solvers and solving paradigms are not reflected in such overall rankings. To highlight these individual strengths, in Sect. 4.2 below we carry out a more fine-grained analysis of solver performance based on instances that were solved in instance classes defined by their number of qblocks. Our results show that there is a considerable performance diversity between solvers and solving paradigms with respect to classes.
Tables 3a to d show overall solver rankings by total numbers of solved instances. Solver performance greatly varies depending on preprocessing. For example, while RAReQS, CAQE, and QESTO clearly benefit from preprocessing, it is harmful for GhostQ and Rev-Qfun. The expansion solvers RAReQS and Rev-Qfun (paradigm 1) dominate the rankings on sets \(S_{17\mid 437} \) and \(S_{17\mid 437}' \) (Tables 3a and b), and are ranked second on sets \(S_{17\mid 312} \) and \(S_{17\mid 312}' \) (Tables 3c and d). The first three places in the respective rankings of each set are taken by solvers based on paradigms 1, 2, 4, and 6. That is, solvers QSTS, DepQBF, and Qute (paradigms 3 and 5) are not among the three top-performing solvers.
There is a large performance diversity between different solvers based on the same paradigm. For example, the expansion solver DynQBF is ranked last on three sets, which is in contrast to the overall good performance of the expansion solvers RAReQS and Rev-Qfun. Likewise, there is a difference between the QCDCL solvers DepQBF and Qute. Such differences between implementations of the same solving paradigm (or proof system) can be attributed to the fact that the solvers might apply different heuristics to explore the search space to find a proof.
The numbers of instances solved uniquely by a particular solver (columns U in Tables 3a to d) highlight the strengths of solvers such as QSTS, DynQBF, and DepQBF which do not show top performance in the overall rankings. Most notably DynQBF by far solved the largest number of instances uniquely on preprocessed sets \(S_{17\mid 437}' \) (Table 3b) and \(S_{17\mid 312}' \) (Table 3d). With respect to uniquely solved instances, QSTS is second after DynQBF on set \(S_{17\mid 437}' \), and DepQBF solved the largest number of instances uniquely on set \(S_{17\mid 437} \) (Table 3a).
Towards a more fine-grained analysis of solver performance, we consider the number of qblocks of instances solved by individual solvers and in total by solving paradigms. Table 4 shows related average and median numbers of qblocks. In general, averages are greater for instances from filtered sets (\(S_{17\mid 437} \) and \(S_{17\mid 312} \)) than from preprocessed ones (\(S_{17\mid 437}' \) and \(S_{17\mid 312}' \)), since preprocessing reduces the numbers of qblocks (cf. Fig. 1). The difference in averages between solvers based on the same paradigm, e.g., DynQBF and Rev-Qfun in set \(S_{17\mid 437} \), is due to few solved instances having many qblocks (up to more than 1000).
Although the median number of qblocks of instances in every considered set is three (due to alternation bias), the median number of instances solved by certain solvers as shown in Table 4 is greater than three. For example, this is the case for the QCDCL solvers DepQBF and Qute on sets \(S_{17\mid 437} \), \(S_{17\mid 437}' \), and \(S_{17\mid 312} \) (DepQBF only). Moreover, QCDCL is the solving paradigm with the greatest median (6.0 in set \(S_{17\mid 437}' \)) among all sets when considering instances solved by any solver based on a particular paradigm (rows “\(\bigcup \)”). Ijtihad has the greatest median among expansion solvers, QSTS and Heretic have a median of 5.0 on sets \(S_{17\mid 437} \) and \(S_{17\mid 437}' \), and CAQE has a median of 5.0 on set \(S_{17\mid 437} \). These statistics indicate that there are solvers which tend to perform well on instances with relatively many qblocks, which however is not reflected in overall rankings in Tables 3a to d as many of these solvers are not among the top-performing ones.
Table 5. Instances solved in classes by numbers of qblocks (#q) and numbers of formulas in each class (#f) for sets \(S_{17\mid 437} \) (a), \(S_{17\mid 437}' \) (b), \(S_{17\mid 312} \) (c), \(S_{17\mid 312}' \) (d). Only class winners (bold face) are shown, paradigms (P:) are indicated in the first row.Full size table


4.2 Solved Instances: Class-Based Analysis
Motivated by the above observations related to median numbers of qblocks of solved instances, we aim to provide a more detailed picture of the strengths of the different solvers and implemented solving paradigms. To this end, we analyze the numbers of solved instances in classes defined by their numbers of qblocks.
Tables 5a to d show the numbers of instances that were solved in the individual classes in the considered sets. Only class winners are shown (bold face),Footnote 3 i.e., solvers that solved the largest number of instances in at least one class, where ties are not broken. The bottom rows of the tables show statistics for instances with up to three (row “2–3”) and more than three qblocks (row “4–”).
The five different class winners Rev-Qfun, GhostQ, CAQE, Heretic, and DepQBF in set \(S_{17\mid 437} \) (Table 5a) implement five different solving paradigms (rows P:). In set \(S_{17\mid 437}' \) (Table 5b) the four class winners implement three different paradigms. In sets \(S_{17\mid 312} \) and \(S_{17\mid 312}' \) (Tables 5c and d), there are four different paradigms implemented in the respective four class winners. Overall, with respect to all four benchmark sets, there are seven different solvers out of the 11 considered ones that win in a class. These class winners implement five out of the six paradigms listed in Sect. 3, all except paradigm 3 implemented in QSTS.
Notably, class winners are not always overall top-ranked, and an overall top-ranked solver does not always win a class. For example, RAReQS is ranked third in set \(S_{17\mid 437} \) (Table 3a) and second in set \(S_{17\mid 312}' \) (Table 3d) but does not win a class in the respective set (Tables 5a and d). As an extreme case, DynQBF is ranked last on sets \(S_{17\mid 437}' \) and \(S_{17\mid 312}' \) (Tables 3b and d) but wins the class of instances with no more than two qblocks (row “2” in Tables 5b and d).
Instances with few qblocks are overrepresented in the benchmark sets. Alternation bias of this kind in general bears the risk of masking the strengths of certain solvers on underrepresented instances. The variety of class winners and paradigms shown in Tables 5a to d is not reflected when only considering overall solver rankings by total numbers of solved instances in Tables 3a to d.
The expansion solvers Rev-Qfun and RAReQS (paradigm 1) tend to perform better on instances with relatively few qblocks, while solvers applying QCDCL (paradigms 5 and 6) tend to perform better on many qblocks. For example, either DepQBF or Heretic win on instances with four or more qblocks (row “4–”) in any set. These statistics are interesting in the context of QBF proof complexity as the proof systems underlying expansion and QCDCL are orthogonal [7, 31]. CAQE based on paradigm 4 wins on instances with 21 or more qblocks (rows “21–”) in all sets (Tables 5a to d). Further, it also wins on instances with no more than three qblocks in set \(S_{17\mid 312}' \) (Table 5d). The proof systems underlying paradigms 4 and 1 (expansion) are orthogonal [50]. The performance diversity of orthogonal proof systems on instances with different numbers of qblocks is not reflected in overall rankings and motivates further, theoretical study in QBF proof complexity.
Due to alternation bias, classes of instances with few qblocks are larger than those with many qblocks. Hence solvers often win in a class of instances with many qblocks by only a small margin. For example, the top-ranked solvers on classes “4–10”, “11–20”, and “21–” tend to be close to each other in terms of solved instances (cf. appendix [38]). Moreover, solvers implementing the same paradigm might show diverse performance due to different heuristics in proof search. To consider these factors, we carry out a class-based analysis of solving paradigms. To this end, we count instances solved by any solver implementing a particular paradigm. This study is related to statistics in rows “\(\bigcup \)” of Table 4.
Tables 6a to d show instances solved by each of the solving paradigms 1 to 6 (first row) in classes of instances. Class winners are highlighted in bold face. Paradigm 1 (expansion) dominates the other paradigms on complete benchmark sets (row “2–”). On instances obtained by Bloqqer (Tables 6a and b), in total only four classes are won by paradigms other than expansion: class “2” by paradigm 2 (QDPLL) on set \(S_{17\mid 437} \), class “11–20” by paradigm 5 (QCDCL) on sets \(S_{17\mid 437} \) and \(S_{17\mid 437}' \), and class “21–” by paradigm 4 (clause selection/abstraction) on set \(S_{17\mid 437}' \). Regarding the dominance of paradigm 1 (expansion) in Tables 6a and b, we note that four solvers among the considered ones are based on expansion, while there are at most two solvers implementing the other paradigms.
Performance is more diverse on instances filtered and preprocessed by HQSpre (Tables 6c and d). There, paradigms other than expansion either win or are on par with expansion in nine classes in total. Notably, paradigms 4 and 5 win in classes “4–” of sets \(S_{17\mid 312}' \) and \(S_{17\mid 312} \) containing instances with many qblocks. Although CAQE (paradigm 4) is overall top-ranked on set \(S_{17\mid 312}' \) (Table 3d), the strong performance of paradigms 4 and 5 on instances with many qblocks is not reflected in overall rankings (Tables 3c and d).
Table 6. Instances solved by solving paradigms 1 to 6 (cf. Sect. 3) in classes by numbers of qblocks (#q) for sets \(S_{17\mid 437} \) (a), \(S_{17\mid 437}' \) (b), \(S_{17\mid 312} \) (c), and \(S_{17\mid 312}' \) (d).Full size table


Table 7. Instances solved by the virtual best solver (VBS) in classes by number of qblocks (#q), number of formulas (#f) in each class, and relative contribution (%) of each solver to instances solved by the VBS for sets \(S_{17\mid 312} \) (a) and \(S_{17\mid 312}' \) (b).Full size table


4.3 Virtual Best Solver Analysis
We strengthen our above observations of performance diversity of solvers and solving paradigms with respect to numbers of qblocks by a virtual best solver (VBS) analysis, which is common in QBF [40] and SAT competitions (cf. [4]). The VBS is an ideal portfolio where the solving time of the fastest solver on an instance is attributed to the VBS. Thus the VBS reflects the best performance that can be achieved when running a set of solvers in parallel on an instance.
Tables 7a and b show numbers of instances solved by the VBS in classes for sets \(S_{17\mid 312} \) and \(S_{17\mid 312}' \) and the relative contribution of solvers (percentage) to the VBS in terms of solved instances. Similar to instances solved in classes (Tables 5a to d), the VBS contributions differ and provide a more fine-grained picture of the strengths of solvers and solving paradigms than the VBS contributions on the entire benchmark set (rows “2–” in Tables 7a and b). In the following, we comment on general VBS statistics for all considered benchmark sets, with a focus on sets \(S_{17\mid 312} \) and \(S_{17\mid 312}' \) generated using HQSpre. We refer to the appendix [38] for tables related to sets \(S_{17\mid 437} \) and \(S_{17\mid 437}' \) generated using Bloqqer.
On all benchmark sets the VBS solved between 50% and 70% more instances than the single overall best solver (Tables 3a to d). These results highlight the complementary strengths of solvers and solving paradigms that are not among the top-ranked ones. On each of the four benchmark sets, there are five different solvers, respectively, which have the largest VBS contribution in a class. Interestingly, from the respective overall winning solvers (Tables 3a to d), only RAReQS on set \(S_{17\mid 437}' \) also has the largest VBS contribution on the entire benchmark set. While RAReQS is ranked second on set \(S_{17\mid 312}' \) (Table 3d), it has the largest overall VBS contribution (row “2–” in Table 7b).
Consistent with Tables 5b and d, where DynQBF solved the largest number of instances in class “2” of sets \(S_{17\mid 437}' \) and \(S_{17\mid 312}' \), it has the largest VBS contributions in this class (cf. Table 7b and appendix [38]) although it is ranked last in overall rankings (Tables 3b and d). The large VBS contributions of DynQBF conform to the fact that it solved the largest numbers of instances uniquely in sets \(S_{17\mid 437}' \) and \(S_{17\mid 312}' \). Similar observations regarding VBS contributions of solvers that are not top-ranked were made in the context of SAT solver competitions [54].
QSTS neither is among the overall top-ranked solvers (Tables 3a to d) nor among the class winners (Tables 5a to d), yet it has the largest VBS contribution in class “21–” on all sets except \(S_{17\mid 312}' \) (Table 7b), where it is on par with RAReQS.
Similar to the analysis presented in Tables 6a to d, we analyze the VBS contribution of each solving paradigm for sets \(S_{17\mid 312} \) and \(S_{17\mid 312}' \) in Tables 8a and b, respectively. We refer to the appendix [38] for tables related to sets \(S_{17\mid 437} \) and \(S_{17\mid 437}' \). Considering instances with many qblocks (row “4–”), paradigm 5 (QCDCL) has the largest contribution in set \(S_{17\mid 312} \) and is on par with paradigm 1 (expansion) in set \(S_{17\mid 312}' \). This is remarkable, given that paradigm 1, where four solvers are based on, clearly has the largest VBS contribution on the entire sets (rows “2–”). However, only two solvers implement paradigm 5.
Table 8. Instances solved by the virtual best solver (VBS) in classes by number of qblocks (#q), number of formulas (#f) in each class, and relative contribution (%) of solving paradigms to instances solved by the VBS for sets \(S_{17\mid 312} \) (a), and \(S_{17\mid 312}' \) (b).Full size table


4.4 Discussion
In the following, we discuss threats to the validity of our study and related issues.
Heuristics. The performance of solvers implementing the same paradigm might be diverse due to different heuristics applied in proof search. To comprehensively evaluate the impact of heuristics, it is necessary to consider further syntactic parameters of instances other than alternations, such as ratio of variables per clause, size of clauses, and the like. In our study, we focused on alternations as they impact the theoretical hardness of PCNFs, thus resulting in a larger complexity landscape than, e.g., in propositional logic (SAT). To even out the effects of heuristics, we studied and observed performance diversity of paradigms (Tables 6 and 8). Such diversity cannot be explained by different heuristics, in contrast to diversity between individual solvers based on the same paradigm.
Dominance of Single Solvers and Paradigms. We are not aware of solvers being specifically targeted to instances with a particular number of alternations. Similar to the effects of heuristics, we even out a potential dominance of single solvers and overrepresented paradigms in solvers by a paradigm-based analysis (Tables 6 and 8). This provides a more comprehensive picture of the strengths of different paradigms. This way, e.g., we observed remarkable results regarding the VBS contribution of QCDCL on instances with many alternations (Table 8).
Choice of Benchmarks and Solvers. The benchmarks we considered contain few instances with many alternations, which follows from alternation bias in original benchmarks (cf. Sect. 3). We observed performance diversity in the large classes “2–3” and “4–”, which is more robust than in smaller classes containing fewer instances. Class “4–” is the largest one with many alternations that can be selected in the given benchmarks. Our choice of solvers was predetermined by the ranking of the top-performing solvers in the PCNF track of QBFEVAL’17.
Relation to QBF Proof Complexity. We emphasize that our study does not show that certain proof systems provably perform differently with respect to alternations. This is an open research problem in QBF proof complexity.
Overrepresented Problems and Different Prenex Forms. Several QBF encodings of a problem with different numbers of alternations may exist. Hence in the instance classes we defined by alternations certain problems might be overrepresented. These problems may be detected based on detailed information about the encoding process. However, such information is often not available for PCNF benchmarks. A related issue is the impact of different quantifier prefixes in PCNFs on solver performance, which was studied in theory [8] and practice [22].


5 Conclusion
We analyzed the effects of quantifier alternations on the evaluation of QBF solvers. Our empirical results indicate that the performance of solvers based on different solving paradigms substantially varies on classes of formulas defined by their numbers of alternations. While the theoretical hardness of QBFs in prenex CNF with a particular number of alternations is naturally related to levels in the polynomial hierarchy, our study a posteriori sheds light on solver performance observed in practice. We observed a substantial performance diversity of solvers based on orthogonal QBF proof systems [7, 31, 50] on instances with different numbers of alternations, e.g., expansion and Q-resolution. Thereby, our work is in line with a recent focus on alternations in QBF proof complexity [6, 9, 18]. As a future direction in practice, and motivated by virtual best solver statistics we presented, it is promising to combine orthogonal approaches to leverage their individual strengths in a single QBF solver.
The class- and paradigm-based performance analysis we presented is a methodology to evaluate QBF solvers that takes quantifier alternations of under- and overrepresented instances into account. This is necessary to highlight the strengths of solving paradigms in a comprehensive way. In doing so, we aim to reach out to users of QBF technology who are inexperienced with solver implementations and look for solvers that are suitable to solve a particular problem. Ultimately, QBF technology must be improved as a general approach to tackle PSPACE problems.



                                    

                                
                            

                             Notes
	1.Theoretical work on QBF proof systems typically focuses on unsatisfiable QBFs.


	2.For some solvers where version numbers are not reported, the authors kindly provided us with the competition versions, which were not publicly available. We excluded the solver AIGSolve because we observed assertion failures on certain instances.


	3.We refer to an online appendix for complete tables [38].
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