Skip to main content

Specification of Granule Cells and Purkinje Cells

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

Granule cells and Purkinje cells are the major populations of neurons in the cerebellum. Their specification depends on a combination of regional identity and spatiotemporal cues. These are conferred by patterning systems in the early embryo that determine anteroposterior and dorsoventral positional coordinates and an age-dependent signal (or signals) whose nature is obscure. While a number of important questions remain about the nature of cerebellar progenitor pools and their precise boundaries, a variety of fate-mapping and genetic approaches have indicated that both granule cells and Purkinje cells arise from different dorsoventral domains within hindbrain rhombomere 1. Unusually, granule cell precursors undergo a subsequent transit amplification stage regulated by Purkinje cell signals, within a transient superficial germinal layer. Recent evolutionary insights suggest that this phase of Sonic hedgehog-dependent transit amplification is only found in amniotes. Evolutionarily, since secondary proliferation arose independently of granule cell specification, it is likely to be an adaptation purely for post-specification regulation of granule cell numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brulet P (1995) Forebrain and midbrain regions are deleted in Otx2-/- mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121:3279–3290

    CAS  PubMed  Google Scholar 

  • Alder J, Cho NK, Hatten ME (1996) Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17:389–399

    Article  CAS  PubMed  Google Scholar 

  • Alder J, Lee KJ, Jessell TM, Hatten ME (1999) Generation of cerebellar granule neurons in vivo by transplantation of BMP-treated neural progenitor cells. Nat Neurosci 2:535–540

    Article  CAS  PubMed  Google Scholar 

  • Alexandre P, Wassef M (2003) The isthmic organizer links anteroposterior and dorsoventral patterning in the mid/hindbrain by generating roof plate structures. Development 130:5331–5338

    Article  CAS  PubMed  Google Scholar 

  • Altman J, Bayer SA (1985) Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 231:42–65

    Article  CAS  PubMed  Google Scholar 

  • Anne SL, Govek EE, Ayrault O, Kim JH, Zhu X, Murphy DA, Van Aelst L, Roussel MF, Hatten ME (2013) WNT3 inhibits cerebellar granule neuron progenitor proliferation and medulloblastoma formation via MAPK activation. PLoS One 8:e81769

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aspden JW, Armstrong CL, Gutierrez-Ibanez CI, Hawkes R, Iwaniuk AN, Kohl T, Graham DJ, Wylie DR (2015) Zebrin II/aldolase C expression in the cerebellum of the western diamondback rattlesnake (Crotalus atrox). PLoS One 10:e0117539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayrault O, Zhao H, Zindy F, Qu C, Sherr CJ Roussel MF (2010) Atoh1 inhibits neuronal differentiation and collaborates with Gli1 to generate medulloblastoma-initiating cells. Cancer Res 70:5618–5627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    Article  PubMed  Google Scholar 

  • Baader SL, Schilling ML, Rosengarten B, Pretsch W, Teutsch HF, Oberdick J, Schilling K (1996) Purkinje cell lineage and the topographic organization of the cerebellar cortex: a view from X inactivation mosaics. Dev Biol 174:393–406

    Article  CAS  PubMed  Google Scholar 

  • Ben-Arie N, Bellen HJ, Armstrong DL, McCall AE, Gordadze PR, Guo Q, Matzuk MM, Zoghbi HY (1997) Math1 is essential for genesis of cerebellar granule neurons. Nature 390:169–172

    Article  CAS  PubMed  Google Scholar 

  • Braitenberg V (1961) Functional interpretation of cerebellar histology. Nature 190:539–540

    Article  Google Scholar 

  • Brand M, Heisenberg CP, Jiang YJ, Beuchle D, Lun K, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA et al (1996) Mutations in zebrafish genes affecting the formation of the boundary between midbrain and hindbrain. Development 123:179–190

    CAS  PubMed  Google Scholar 

  • Broom ER, Gilthorpe JD, Butts T, Campo-Paysaa F, Wingate RJ (2012) The roof plate boundary is a bi-directional organiser of dorsal neural tube and choroid plexus development. Development 139:4261–4270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler A, Hodos W (1996) Comparative vertebrate neuroanatomy: evolution and adaptation. Wiley-Liss, New York

    Google Scholar 

  • Butts T, Hanzel M, Wingate RJ (2014a) Transit amplification in the amniote cerebellum evolved via a heterochronic shift in NeuroD1 expression. Development 141:2791–2795

    Article  CAS  PubMed  Google Scholar 

  • Butts T, Modrell MS, Baker CV, Wingate RJ (2014b) The evolution of the vertebrate cerebellum: absence of a proliferative external granule layer in a non-teleost ray-finned fish. Evol Dev 16:92–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Cajal SRY (1894) Les Nouvelles Idées sur la Structure du Système Nerveux chez l’Homme et chez les Vertébrés. C. Reinwald & Cie, Paris

    Book  Google Scholar 

  • Cerminara NL, Lang EJ, Sillitoe RV, Apps R (2015) Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 16:79–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin N, Tendeng C, Wingate RJ (2010) Absence of an external germinal layer in zebrafish and shark reveals a distinct, anamniote ground plan of cerebellum development. J Neurosci 30:3048–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng FY, Huang X, Sarangi A, Ketova T, Cooper MK, Litingtung Y, Chiang C (2012) Widespread contribution of Gdf7 lineage to cerebellar cell types and implications for hedgehog-driven medulloblastoma formation. PLoS One 7:e35541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chizhikov VV, Millen KJ (2004) Control of roof plate formation by Lmx1a in the developing spinal cord. Development 131:2693–2705

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov V, Steshina E, Roberts R, Ilkin Y, Washburn L, Millen KJ (2006a) Molecular definition of an allelic series of mutations disrupting the mouse Lmx1a (dreher) gene. Mamm Genome 17:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov VV, Lindgren AG, Currle DS, Rose MF, Monuki ES, Millen KJ (2006b) The roof plate regulates cerebellar cell-type specification and proliferation. Development 133:2793–2804

    Article  CAS  PubMed  Google Scholar 

  • Chizhikov VV, Lindgren AG, Mishima Y, Roberts RW, Aldinger KA, Miesegaes GR, Currle DS, Monuki ES, Millen KJ (2010) Lmx1a regulates fates and location of cells originating from the cerebellar rhombic lip and telencephalic cortical hem. Proc Natl Acad Sci U S A 107:10725–10730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JD, Erskine L, Lumsden A (1998) Differential progenitor dispersal and the spatial origin of early neurons can explain the predominance of single-phenotype clones in the chick hindbrain. Dev Dyn 212:14–26

    Article  CAS  PubMed  Google Scholar 

  • Corfield JR, Kolominsky J, Marin GJ, Craciun I, Mulvany-Robbins BE, Iwaniuk AN, Wylie DR (2015) Zebrin II expression in the cerebellum of a Paleognathous bird, the Chilean Tinamou (Nothoprocta perdicaria). Brain Behav Evol 85:94–106

    Article  PubMed  Google Scholar 

  • Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL (2004) Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development. Development 131:5581–5590

    Article  CAS  PubMed  Google Scholar 

  • Corrales JD, Blaess S, Mahoney EM, Joyner AL (2006) The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 133:1811–1821

    Article  CAS  PubMed  Google Scholar 

  • Currle DS, Cheng X, Hsu CM, Monuki ES (2005) Direct and indirect roles of CNS dorsal midline cells in choroid plexus epithelia formation. Development 132:3549–3559

    Article  CAS  PubMed  Google Scholar 

  • Dahmane N, Ruiz-i-Altaba A (1999) Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 126:3089–3100

    PubMed  Google Scholar 

  • Dean P, Porrill J, Ekerot CF, Jorntell H (2010) The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat Rev Neurosci 11:30–43

    Article  CAS  PubMed  Google Scholar 

  • Delbaere J, Van Herck SL, Bourgeois NM, Vancamp P, Yang S, Wingate RJ Darras VM (2015) Mosaic expression of thyroid hormone regulatory genes defines cell type-specific dependency in the developing chicken cerebellum. Cerebellum 15(6):710–725

    Article  CAS  Google Scholar 

  • Delbaere J, Vancamp P, Van Herck SL, Bourgeois NM, Green MJ, Wingate RJ Darras VM (2016) MCT8 deficiency in Purkinje cells disrupts embryonic chicken cerebellar development. J Endocrinol 232(2):259–272

    Article  CAS  PubMed  Google Scholar 

  • Di Giovannantonio LG, Di Salvio M, Omodei D, Prakash N, Wurst W, Pierani A, Acampora D, Simeone A (2014) Otx2 cell-autonomously determines dorsal mesencephalon versus cerebellum fate independently of isthmic organizing activity. Development 141:377–388

    Article  PubMed  CAS  Google Scholar 

  • Eddison M, Toole L, Bell E, Wingate RJ (2004) Segmental identity and cerebellar granule cell induction in rhombomere 1. BMC Biol 2:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Englund C, Kowalczyk T, Daza RA, Dagan A, Lau C, Rose MF, Hevner RF (2006) Unipolar brush cells of the cerebellum are produced in the rhombic lip and migrate through developing white matter. J Neurosci 26:9184–9195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinosa JS, Luo L (2008) Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci 28:2301–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes M, Antoine M, Hebert JM (2012) SMAD4 is essential for generating subtypes of neurons during cerebellar development. Dev Biol 365:82–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez C, Tatard VM, Bertrand N, Dahmane N (2010) Differential modulation of Sonic-hedgehog-induced cerebellar granule cell precursor proliferation by the IGF signaling network. Dev Neurosci 32:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink AJ, Englund C, Daza RA, Pham D, Lau C, Nivison M, Kowalczyk T, Hevner RF (2006) Development of the deep cerebellar nuclei: transcription factors and cell migration from the rhombic lip. J Neurosci 26:3066–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming JT, He W, Hao C, Ketova T, Pan FC, Wright CC, Litingtung Y, Chiang C (2013) The Purkinje neuron acts as a central regulator of spatially and functionally distinct cerebellar precursors. Dev Cell 27:278–292

    Article  CAS  PubMed  Google Scholar 

  • Flora A, Klisch TJ, Schuster G, Zoghbi HY (2009) Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the developing cerebellum and prevents medulloblastoma. Science 326:1424–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forget A, Bihannic L, Cigna SM, Lefevre C, Remke M, Barnat M, Dodier S, Shirvani H, Mercier A, Mensah A et al (2014) Shh signaling protects Atoh1 from degradation mediated by the E3 ubiquitin ligase Huwe1 in neural precursors. Dev Cell 29:649–661

    Article  CAS  PubMed  Google Scholar 

  • Foucher I, Mione M, Simeone A, Acampora D, Bally-Cuif L, Houart C (2006) Differentiation of cerebellar cell identities in absence of Fgf signalling in zebrafish Otx morphants. Development 133:1891–1900

    Article  CAS  PubMed  Google Scholar 

  • Fujita H, Morita N, Furuichi T, Sugihara I (2012) Clustered fine compartmentalization of the mouse embryonic cerebellar cortex and its rearrangement into the postnatal striped configuration. J Neurosci 32:15688–15703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavalas A, Davenne M, Lumsden A, Chambon P, Rijli FM (1997) Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124:3693–3702

    CAS  PubMed  Google Scholar 

  • Gilthorpe JD, Papantoniou EK, Chedotal A, Lumsden A, Wingate RJ (2002) The migration of cerebellar rhombic lip derivatives. Development 129:4719–4728

    CAS  PubMed  Google Scholar 

  • Goldowitz D, Hamre KM, Przyborski SA, Ackerman SL (2000) Granule cells and cerebellar boundaries: analysis of Unc5h3 mutant chimeras. J Neurosci 20:4129–4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gona AG (1972) Morphogenesis of the cerebellum of the frog tadpole during spontaneous metamorphosis. J Comp Neurol 146:133–142

    Article  CAS  PubMed  Google Scholar 

  • Goodrich LV, Milenkovic L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113

    Article  CAS  PubMed  Google Scholar 

  • Grausam KB, Dooyema SDR, Bihannic L, Premathilake H, Morrissy AS, Forget A, Schaefer AM, Gundelach JH, Macura S, Maher DM et al (2017) ATOH1 promotes leptomeningeal dissemination and metastasis of sonic hedgehog subgroup medulloblastomas. Cancer Res 77:3766–3777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green MJ, Myat AM, Emmenegger BA, Wechsler-Reya RJ, Wilson LJ, Wingate RJ (2014) Independently specified Atoh1 domains define novel developmental compartments in rhombomere 1. Development 141:389–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallonet ME, Le Douarin NM (1993) Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci 5:1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Hallonet ME, Teillet MA, Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108:19–31

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Mikoshiba K (2003) Mediolateral compartmentalization of the cerebellum is determined on the “birth date” of Purkinje cells. J Neurosci 23:11342–11351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkes R, Herrup K (1995) Aldolase C/zebrin II and the regionalization of the cerebellum. J Mol Neurosci 6:147–158

    Article  CAS  PubMed  Google Scholar 

  • Helms AW, Johnson JE (2003) Specification of dorsal spinal cord interneurons. Curr Opin Neurobiol 13:42–49

    Article  CAS  PubMed  Google Scholar 

  • Hibi M, Matsuda K, Takeuchi M, Shimizu T, Murakami Y (2017) Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum. Develop Growth Differ 59:228–243

    Article  Google Scholar 

  • Hoshino M, Nakamura S, Mori K, Kawauchi T, Terao M, Nishimura YV, Fukuda A, Fuse T, Matsuo N, Sone M et al (2005) Ptf1a, a bHLH transcriptional gene, defines GABAergic neuronal fates in cerebellum. Neuron 47:201–213

    Article  CAS  PubMed  Google Scholar 

  • Irving C, Mason I (2000) Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127:177–186

    CAS  PubMed  Google Scholar 

  • Jensen P, Zoghbi HY, Goldowitz D (2002) Dissection of the cellular and molecular events that position cerebellar Purkinje cells: a study of the math1 null-mutant mouse. J Neurosci 22:8110–8116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen P, Smeyne R, Goldowitz D (2004) Analysis of cerebellar development in math1 null embryos and chimeras. J Neurosci 24:2202–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain – hindbrain development. Trends Genet 12:15–20

    Article  CAS  PubMed  Google Scholar 

  • Ju J, Liu Q, Zhang Y, Liu Y, Jiang M, Zhang L, He X, Peng C, Zheng T, Lu QR et al (2016) Olig2 regulates Purkinje cell generation in the early developing mouse cerebellum. Sci Rep 6:30711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaslin J, Ganz J, Geffarth M, Grandel H, Hans S, Brand M (2009) Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J Neurosci 29:6142–6153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaslin J, Kroehne V, Benato F, Argenton F, Brand M (2013) Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult. Neural Dev 8:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim EJ, Battiste J, Nakagawa Y, Johnson JE (2008) Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture. Mol Cell Neurosci 38:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein C, Butt SJ, Machold RP, Johnson JE, Fishell G (2005) Cerebellum- and forebrain-derived stem cells possess intrinsic regional character. Development 132:4497–4508

    Article  CAS  PubMed  Google Scholar 

  • Koster RW, Fraser SE (2006) FGF signaling mediates regeneration of the differentiating cerebellum through repatterning of the anterior hindbrain and reinitiation of neuronal migration. J Neurosci 26:7293–7304

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kumar V, Kumar V, McGuire T, Coulter DW, Sharp JG, Mahato RI (2017) Challenges and Recent Advances in Medulloblastoma Therapy. Trends Pharmacol Sci 38(12):1061–1084

    Article  CAS  PubMed  Google Scholar 

  • Le Douarin NM (1993) Embryonic neural chimaeras in the study of brain development. Trends Neurosci 16:64–72

    Article  PubMed  Google Scholar 

  • Lee KJ, Mendelsohn M, Jessell TM (1998) Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 12:3394–3407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KJ, Dietrich P, Jessell TM (2000) Genetic ablation reveals that the roof plate is essential for dorsal interneuron specification. Nature 403:734–740

    Article  CAS  PubMed  Google Scholar 

  • Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB, Johnson JE, Wechsler-Reya RJ (2005) Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 8:723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Legue E, Riedel E, Joyner AL (2015) Clonal analysis reveals granule cell behaviors and compartmentalization that determine the folded morphology of the cerebellum. Development 142:1661–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin JC, Cepko CL (1999) Biphasic dispersion of clones containing Purkinje cells and glia in the developing chick cerebellum. Dev Biol 211:177–197

    Article  CAS  PubMed  Google Scholar 

  • Lisney TJ, Yopak KE, Montgomery JC, Collin SP (2008) Variation in brain organization and cerebellar foliation in chondrichthyans: batoids. Brain Behav Evol 72:262–282

    Article  PubMed  Google Scholar 

  • Lorenz A, Deutschmann M, Ahlfeld J, Prix C, Koch A, Smits R, Fodde R, Kretzschmar HA, Schuller U (2011) Severe alterations of cerebellar cortical development after constitutive activation of Wnt signaling in granule neuron precursors. Mol Cell Biol 31:3326–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Machold R, Fishell G (2005) Math1 is expressed in temporally discrete pools of cerebellar rhombic-lip neural progenitors. Neuron 48:17–24

    Article  CAS  PubMed  Google Scholar 

  • Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR (1999) FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126:1189–1200

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Nishihara S, Kamimura M, Shiraishi T, Otoguro T, Uehara M, Maeda Y, Ogura K, Lumsden A, Ogura T (2004) The prepattern transcription factor Irx2, a target of the FGF8/MAP kinase cascade, is involved in cerebellum formation. Nat Neurosci 7:605–612

    Article  CAS  PubMed  Google Scholar 

  • McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62(6):1073–1085

    Article  CAS  PubMed  Google Scholar 

  • Miller TE, Wang J, Sukhdeo K, Horbinski C, Tesar PJ, Wechsler-Reya RJ, Rich JN (2014) Lgr5 Marks post-mitotic, lineage restricted cerebellar granule neurons during postnatal development. PLoS One 9:e114433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Millet S, Bloch-Gallego E, Simeone A, Alvarado-Mallart RM (1996) The caudal limit of Otx2 gene expression as a marker of the midbrain/hindbrain boundary: a study using in situ hybridisation and chick/quail homotopic grafts. Development 122:3785–3797

    CAS  PubMed  Google Scholar 

  • Millonig JH, Millen KJ, Hatten ME (2000) The mouse Dreher gene Lmx1a controls formation of the roof plate in the vertebrate CNS. Nature 403:764–769

    Article  CAS  PubMed  Google Scholar 

  • Miyata T, Maeda T, Lee JE (1999) NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev 13:1647–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuhara E, Minaki Y, Nakatani T, Kumai M, Inoue T, Muguruma K, Sasai Y, Ono Y (2010) Purkinje cells originate from cerebellar ventricular zone progenitors positive for Neph3 and E-cadherin. Dev Biol 338:202–214

    Article  CAS  PubMed  Google Scholar 

  • Morales D, Hatten ME (2006) Molecular markers of neuronal progenitors in the embryonic cerebellar anlage. J Neurosci 26:12226–12236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Umeshima H Kengaku M (2015) Cerebellar granule cells are predominantly generated by terminal symmetric divisions of granule cell precursors. Dev Dyn 244:748–758

    Article  PubMed  Google Scholar 

  • Nielsen CM, Dymecki SM (2010) Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev Biol 340:430–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuys R, Pouwels E, Smulders-Kersten E (1974) The neuronal organization of cerebellar lobe C1 in the mormyrid fish Gnathonemus Petersii (teleostei). Z Anat Entwicklungsgeschichte 144:315–336

    Article  CAS  Google Scholar 

  • Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Ozol K, Hayden JM, Oberdick J, Hawkes R (1999) Transverse zones in the vermis of the mouse cerebellum. J Comp Neurol 412:95–111

    Article  CAS  PubMed  Google Scholar 

  • Pascual M, Abasolo I, Mingorance-Le Meur A, Martinez A, Del Rio JA, Wright CV, Real FX, Soriano E (2007) Cerebellar GABAergic progenitors adopt an external granule cell-like phenotype in the absence of Ptf1a transcription factor expression. Proc Natl Acad Sci U S A 104:5193–5198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pei Y, Brun SN, Markant SL, Lento W, Gibson P, Taketo MM, Giovannini M, Gilbertson RJ, Wechsler-Reya RJ (2012) WNT signaling increases proliferation and impairs differentiation of stem cells in the developing cerebellum. Development 139:1724–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poschl J, Grammel D, Dorostkar MM, Kretzschmar HA Schuller U (2013) Constitutive activation of beta-catenin in neural progenitors results in disrupted proliferation and migration of neurons within the central nervous system. Dev Biol 374:319–332

    Article  PubMed  CAS  Google Scholar 

  • Pose-Mendez S, Candal E, Mazan S, Rodriguez-Moldes I (2015a) Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan-gnathostome transition. Brain Struct Funct 221:1321–1335

    Article  PubMed  Google Scholar 

  • Pose-Mendez S, Candal E, Mazan S, Rodriguez-Moldes I (2015b) Morphogenesis of the cerebellum and cerebellum-related structures in the shark Scyliorhinus canicula: insights on the ground pattern of the cerebellar ontogeny. Brain Struct Funct 221:1691–1717

    Article  PubMed  CAS  Google Scholar 

  • Reifers F, Bohli H, Walsh EC, Crossley PH, Stainier DY, Brand M (1998) Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 125:2381–2395

    CAS  PubMed  Google Scholar 

  • Rios I, Alvarez-Rodriguez R, Marti E, Pons S (2004) Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development 131:3159–3168

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez CI, Dymecki SM (2000) Origin of the precerebellar system. Neuron 27:475–486

    Article  CAS  PubMed  Google Scholar 

  • Rose MF, Ahmad KA, Thaller C, Zoghbi HY (2009) Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc Natl Acad Sci U S A 106:22462–22467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryder EF, Cepko CL (1994) Migration patterns of clonally related granule cells and their progenitors in the developing chick cerebellum. Neuron 12:1011–1028

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Joyner AL (2009) The duration of Fgf8 isthmic organizer expression is key to patterning different tectal-isthmo-cerebellum structures. Development 136:3617–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, Huillard E, Sun T, Ligon AH, Qian Y et al (2008) Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14:123–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto Y, Nakatani T, Masuyama N, Taya S, Kumai M, Minaki Y, Hamaguchi A, Inoue YU, Inoue T, Miyashita S, Fujiyama T, Yamada M, Chapman H, Campbell K, Magnuson MA, Wright CV, Kawaguchi Y, Ikenaka K, Takebayashi H, Ishiwata S, Ono Y, Hoshino M (2014) Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nat Commun. 5:3337

    Google Scholar 

  • Sgaier SK, Millet S, Villanueva MP, Berenshteyn F, Song C, Joyner AL (2005) Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 45:27–40

    CAS  PubMed  Google Scholar 

  • Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME (2001) Activated Notch2 signaling inhibits differentiation of cerebellar granule neuron precursors by maintaining proliferation. Neuron 31:557–568

    Article  CAS  PubMed  Google Scholar 

  • Sudarov A, Turnbull RK, Kim EJ, Lebel-Potter M, Guillemot F, Joyner AL (2011) Ascl1 genetics reveals insights into cerebellum local circuit assembly. J Neurosci Off J Soc Neurosci 31:11055–11069

    Article  CAS  Google Scholar 

  • Sultan F, Glickstein M (2007) The cerebellum: comparative and animal studies. Cerebellum 6:168–176

    Article  PubMed  Google Scholar 

  • Swanson DJ, Goldowitz D (2011) Experimental Sey mouse chimeras reveal the developmental deficiencies of Pax6-null granule cells in the postnatal cerebellum. Dev Biol 351:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tong KK, Kwan KM (2013) Common partner Smad-independent canonical bone morphogenetic protein signaling in the specification process of the anterior rhombic lip during cerebellum development. Mol Cell Biol 33:1925–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong KK, Ma TC, Kwan KM (2015) BMP/Smad signaling and embryonic cerebellum development: stem cell specification and heterogeneity of anterior rhombic lip. Develop Growth Differ 57:121–134

    Article  CAS  Google Scholar 

  • Uray NJ, Gona AG, Hauser KF (1987) Autoradiographic studies of cerebellar histogenesis in the premetamorphic bullfrog tadpole: I. Generation of the external granular layer. J Comp Neurol 266:234–246

    Article  CAS  PubMed  Google Scholar 

  • Uray NJ, Gona AG, Hauser KF (1988) Autoradiographic studies of cerebellar histogenesis in the premetamorphic bullfrog tadpole: II. Formation of the interauricular granular band. J Comp Neurol 269:118–129

    Article  CAS  PubMed  Google Scholar 

  • Vibulyaseck S, Fujita H, Luo Y, Tran AK, Oh-Nishi A, Ono Y, Hirano S, Sugihara I (2017) Spatial rearrangement of Purkinje cell subsets forms the transverse and longitudinal compartmentalization in the mouse embryonic cerebellum. J Comp Neurol 525:2971–2990

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Saiga H, Satoh N, Holland PW (1998) Tripartite organization of the ancestral chordate brain and the antiquity of placodes: insights from ascidian Pax-2/5/8, Hox and Otx genes. Development 125:1113–1122

    CAS  PubMed  Google Scholar 

  • Wallace VA (1999) Purkinje-cell-derived sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 9:445–448

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Rose MF, Zoghbi HY (2005) Math1 expression redefines the rhombic lip derivatives and reveals novel lineages within the brainstem and cerebellum. Neuron 48:31–43

    Article  CAS  PubMed  Google Scholar 

  • Wassarman KM, Lewandoski M, Campbell K, Joyner AL, Rubenstein JL, Martinez S, Martin GR (1997) Specification of the anterior hindbrain and establishment of a normal mid/hindbrain organizer is dependent on Gbx2 gene function. Development 124(15):2923–2934

    Google Scholar 

  • Wechsler-Reya RJ, Scott MP (1999) Control of neuronal precursor proliferation in the cerebellum by sonic hedgehog. Neuron 22:103–114

    Article  CAS  PubMed  Google Scholar 

  • White JJ, Sillitoe RV (2013) Development of the cerebellum: from gene expression patterns to circuit maps. Wiley Interdisc Rev Devel Biol 2:149–164

    Article  CAS  Google Scholar 

  • Wilson LJ, Wingate RJ (2006) Temporal identity transition in the avian cerebellar rhombic lip. Dev Biol 297(2):508–521

    Article  CAS  PubMed  Google Scholar 

  • Wilson LJ, Myat A, Sharma A, Maden M, Wingate RJ (2007) Retinoic acid is a potential dorsalising signal in the late embryonic chick hindbrain. BMC Dev Biol 7:138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wingate RJT (2001) The rhombic lip and early cerebellar development. Curr Opin Neurobiol 11:82–88

    Article  CAS  PubMed  Google Scholar 

  • Wingate R (2005) Math-map(ic)s. Neuron 48:1–4

    Article  CAS  PubMed  Google Scholar 

  • Wingate RJ, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126:4395–4404

    CAS  PubMed  Google Scholar 

  • Wingate RJ, Lumsden A (1996) Persistence of rhombomeric organisation in the postsegmental hindbrain. Development 122:2143–2152

    CAS  PubMed  Google Scholar 

  • Wojcinski A, Lawton AK, Bayin NS, Lao Z, Stephen DN, Joyner AL (2017) Cerebellar granule cell replenishment postinjury by adaptive reprogramming of nestin+ progenitors. Nat Neurosci 20:1361–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in Engrailed-1 mutant mice: an early mid- hindbrain deletion and patterning defects in forelimbs and sternum. Development 120:2065–2075

    CAS  PubMed  Google Scholar 

  • Wylie DR, Hoops D, Aspden JW, Iwaniuk AN (2016) Zebrin II is expressed in sagittal stripes in the cerebellum of dragon lizards (Ctenophorus sp.). Brain Behav Evol 88:177–186

    Article  PubMed  Google Scholar 

  • Xu J, Liu Z, Ornitz DM (2000) Temporal and spatial gradients of Fgf8 and Fgf17 regulate proliferation and differentiation of midline cerebellar structures. Development 127:1833–1843

    CAS  PubMed  Google Scholar 

  • Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M, Schuller U, Machold R, Fishell G, Rowitch DH et al (2008) Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell 14:135–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R, Wang M, Wang J, Huang X, Gao WQ (2015) Cell division mode change mediates the regulation of cerebellar granule neurogenesis controlled by the sonic hedgehog signaling. Stem Cell Reports 5:816–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeung J, Goldowitz D (2017) Wls expression in the rhombic lip orchestrates the embryonic development of the mouse cerebellum. Neuroscience 354:30–42

    Article  CAS  PubMed  Google Scholar 

  • Yeung J, Ha TJ, Swanson DJ, Choi K, Tong Y, Goldowitz D (2014) Wls provides a new compartmental view of the rhombic lip in mouse cerebellar development. J Neurosci 34:12527–12537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yopak KE, Montgomery JC (2008) Brain organization and specialization in deep-sea chondrichthyans. Brain Behav Evol 71:287–304

    Article  PubMed  Google Scholar 

  • Yopak KE, Lisney TJ, Collin SP, Montgomery JC (2007) Variation in brain organization and cerebellar foliation in chondrichthyans: sharks and holocephalans. Brain Behav Evol 69:280–300

    Article  PubMed  Google Scholar 

  • Zanin JP, Abercrombie E, Friedman WJ (2016) Proneurotrophin-3 promotes cell cycle withdrawal of developing cerebellar granule cell progenitors via the p75 neurotrophin receptor. eLife 5:e16654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang L, Goldman JE (1996) Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16:47–54

    Article  PubMed  Google Scholar 

  • Zhao H, Ayrault O, Zindy F, Kim JH, Roussel MF (2008) Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenetic proteins suppresses medulloblastoma development. Genes Dev 22:722–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Lin Z, Voges K, Ju C, Gao Z, Bosman LW, Ruigrok TJ, Hoebeek FE, De Zeeuw CI, Schonewille M (2014) Cerebellar modules operate at different frequencies. elife 3:e02536

    Article  PubMed  PubMed Central  Google Scholar 

  • Zordan P, Croci L, Hawkes R, Consalez GG (2008) Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn 237:1726–1735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Butts .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Crown

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Butts, T., Rook, V., Varela, T., Wilson, L., Wingate, R.J.T. (2019). Specification of Granule Cells and Purkinje Cells. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_6-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_6-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics