Skip to main content

Modulatory Role of Neuropeptides in the Cerebellum

  • Living reference work entry
  • First Online:
  • 173 Accesses

Abstract

The initial studies on the existence of neuropeptides in the central nervous system were conducted in the early 1970s. Within the cerebellum approximately 22 neuropeptides have been identified. However, the functional role for many of these different peptides in the cerebellum is largely unknown as their presence and distribution varies between species. Further, to date physiological analysis for many of these peptides has not been carried out to determine the potential importance in cerebellar function. It has been proposed that peptides slowly modulate cerebellar circuits by acting through G protein-coupled receptors in contrast to the fast action of amino acid neurotransmitters that bind to ionotropic receptors. This effect, in turn, could influence the excitable state of an entire neuronal circuit rather than a single neuron. It is not possible to discss all cerbellar peptides in this chapter. The focus will be on two members of the corticotropin-releasing factor (CRF) family of peptides, namely, corticotropin-releasing factor and urocortin. These peptides were chosen as their presence and distribution has been described in multiple species, and their function has been investigated to a greater extent than any of the other peptides found in the cerebellum. A review of the distribution of these peptides, as well as a discussion of their cognate receptors, is included. Data on the functional role of both peptides is presented. It is clear that complex interactions take place between these peptides and other transmitters in the cerebellum. The physiological data suggest that CRF is essential for normal cerebellar-mediated motor performance. There is less data on the physiological role of urocortin (UCN) in the cerebellum. To date, it has been shown that UCN increases the spontaneous firing rate of Purkinje cells. The mechanisms by which this occurs are yet to be determined. Considering there are many other peptides in the cerebellum, it becomes clear that modulation by these peptides must be seriously considered when analyzing and interpreting physiological data related to cerebellar circuitry. The classic view that only glutamatergic or GABAergic inputs are relevant when describing the effects on firing rate, patterns of activation, output of the cortex, or nuclei no longer is valid. Peptides are an integral component of cerebellar function and must be considered to completely understand cerebellar function.

This is a preview of subscription content, log in via an institution.

References

  • Aldenhoff JB, Gruol DL, Rivier J, Vale W et al (1983) Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons. Science 221:875–877

    CAS  PubMed  Google Scholar 

  • Baigent SM, Lowry PJ (2000) Urocortin is the principal ligand for the corticotrophin-releasing factor binding protein in the ovine brain with no evidence for a sauvagine-like peptide. J Mol Endocrinol 24:53–63

    CAS  PubMed  Google Scholar 

  • Bale TL, Vale WW (2004) CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 44:525–557

    CAS  PubMed  Google Scholar 

  • Barmack NH, Young WS (1988) Optokinetic stimulation increases corticotropin releasing factor mRNA in inferior olivary neurons of rabbits. Proc Soc Neurosci 14:758

    Google Scholar 

  • Batini C, Buisseret-Delmas C, Compoint C, Daniel H (1989) The GABAergic neurones of the cerebellar nuclei in the rat: projections to the cerebellar cortex. Neurosci Lett 99:251–256

    CAS  PubMed  Google Scholar 

  • Batini C, Compoint C, Buisseret-Delmas C, Daniel H et al (1992) Cerebellar nuclei and the nucleocortical projections in the rat: retrograde tracing coupled to GABA and glutamate immunohistochemistry. J Comp Neurol 315:74–84

    CAS  PubMed  Google Scholar 

  • Behan DP, Grigoriadis DE, Lovenberg TW, Chalmers DT et al (1996) Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders. Mol Psychiatry 1:265–277

    CAS  PubMed  Google Scholar 

  • Beitz AJ, Saxon D (2004) Harmaline-induced climbing fiber activation causes amino acid and peptide release in the rodent cerebellar cortex and a unique temporal pattern of Fos expression in the olivo-cerebellar pathway. J Neurocytol 33:49–74

    CAS  PubMed  Google Scholar 

  • Bishop GA (1990) Neuromodulatory effects of corticotropin releasing factor on cerebellar Purkinje cells: an in vivo study in the cat. Neuroscience 39:251–257

    CAS  PubMed  Google Scholar 

  • Bishop GA (1998) Brainstem origin of corticotropin-releasing factor afferents to the nucleus interpositus anterior of the cat. J Chem Neuroanat 15:143–153

    CAS  PubMed  Google Scholar 

  • Bishop GA, King JS (1999) Corticotropin releasing factor in the embryonic mouse cerebellum. Exp Neurol 160:489–499

    CAS  PubMed  Google Scholar 

  • Bishop GA, Seelandt CM, King JS (2000) Cellular localization of corticotropin releasing factor receptors in the adult mouse cerebellum. Neuroscience 101:1083–1092

    CAS  PubMed  Google Scholar 

  • Bishop GA, Tian JB, Stanke JJ, Fischer AJ et al (2006) Evidence for the presence of the type 2 corticotropin releasing factor receptor in the rodent cerebellum. J Neurosci Res 84:1255–1269

    CAS  PubMed  Google Scholar 

  • Bittencourt JC, Sawchenko PE (2000) Do centrally administered neuropeptides access cognate receptors? an analysis in the central corticotropin-releasing factor system. J Neurosci 20:1142–1156

    CAS  PubMed  Google Scholar 

  • Bittencourt JC, Vaughan J, Arias C, Rissman RA et al (1999) Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J Comp Neurol 415:285–312

    CAS  PubMed  Google Scholar 

  • Bloom FE, Battenberg ELF, Rivier J, Vale W (1982) Corticotropin releasing factor (CRF): immunoreactive neurones and fibers in rat hypothalamus. Regul Pept 4:43–48

    CAS  PubMed  Google Scholar 

  • Brown MR, Fisher LA, Spiess J, Rivier C et al (1982) Corticotropin-releasing factor: actions on the sympathetic nervous system and metabolism. Endocrinology 111:928–931

    CAS  PubMed  Google Scholar 

  • Cha CI, Foote SL (1988) Corticotropin-releasing factor in olivocerebellar climbing-fiber system of monkey (Saimiri sciureus and Macaca fascicularis): parasagittal and regional organization visualized by immunohistochemistry. J Neurosci 8:4121–4137

    CAS  PubMed  Google Scholar 

  • Chai SY, Tarjan E, McKinley MJ, Paxinos G et al (1990) Corticotropin-releasing factor receptors in the rabbit brain visualized by in vitro autoradiography. Brain Res 512:60–69

    CAS  PubMed  Google Scholar 

  • Chalmers DT, Lovenberg TW, Grigoriadis DE, Behan DP et al (1996) Corticotropin-releasing factor receptors: from molecular biology to drug design. TIPS 17:166–172

    CAS  PubMed  Google Scholar 

  • Chen FM, Bilezikjian LM, Perrin MH, Rivier J et al (1986) Corticotropin releasing factor receptor-mediated stimulation of adenylate cyclase activity in the rat brain. Brain Res 381:49–57

    CAS  PubMed  Google Scholar 

  • Chen Y, Brunson KL, Muller MB, Cariaga W et al (2000) Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF(1))-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus. J Comp Neurol 420:305–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contarino A, Dellu F, Koob GF, Smith GW et al (2000) Dissociation of locomotor activation and suppression of food intake induced by CRF in CRFR1-deficient mice. Endocrin 141:2698–2702

    CAS  Google Scholar 

  • Cummings SL (1989) Distribution of corticotropin-releasing factor in the cerebellum and precerebellar nuclei of the cat. J Comp Neurol 289:657–675

    CAS  PubMed  Google Scholar 

  • Cummings S, Elde R, Ells J, Lindall A (1983) Corticotropin-releasing factor immunoreactivity is widely distributed within the central nervous system of the rat: an immunohistochemical study. J Neurosci 3:1355–1368

    CAS  PubMed  Google Scholar 

  • Cummings S, Sharp B, Elde R (1988) Corticotropin-releasing factor in cerebellar afferent systems: a combined immunohistochemistry and retrograde transport study. J Neurosci 8:543–554

    CAS  PubMed  Google Scholar 

  • Cummings SL, Young WS III, Bishop GA, DeSouza EB et al (1989) Distribution of corticotropin releasing factor in the cerebellum and precerebellar nuclei of the opossum: a study utilizing immunohistochemistry, in situ hybridization and receptor binding. J Comp Neurol 280:501–521

    CAS  PubMed  Google Scholar 

  • Cummings SL, Young WS III, King JS (1994) Early development of cerebellar afferent systems that contain corticotropin-releasing factor. J Comp Neurol 350:534–549

    CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Hauger RL (2002) The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 23:71–77

    CAS  PubMed  Google Scholar 

  • Dautzenberg FM, Kilpatrick GJ, Hauger RL, Moreau J (2001) Molecular biology of the CRH receptors – in the mood. Peptides 22:753–760

    CAS  PubMed  Google Scholar 

  • De Souza EB (1995) Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 20:789–819

    PubMed  Google Scholar 

  • De Souza EB, Insel TR (1990) Corticotropin releasing factor (CRF) receptors in the rat central nervous system: autoradiographic localization studies. In: DeSouza EB, Nemeroff CB (eds) Basic and clinical studies of a neuropeptide. CRC Press, Boca Raton, pp 69–90

    Google Scholar 

  • Dirks A, Fish EW, Kikusui T, van der GJ et al (2002) Effects of corticotropin-releasing hormone on distress vocalizations and locomotion in maternally separated mouse pups. Pharmacol Biochem Behav 72:993–999

    CAS  PubMed  Google Scholar 

  • Errico P, Barmack NH (1993) Origins of cerebellar mossy and climbing fibers immunoreactive for corticotropin-releasing factor in the rabbit. J Comp Neurol 336:307–320

    CAS  PubMed  Google Scholar 

  • Fox EA, Gruol DL (1993) Corticotropin-releasing factor suppresses the after hyperpolarization in cerebellar Purkinje neurons. Neurosci Lett 149:103–107

    CAS  PubMed  Google Scholar 

  • Gounko NV, Rybakin V, Kalicharan D, Siskova Z et al (2005) CRF and urocortin differentially modulate GluRdelta2 expression and distribution in parallel fiber-Purkinje cell synapses. Mol Cell Neurosci 30:513–522

    CAS  PubMed  Google Scholar 

  • Gysling K, Forray MI, Haeger P, Daza C et al (2004) Corticotropin-releasing hormone and urocortin: redundant or distinctive functions? Brain Res Brain Res Rev 47:116–125

    CAS  PubMed  Google Scholar 

  • Harlé G, Lalonde R, Fonte C, Ropars A, Frippiat JP, Strazielle C (2017) Repeated corticosterone injections in adult mice alter stress hormonal receptor expression in the cerebellum and motor coordination without affecting spatial learning. Behav Brain Res 326:121–131

    PubMed  Google Scholar 

  • Hokfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867–879

    CAS  PubMed  Google Scholar 

  • Iino K, Sasano H, Oki Y, Andoh N et al (1999) Urocortin expression in the human central nervous system. Clin Endocrinol 50:107–114

    CAS  Google Scholar 

  • Inda C, Armando NG, dos Santos Claro PA, Silberstein S (2017) Endocrinology and the brain: corticotropin-releasing hormone signaling. Endocrine Connect 6:R99–R120

    CAS  Google Scholar 

  • Ito M (2001) Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 81:1143–1195

    CAS  PubMed  Google Scholar 

  • Ito M (2009) Functional roles of neuropeptides in cerebellar circuits. Neuroscience 162:666–672

    CAS  PubMed  Google Scholar 

  • Ito M, Miyata M (1999) Corticotropin-releasing factor (CRF) and its role in the central nervous system. Results Probl Cell Differ 26:43–66

    CAS  PubMed  Google Scholar 

  • King JS, Madtes PC Jr, Bishop GA, Overbeck TL (1997) The distribution of corticotropin-releasing factor (CRF), CRF binding sites and CRF receptor mRNA in the mouse cerebellum. Prog Brain Res 114:55–66

    CAS  PubMed  Google Scholar 

  • Kitahama K, Luppi P-H, Tramu G, Sastre J-P et al (1988) Localization of CRF-immunoreactive neurons in the cat medulla oblongata: their presence in the inferior olive. Cell Tiss Res 251:137–143

    CAS  Google Scholar 

  • Lai YY, Siegel JM (1997) Brainstem-mediated locomotion and myoclonic jerks. II pharmacological effects. Brain Res 745:265–270

    CAS  PubMed  Google Scholar 

  • Landsend AS, miry-Moghaddam M, Matsubara A, Bergersen L et al (1997) Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J Neurosci 17:834–842

    CAS  PubMed  Google Scholar 

  • Lee KH, Bishop GA, Tian JB, King JS (2004) Evidence for an axonal localization of the type 2 corticotropin releasing factor receptor during postnatal development of the mouse cerebellum. Exp Neurol 187:11–22

    CAS  PubMed  Google Scholar 

  • Lewis K, Li C, Perrin MH, Blount A et al (2001) Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci U S A 98:7570–7575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Vaughan J, Sawchenko PE, Vale WW (2002) Urocortin III-immunoreactive projections in rat brain: partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression. J Neurosci 22:991–1001

    CAS  PubMed  Google Scholar 

  • Libster AM, Title B, Yarom Y (2017) Cortiotropin-releasing factor increases Purkinje neuron excitability by modulting sodium, potassium, and Ih currents. J Neurophysiol 114:3339–3350

    Google Scholar 

  • Linden DJ, Connor JA (1993) Cellular mechanisms of long-term depression in the cerebellum. Curr Opin Neurobiol 3:401–406

    CAS  PubMed  Google Scholar 

  • Lovenberg TW, Chalmers DT, Liu C, De Souza EB (1995a) CRF2 alpha and CRF2 beta receptor mRNAs are differentially distributed between the rat central nervous system and peripheral tissues. Endocrin 136:4139–4142

    CAS  Google Scholar 

  • Lovenberg TW, Liaw CW, Grigoriadis DE, Clevenger W et al (1995b) Cloning and characterization of a functionally distinct corticotropin-releasing factor receptor subtype from rat brain. Proc Natl Acad Sci U S A 92:836–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowry CA, Rose JD, Moore FL (1996) Corticotropin-releasing factor enhances locomotion and medullary neuronal firing in an amphibian. Horm Behav 30:50–59

    CAS  PubMed  Google Scholar 

  • McCrea RA, Bishop GA, Kitai ST (1977) Morphological and electrophysiological characteristics of projection neurons in the nucleus interpositus of the cat cerebellum. J Comp Neurol 181:397–419

    Google Scholar 

  • Merchenthaler I (1984) Corticotropin releasing factor (CRF)-like immunoreactivity in the rat central nervous system. Extrahypothalamic distribution. Peptides 5:27–32

    Google Scholar 

  • Merchenthaler I, Hynes MA, Vigh S, Shally AV et al (1983) Immunocytochemical localization of corticotropin releasing factor (CRF) in the rat spinal cord. Brain Res 275:373–377

    CAS  PubMed  Google Scholar 

  • Million M, Maillot C, Saunders P, Rivier J et al (2002) Human urocortin II, a new CRF-related peptide, displays selective CRF(2)-mediated action on gastric transit in rats. Am J Physiol Gastrointest Liver Physiol 282:G34–G40

    CAS  PubMed  Google Scholar 

  • Miyata I, Shiota C, Ikeda Y, Oshida Y et al (1999a) Cloning and characterization of a short variant of the corticotropin-releasing factor receptor subtype from rat amygdala. Biochem Biophys Res Commun 256:692–696

    CAS  PubMed  Google Scholar 

  • Miyata M, Okada D, Hashimoto K, Kano M et al (1999b) Corticotropin-releasing factor plays a permissive role in cerebellar long-term depression. Neuron 22:763–775

    CAS  PubMed  Google Scholar 

  • Miyata I, Shiota C, Chaki S, Okuyama S et al (2001) Localization and characterization of a short isoform of the corticotropin-releasing factor receptor type 2alpha (CRF(2)alpha-tr) in the rat brain. Biochem Biophys Res Commun 280:553–557

    CAS  PubMed  Google Scholar 

  • Monnikes H, Heymann-Monnikes I, Tache Y (1992) CRF in the paraventricular nucleus of the hypothalamus induces dose-related behavioral profile in rats. Brain Res 574:70–76

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Nelson BJ (1989) Corticotropin-releasing factor (CRF) in the olivo-cerebellar system and the feline olivary hypertrophy. In: Strata P (ed) The Olivocerebellar system in motor control. Springer, Berlin\Heidelberg\New York, pp 187–197

    Google Scholar 

  • Ohgushi A, Bungo T, Shimojo M, Masuda Y et al (2001) Relationships between feeding and locomotion behaviors after central administration of CRF in chicks. Physiol Behav 72:287–289

    CAS  PubMed  Google Scholar 

  • Olschowka JA, O’Donoghue TL, Meuller GP, Jacobowitz DM (1982) Hypothalamic and extrahypothalamic distribution of CRF-like immunoreactive neurons in the rat brain. Neuroendocrinology 35:305–308

    CAS  PubMed  Google Scholar 

  • Potter E, Sutton S, Donaldson C, Chen R et al (1994) Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc Natl Acad Sci 91:8777–8781

    CAS  PubMed  Google Scholar 

  • Powers RE, DeSouza EB, Walker LC, Price DL et al (1987) Corticotropin-releasing factor as a transmitter in the human olivocerebellar pathway. Brain Res 415:347–352

    CAS  PubMed  Google Scholar 

  • Primus RJ, Yevich E, Baltazar C, Gallager DW (1997) Autoradiographic localization of CRF1 and CRF2 binding sites in adult rat brain. Neuropsychopharmacology 17:308–316

    CAS  PubMed  Google Scholar 

  • Reyes TM, Lewis K, Perrin MH, Kunitake KS et al (2001) Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A 98:2843–2848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richard D, Lin Q, Timofeeva E (2002) The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur J Pharmacol 440:189–197

    CAS  PubMed  Google Scholar 

  • Schmolesky MT, De Ruiter MM, de Zeeuw CI, Hansel C (2007) The neuropeptide corticotropin-releasing factor regulates excitatory transmission and plasticity at the climbing fibre-Purkinje cell synapse. Eur J Neurosci 25:1460–1466

    CAS  PubMed  Google Scholar 

  • Skelton KH, Owens MJ, Nemeroff CB (2000) The neurobiology of urocortin. Regul Pept 93:85–92

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Koob GF, Aldenhoff JB (1986a) The effects of verapamil on the locomotor-activating properties of corticotropin releasing factor (CRF) in the rat. Psychoneuroendocrinology 11:237–240

    CAS  PubMed  Google Scholar 

  • Swerdlow NR, Vaccarino FJ, Amalric M, Koob GF (1986b) The neural substrates for the motor-activating properties of psychostimulants: a review of recent findings. Pharmacol Biochem Behav 25:233–248

    CAS  PubMed  Google Scholar 

  • Swinny JD, Kalicharan D, Gramsbergen A, Van der Want JJL (2002) The localization of urocortin in the adult rat cerebellum: a light and electron microscopic study. Neuroscience 114:891–903

    CAS  PubMed  Google Scholar 

  • Takahashi K, Totsune K, Sone M, Murakami O et al (1998) Regional distribution of urocortin-like immunoreactivity and expression of urocortin mRNA in the human brain. Peptides 19:643–647

    CAS  PubMed  Google Scholar 

  • Tao J, Zhang Y, Huang H, Jiang X (2009) Activation of corticotropin-releasing factor 2 receptor inhibits Purkinje neuron P-type calcium currents via G(o)alpha-dependent PKC epsilon pathway. Cell Signal 21:1436–1443

    CAS  PubMed  Google Scholar 

  • Tian JB, Bishop GA (2003) Frequency dependent expression of CRF in the rat cerebellum. Neuroscience 121:363–377

    CAS  PubMed  Google Scholar 

  • Tian JB, Shan X, Bishop GA, King JS (2006) Presynaptic localization of a truncated isoform of the type two corticotrophin releasing factor receptor. Neuroscience 138:691–702

    CAS  PubMed  Google Scholar 

  • Tian JB, King JS, Bishop GA (2008) Stimulation of the inferior olivary complex alters the distribution of the type 1 corticotropin releasing factor receptor in the adult rat cerebellar cortex. Neuroscience 153:308–317

    CAS  PubMed  Google Scholar 

  • Timofeeva E, Huang Q, Richard D (2003) Effects of treadmill running on brain activation and the corticotropin-releasing hormone system. Neuroendocrinology 77:388–405

    CAS  PubMed  Google Scholar 

  • Tolbert DL, Bantli H, Bloedel JR (1978) Organizational features of the cat and monkey cerebellar nucleocortical projection. J Comp Neurol 182:39–56

    CAS  PubMed  Google Scholar 

  • van den Dungen HM, Groenwegen HJ, Tilders FJH et al (1988) Immunoreactive corticotropin releasing factor in adult and developing rat cerebellum: its presence in climbing and mossy fibers. J Chem Neuroanat 1:339–349

    PubMed  Google Scholar 

  • Vasconcelos LA, Donaldson C, Sita LV, Casatti CA et al (2003) Urocortin in the central nervous system of a primate (Cebus apella): sequencing, immunohistochemical, and hybridization histochemical characterization. J Comp Neurol 463:157–175

    CAS  PubMed  Google Scholar 

  • Vaughan J, Donaldson C, Bittencourt J, Perrin MH et al (1995) Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378:287–292

    CAS  PubMed  Google Scholar 

  • Verhage M, McMahon HT, Ghijsen WEJM, Bomsma F et al (1991) Differential release of amino acids, neuropeptides, and catecholemines from isolated nerve terminals. Neuron 6:517–524

    CAS  PubMed  Google Scholar 

  • Watabe T, Levidiotis ML, Oldfield B, Wintour EM (1991) Ontogeny of corticotrophin-releasing factor (CRF) in the ovine fetal hypothalamus: use of multiple CRF antibodies. J Endocrinol 129:335–341

    CAS  PubMed  Google Scholar 

  • Weitemier AZ, Tsivkovskaia NO, Ryabinin AE (2005) Urocortin 1 distribution in mouse brain is strain-dependent. Neuroscience 132:729–740

    CAS  PubMed  Google Scholar 

  • Yamano M, Tohyama M (1994) Distribution of corticotropin releasing factor and calcitonin gene-related peptide in the developing mouse cerebellum. Neurosci Res 19:387–396

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia A. Bishop .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Bishop, G.A., King, J.S. (2019). Modulatory Role of Neuropeptides in the Cerebellum. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_41-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_41-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics