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Preface

I hope you will enjoy my book. Inside you will find advanced and contemporary
topics and techniques on Volterra difference equations. It is my intention to make
this book accessible to postgraduate students with basic knowledge in differential
equations, difference equations, and real analysis. The subject of Volterra difference
equations is a vast and widely open subject with plenty of opportunities for new re-
search. Volterra difference equations provide more realistic models for broad range
of phenomena in the natural and engineering sciences. In particular, they are used
as mathematical representations of systems for which we know, based on physical
principles, that they satisfy conditions of stability and boundedness.

Motivated by recent increased activity in research, this book will provide a sys-
tematic approach to the study of the qualitative theory of boundedness, periodicity,
and stability of Volterra difference equations. Stability theory is an area that will
continue to be of great interest to researchers for a long time because of the use-
fulness it demonstrates in real life applications. This book attempts to connect two
different aspects: the theoretical part of functional difference equations and its ap-
plications to Volterra difference equations and to population dynamics. The author
will mainly use fixed point theory and Lyapunov functionals to arrive at major re-
sults. By comparing both methods to certain equations, some interesting conclusions
will be drawn regarding the particular application of each method. Since no existing
book or monograph that is solely devoted to Volterra difference equations which
encompasses recent results, this book attempts to fill this void.

Researchers and graduate students who are interested in the method of Lyapunov
functions or functionals, in the study of boundedness of solutions, in the stability of
the zero solution, or in the existence of periodic solutions should be able to use this
book as a primary reference and as a resource of current findings. This book contains
many open problems and should be of great benefit to those who are pursuing re-
search in functional difference equations and in Volterra difference equations. Great
efforts were made to present detailed proofs of theorems so that the book would be
self-contained.

vii



viii Preface

The work done by Volterra and Lyapunov over 100 years ago is still attractive
to researchers today, but first we provide some background on these mathemati-
cians. Vito Volterra (3 May 1860–11 October 1940) was an Italian mathematician
and physicist, known for his contributions to mathematical biology and integral
equations. Born in Ancona, then part of the Papal States, into a very poor fam-
ily, Volterra showed early promise in mathematics before attending the University
of Pisa, where he fell under the influence of Enrico Betti, and where he became
professor of rational mechanics in 1883. He immediately started work developing
his theory of functionals which led to his interest and later contributions in inte-
gral and integro-differential equations. His work is summarized in his book Theory
of Functionals and of Integral and Integro-Differential Equations (1930). Volterra
emphasized consistently that differential equations are, at best, only rough approx-
imations of actual ecological systems. They would apply only to animals without
age or memory, which eat all the food they encounter and immediately convert it
into offspring. Anything more realistic would yield integro-differential rather than
differential equations. This phenomenon will be discussed in Chapter 5.

Lyapunov functions are named after Alexander Lyapunov, a Russian mathemati-
cian who in 1892 published his book The General Problem of Stability of Motion.
In [110], Lyapunov was the first to consider the modifications necessary in non-
linear systems to the linear theory of stability based on linearizing near a point of
equilibrium. His work, initially published in Russian and then translated to French,
received little attention for many years. Interest in Lyapunov stability started sud-
denly during the Cold War period when his method was found to be applicable to
the stability of aerospace guidance systems, which typically contain strong nonlin-
earities not treatable by other methods. More recently the concept of the Lyapunov
exponent related to Lyapunov’s First Method of discussing stability has received
wide interest in connection with chaos theory.

In this book, Chapter 1 offers an introduction to basic difference calculus includ-
ing variation of parameters and the concept of fundamental matrix. In addition, we
provide basic properties of the z-transform and its usefulness in obtaining stability
results concerning Volterra difference equations of convolution type. Later in Chap-
ter 1 we utilize the concept of total stability, which has never been developed and
successfully used in Volterra difference equations. In our case, total stability relies
on using the notion of the resolvent to express the solution of a given Volterra dif-
ference equation. We will derive one of the resolvent equations that we make use
of along with Lyapunov functionals to verify our conditions that explicitly depend
on the resolvent. Then we discuss necessary and sufficient conditions for the uni-
form asymptotic stability of the zero solution which we apply to perturbed Volterra
difference equations. The materials of Chapter 1 are relatively new and it should
serve as an important source for new research ideas which should be of interest for
a long time. We end the chapter by offering new research problems that combine the
concept of resolvent with Lyapunov functionals.
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Chapter 2 is devoted to functional difference equations. Functional equations are
general in nature and encompass results concerning existence of periodic solutions,
boundedness, and stability for autonomous and nonautonomous difference equa-
tions, finite and infinite delay difference equations, and Volterra difference equa-
tions. We consider a functional difference system and prove general theorems re-
garding boundedness of solutions and stability of the zero solution. Our theorems
are based on the assumption that there is a Lyapunov functional that satisfies certain
inequalities in terms of wedges. The general theorems are applied to finite and scalar
and vector Volterra difference equations. In particular, we discuss boundedness of
solutions and the stability of the zero solution by the method of Lyapunov func-
tionals. As for the application part to Volterra difference equations, we will have to
construct suitable Lyapunov functionals that meet all the requirements of our gen-
eral theorems. Such a task is difficult but possible with some guidance. We offer two
general theorems that guide us through the process of constructing such a Lyapunov
functional. It is the author’s view that Lyapunov’s direct method is the leading tech-
nique for dealing with stability and boundedness in many areas of differential and
difference equations. Finally, we provide open problems regarding Volterra differ-
ence systems of advanced type and offer a discussion that makes it possible for the
interested reader to carry on with the proposed research.

Chapter 3 is entirely devoted to the study of fixed point theory in analyzing bounded-
ness and stability in Volterra difference equations or functional difference equations
that we write in the form of Volterra difference equations. The chapter serves as an
introduction to the theory of fixed point and its use in functional difference equa-
tions. Most of the work depends on the three principles: complete metric spaces, the
contraction mapping principle and other type of known fixed point theorems, and an
elementary variation of parameters formula. In the past one hundred and fifty years,
Lyapunov functions/functionals have been exclusively and successfully used in the
study of stability and existence of bounded solutions. However, with the method of
Lyapunov functionals, we are continually faced with unrelenting difficulties. Those
persisting obstacles have forced us to look for other ways to relax stringent condi-
tions, and in particular, for the use of fixed point theory. Lyapunov method requires
pointwise conditions, while many real life applications ask for averages. Differ-
ence equations have solutions expressed as summation equations which justifies
conditions on averages. Another major difficulty is the construction of a suitable
Lyapunov function or functional that yields meaningful results. Deep knowledge
of the theory of difference equations and real analysis is usually needed when us-
ing Lyapunov direct method, unlike the use of fixed point theory. We ease into an
exposition on the use of Lyapunov functionals and fixed point theory in Volterra
summation equations. We provide a variety of results on existence theory and resol-
vent. We include a collection of Lyapunov functionals and techniques, which enable
researchers to obtain fruitful results concerning the qualitative analysis of solutions.
Toward the end of the chapter we compare the method of fixed point theory and
Lyapunov functionals and include open problems.
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Chapter 4 is entirely devoted to the study of periodic solutions and asymptotically
periodic solutions. We begin by introducing known results regarding Volterra differ-
ence equations and then proceed to considering functional difference equations with
finite and infinite delays and appeal to Schaefer fixed point theorem [159] for the
existence of periodic solutions. Then we apply the results to difference equations
and Volterra difference equations. The application in Volterra difference equations
heavily depends on Lyapunov type functionals for obtaining the a priori bound.
We define a homotopy and then appeal to Schaefer’s fixed point theorem [159] to
show the existence of periodic solutions. The results are applied to scalar nonlinear
Volterra difference equations via the use of Lyapunov type functionals. We devote
the next section to the study of the existence of periodic and asymptotically pe-
riodic solutions in coupled infinite delay Volterra systems by using Schauder fixed
point theorem (Theorem 4.7.1). We end the chapter by considering functional differ-
ence systems that have constants as their solutions. We use the contraction mapping
principle to prove theorems concerning the determination of the unique constants
to which each solution converges. It turns out that those constants serve as global
attractors. The chapter concludes by proposing open problems regarding the exis-
tence of periodic and asymptotically periodic solutions of a Volterra type infinite
delay difference equation with the absence of a linear term.

General theorems occupy a central place in the first four chapters. One must ul-
timately face the task of applications. Abstract ideas can be better understood by
analyzing the dynamics of specific equations, especially with applications. With
this philosophy in mind, Chapter 5 is solely dedicated to the applications of func-
tional difference equations and particularly, the applications of Volterra difference
equations to population dynamics. We begin the chapter by introducing different
types of population models. Cone theory is introduced and utilized to prove the ex-
istence of positive periodic solutions for functional difference equations. Then, we
introduce an infinite delay population model that governs the growth of population
N(n) of a single species whose members compete among themselves for the limited
amount of food that is available to sustain the population. We use the results of the
previous section to obtain the existence of a positive periodic solution. Moreover,
from a biologist’s point of view, the idea of permanence plays a central role in any
competing species. This phenomenon is studied by considering an (l +m)-species
Lotka-Volterra competition-predation system with several delays.

Chapter 6 pertains to results on the exponential stability, lp-stability, and instability
of the zero solution, using Lyapunov functionals. In our quest for the perfect Lya-
punov functional, we discover different types of boundedness and stabilities. We
begin the chapter by considering the use of Lyapunov direct method to obtain expo-
nential stability for scalar Volterra difference equations and compare our results to
existing literature. It turns out that our Lyapunov direct method for scalar equations
cannnot be extended to systems, nor to Volterra equations with infinite delay. We
next proceed to the study of nonlinear Volterra difference systems and use a combi-
nation of Lyapunov functionals of convolution type coupled with the z-transform to
obtain boundedness and stability. In addition, we look into the lp-stability of the zero
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solution and its connection with exponential stability. Toward the end of the chapter,
we present relatively unexplored area. That is, we utilize a nonstandard discretiza-
tion scheme and apply it to continuous Volterra integro-differential equations. We
will show that under our discretization scheme the stability of the zero solution of
the continuous dynamical system is preserved. Also, under the same discretization,
using a combination of Lyapunov functionals, Laplace transforms, and z-transforms,
we show that the boundedness of solutions of the continuous dynamical system is
preserved. We end the chapter with a brief section introducing semigroup, which
should give rise to increased research in the application of semigroup to Volterra
difference equations. The chapter concludes with multiple open problems.

I would like to thank current and previous chairs of the Department of Mathematics
at the University of Dayton for their unwavering support. Also, I would like to thank
my colleagues Dr. Paul Eloe for his encouragement and reading the manuscript,
Dr. Muhammad Islam, Dr. Aparna Higgins for her careful reading part of the book,
and Dr. Arthur Busch for his technical support.

A special thank you goes to my brothers Melhem, Tony, Khalil, and Hanna, and
to my sisters Mona, Samira, and Lola.

Heartfelt appreciation goes to my two favorite teachers from my hometown Miziara:
Father Hanna Al Bacha and Mr. Fayez Karam.

Dayton, OH, USA Youssef N. Raffoul
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Chapter 1
Stability and Boundedness

In this chapter we provide a brief introduction to difference calculus including ba-
sic material on Volterra difference equations. Using the z-transform we state some
known theorems regarding stability of the zero solution of Volterra difference equa-
tions of convolution types. We move on to introducing Lyapunov functions for au-
tonomous difference equations and state some known results concerning stability
and boundedness. In Section 1.3 we introduce the concept of total stability and its
correlation with uniform asymptotic stability for perturbed Volterra difference equa-
tions. In addition, we introduce the corresponding resolvent equations and utilize
them to express the solution of the considered Volterra difference equation. Once
the solution is explicitly given, we prove theorems concerning the stability of the
zero solution. In Section 1.4, we obtain necessary and sufficient conditions of the
stability of the zero solution of Volterra vector difference equations using the no-
tion of resolvent. The resolvent is an abstract term which makes it difficult, if not
impossible, to make efficient use of it. However, by the help of Lyapunov func-
tionals, we will be able to verify all the conditions that are related to the resolvent.
In Section 1.4.1 we apply the results of Section 1.4 to perturbed nonlinear scalar
Volterra difference equations. Conditions will be verified using a combination of
Lyapunov functional and the resolvent. In addition, we review some known results
that have incorporated the concept of resolvent and point out some of the difficulties
in verifying some of the conditions on the resolvent. We end the chapter with some
interesting open problems that should be somewhat challenging.
Most of the work in this chapter can be found in [36, 52, 61, 65, 83, 115, 117, 143]
and the references therein.

© Springer Nature Switzerland AG 2018
Y. N. Raffoul, Qualitative Theory of Volterra Difference Equations,
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2 1 Stability and Boundedness

1.1 Introduction

In this book, the sets Z−, Z+,N,R, and R
+ denote the set of nonpositive integers,

all integers, the set of nonnegative integers, the set of natural numbers, the set of
real numbers, and the set of nonnegative real numbers, respectively. Let x(t) be a
sequence such that x : Z→R. We define the delta difference operator �y(t) by

�y(t) = y(t + 1)− y(t).

Also, the shift operator E where E : Z→R is defined by

Ey(t) = y(t + 1).

The second order difference is given by

�2y(t) =�(�y(t)) = y(t + 2)− 2y(t+ 1)+ y(t).

The anti-difference of y(t) denoted by ∑y(t) is any function so that �(∑y(t)) =

y(t) for all t in the domain of y. It is easy to see that �(
t−1

∑
s=p

y(s)
)
= y(t) for fixed

p with t > p, and �(
p

∑
s=t−1

y(s)
)
=−y(t −1) for fixed p with p > t. Corresponding

to the fundamental theorem of calculus we have
t−1

∑
s=a

�y(s) = y(t)− y(a). We will

assume that
b

∑
s=a

y(s) = 0 for all a > b. We denote the product of y(t) from t = a to b

by
b

∏
t=a

y(t) with the understanding that
b

∏
t=a

y(t) = 1 for all a > b.

A linear Volterra difference equation is of the form

x(n+ 1) = a(n)x(n)+
n−1

∑
s=0

C(n,s)x(s) (1.1.1)

where a is a given sequence and x is an unknown function to be found. Equa-
tion (1.1.1) is scalar if all sequences are scalars, and vector if a and x are k × 1
sequences and C is an k × k matrix. Equation (1.1.1) is of convolution type if
C(n,s) =C(n− s). To see the usefulness of Volterra difference equations, one may
not look any further than the completely delayed difference equation

x(t + 1) = b(t)x(t − h) (1.1.2)

where h ∈ Z
+ and b : Z+ →R. Due to the absence of a linear term in x(t) in (1.1.2),

it is hard to obtain any useful information regarding the solutions. To overcome such
difficulties, we rewrite (1.1.2) in the form of Volterra difference equation, see [138].
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That is,

�x(t) =
(
b(t + h)− 1

)
x(t)−�t

t−1

∑
s=t−h

b(s+ h)x(s).

As we shall see later in the book that a Lyapunov functional of the form

V (t) =
[
x(t)+

t−1

∑
s=t−h

b(s+ h)x(s)
]2

+ δ
−1

∑
s=−h

t−1

∑
z=t+s

b2(z+ h)x2(z)

leads to the exponential stability of the zero solution of (1.1.2) under the assumption
that

− δ
(δ + 1)h

≤ Q(t)≤−δhb2(t + h)−Q2(t),

hold for some δ > 0 and Q(t) = b(t + h)− 1.
Also, it is well known, [12, 20], and [109], that Volterra difference equations play a
major role in numerical methods applied to Volterra integro-differential equations.
Discrete Volterra systems arise in studying numerical solutions of Volterra integro-
differential equations and from modeling systems that are digital, such as digital
filters and computer controlled systems and traffic control [160]. Also, Volterra dis-
crete systems are accurately used to model nonlinear systems (such as aircraft flight
in high angle-of-attack/sideslip flight) see [124]. Hence, studying the qualitative be-
havior of solutions of Volterra discrete systems is essential. Throughout this book,
we loosely interchange “sequences” and “functions.”
The study of difference equations in general is necessitated by the fact that the pas-
sage from the continuous case to the discrete case is not trivial, as we show next.
First, we have the following. Consider the nonautonomous nonlinear system

x′(t) = f (t,x(t)), t ≥ 0, (1.1.3)

(1.1.4)

where x(t) ∈ R
k, f : Z+ ×D → R

k where D ⊂ R
k and open. If V (t,x) is a scalar

function and x(t) is an unknown solution of (1.1.3), we may compute

dV (t,x(t))
dt

= gradV(t,x) · f (t,x)+
∂V
∂ t

.

We denote this derivative by V ′(t,x).
Consider the nonlinear delay differential equation

x′(t) =−a(t)x3(t)+ b(t)x3(t − τ), τ ∈R
+
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where the functions a(t) and b(t) are continuous. Assume that

a(t)≥ |b(t + τ)|+ k,

for some k > 0. Define the Lyapunov functional

V (t,xt) = |x(t)|+
∫ t

t−τ
|b(s+ τ)||x3(s)|ds.

Then along the solutions we have that

V ′(t,xt)≤ (−a(t)+ |b(t+ τ)|)x3(t)≤−k|x3(t)|.

Then an argument in a result of Burton [21] yields uniform asymptotic stability.
As for the discrete case, we consider

x(n+ 1) =−a(n)x3(n)+ b(n)x3(n− τ), τ ∈ Z
+.

Define the Lyapunov functional

V (n,xn) = |x(n)|+
n−1

∑
s=n−τ

(|b(s+ τ)||x3(s)|).

Then along the solutions we have

�V (n,xn) ≤ |a(n)||x3(n)|+ |b(n)||x3(n− τ)|− |x(n)|
+ |b(n+ τ)||x3(n)|− |b(n)||x3(n− τ)|
= (|a(n)|+ |b(n+ τ)|)|x3(n)|− |x(n)|. (1.1.5)

It is clear that nothing can be concluded from inequality (1.1.5).

Definition 1.1.1. A sequence x(t) is said to be of exponential order if there exists a
number r > 0, and an integer N > 0 such that

|x(t)| ≤ rρ t f or all t > N,

where ρ ≥ 0 is some suitable constant.

Definition 1.1.2. The z-transform Z [x(t)] of a sequence x(t) of exponential order is
defined by

x̃(z) = Z [x(t)] =
∞

∑
t=0

x(t)z−t , |z|> ρ ,

where z is a complex number, and ρ is the radius of convergence of Z [x(t)] .

Next we consider the scalar difference equation

y(n+ 1) = a(n)y(n)+ g(n,x(n)), y(n0) = y0. (1.1.6)
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We have the following theorem, which introduces the variation of parameters for-
mula of (1.1.6).

Theorem 1.1.1. Suppose a(n) 	= 0 for all n ∈ N. Then, y(n) is a solution of (1.1.6)
if and only if

y(n) =
( n−1

∏
i=n0

a(i)
)

y0 +
n−1

∑
r=n0

n−1

∏
i=r+1

a(i)g(r,x(r)). (1.1.7)

Note that if a(n) = 0, then (1.1.7) is not a solution of (1.1.6). We have a parallel
variation of parameters formula for vector difference equations. To be precise, we
consider the vector difference equation

y(n+ 1) = D(n)y(n)+ g(n), y(n0) = y0, (1.1.8)

where D is a k × k matrix function, g is a k × 1 vector function, and y is a k × 1
unknown vector.

Definition 1.1.3. If Φ(n) is a matrix that is nonsingular for n = n0 and satisfies

x(n+ 1) = D(n)x(n), (1.1.9)

then it is said to be a fundamental matrix for system (1.1.9).

In the autonomous case when D is a constant matrix, Φ(n) = Dn−n0 , and if n0 = 0,
then Φ(n) = Dn.

Theorem 1.1.2. Let Φ(n) be the fundamental matrix of (1.1.9) and I be the k× k
identity matrix. Then, y(n) is a solution of (1.1.8) if and only if

y(n) =Φ(n)Φ−1(n0)y0 +
n−1

∑
s=n0

Φ(n)Φ−1(s+ 1)g(s). (1.1.10)

For the autonomous case when D is a constant matrix, the solution of (1.1.8) is
given by

y(n) = Dn−n0y0 +
n−1

∑
s=n0

Dn−s−1g(s).

For more on the fundamental matrix solution, we ask the reader to consult [57] and
[92].
In the next few pages we review some of the literature that exists on the scalar
Volterra difference equation

x(n+ 1) = a(n)x(n)+
n

∑
j=0

b(n− j)x( j), (1.1.11)

where n∈Z
+,a(n)∈R, and b :Z+ →R are given sequences. Equation (1.1.11) may

be considered as the discrete analogue of the famous Volterra integro-differential
equation
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x′(t) = a(t)x(t)+
∫ t

0
b(t − s)x(s)ds.

Equation (1.1.11) represents a system in which the future state x(n+1) depends not
only on the present state x(n) but also on all past states x(n− 1),x(n− 2), . . . ,x(0).
Equation (1.1.11) plays a major role in modeling as we shall see in the next example.

Example 1.1 ([57, 100]). Let x(n) denote the fraction of susceptible individuals in
a certain population during the nth day of an epidemic, and let a(k) > 0 be the
measure of how infectious the infected individuals are during the kth day. Then the
spread of an epidemic may be modeled by the equation

Ln
1

x(n+ 1)
=

n

∑
j=0

(1+ ε− x(n− j))a( j),

where ε > 0, and small and n ∈ Z
+. Let x(n) = e−y(n), then the above model trans-

forms into

y(n+ 1) =
n

∑
j=0

(a(n− j)(1+ ε− e−y( j)). (1.1.12)

Since x(n) ∈ [0,1), we have y(n) ≥ 0 for all solutions of (1.1.12). During the early
stages of the epidemic x(n) is close to 1, and consequently y(n) is close to zero.
Hence it is reasonable to linearize (1.1.12) around 0. So if we replace e−y( j) by
1− y( j), (1.1.12) becomes

y(n+ 1) =
n

∑
j=0

(a(n− j)(ε+ y( j)), y(0) = 0. (1.1.13)

We will return to (1.1.13). Next we give a brief introduction on how discrete Volterra
systems arise in studying numerical solutions of Volterra integro-differential equa-
tions (see [161]). Consider the Volterra integro-differential equation that models the
growth of a single specie (see [43, 44])

x′(t) =−λ
(
1+ cx(t)

)∫ t

−∞
(t − s)e−(t−s)x(s)ds, t ≥ 0 x(t) = φ(t), t ≤ 0 (1.1.14)

where φ(t) is any continuous known initial function. Set

ψ(t) =
∫ 0

−∞
(t − s)e−(t−s)φ(s)ds

and rewrite (1.1.14)

x′(t) =−λ
(
1+ cx(t)

)(
ψ(t)+

∫ t

0
(t − s)e−(t−s)x(s)ds

)
, t ≥ 0. (1.1.15)
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For simplicity we set c = 1 and the kernel

k(t − s) := (t − s)e−(t−s).

Divide the interval [0, t] into n intervals of equal length h with t = tn, and t j = jh, j =
0, . . .n. Let φ j = φ( jh); ψ j =Ψ( jh), k j = k( jh), where h is fixed. We use the θ -rule
to approximate the integral. Thus we have

∫ tn

0
k(tn − s)x(s)ds =

n−1

∑
j=0

∫ t j+1

t j

k(tn − s)x(s)ds ≈ h
n

∑
j=0

w(n)
j k(tn − j)x( j),

where x( j) denotes a numerical approximation to x(t j) and

{w(n)
0 ,w(n)

1 , . . . ,w(n)
n−1,w

(n)
n }= {θ , . . . ,1,1−θ}, 0 ≤ θ ≤ 1

and ∑n
j=0 w(n)

j = n, n ≥ 0. Letting θ = 1, and x′ =
x(n+ 1)− x(n)

h
, we get

x(n+ 1) = x(n)−λh(1+ x(n))
(
ψn + h

n

∑
j=0

k(n− j)x( j)
)
, n ≥ 0 x(0) = φ(0)

Letting b(n) =−λh2k(n), g(n,x(n)) =−λhψnx(n), f (n) =−λhψn and q(x(n)) =

x(n)
n

∑
j=0

b(n− j)x( j), we arrive at the Volterra difference equation of convolution

type

x(n+ 1) = x(n)+
n

∑
j=0

b(n− j)x( j)+ f (n)+ g(n,x(n))+ q(x(n)),

x(0) = φ(0).

The above Volterra difference equation of convolution type will be studied in Sec-
tion 5.3 of Chapter 5. We will revisit the subject of discretization scheme in Chap-
ter 6.
Let C(n) denote the set of functions φ : [0,n]∩Z

+ → R and ‖φ‖ = sup{|φ(s)| :
0 ≤ s ≤ n}. For each n0 ∈ Z

+ and φ ∈C(n0), there is a unique function x : Z+ → R

which satisfies (1.1.11) on [n0,+∞) with x(s) = φ(s) for 0≤ s ≤ n0. Such a function
x(n) is called a solution of (1.1.11) through (n0,φ) and is denoted by x(n,n0,φ).

Definition 1.1.4. The zero solution of (1.1.11) is

1. stable (S) if for each ε > 0, there is a δ = δ (n0,ε) > 0 such that [n0 ≥ 0,φ ∈
C(n0), ‖φ‖< δ ] imply |x(n,n0,φ)|< ε for all n ≥ n0.

2. It is uniformly stable (US) if it is stable and δ is independent of n0.
3. It is asymptotically stable (AS) if it is (S) and |x(n,n0,φ)| → 0, as n → ∞.
4. It is uniformly asymptotically stable (UAS) if it is uniformly stable and if there

is an η > 0 such that, for each γ > 0, there is a T > 0 such that
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|x0|< η , n0 ≥ 0, and n ≥ n0 +T

imply |x(n,n0,x0)|< γ.

The convolution of two sequences x(n) and y(n) is defined as

x(n)∗ y(n) =
n

∑
j=0

x(n− j)y( j) =
n

∑
j=0

x(n)y(n− j),

and hence it is known that

Z(x(n)∗ y(n)) = x̃(z) · ỹ(z).

With this in mind, (1.1.11) maybe written as

x(n+ 1) = a(n)x(n)+ b(n)∗ x(n).

By taking the z-transform on both sides, one arrives at

x̃(z) = zx(0)g−1(z), (1.1.16)

where
g(z) = z− a− b̃(z). (1.1.17)

Theorem 1.1.3 ([56, 57, 59]). The zeros of g(z) all lie in the region |z|< c for some
real positive constant c. Moreover, g(z) has finitely many z with |z| ≥ 1, provided
that x(n) ∈ l1 (summable ∑∞

i=0 |x(i)|= ||x||1 <∞.)

Theorem 1.1.4 ([56, 57, 58, 59]). Suppose that b(n) does not change sign for n ∈
Z
+. Then the zero solution of (1.1.11) is (AS) if

|a(n)|+ ∣∣
∞

∑
n=0

b(n)
∣∣< 1.

Theorem 1.1.5 ([56, 57, 59]). Suppose that b(n) does not change sign for n ∈ Z
+.

Then the zero solution of (1.1.11) is not (AS) if one of the following conditions
holds.

(i) a(n)+
∞

∑
n=0

b(n)≥ 1,

(ii) a(n)+
∞

∑
n=0

b(n)≥−1, for some n ∈ Z
+,

(iii) a(n)+
∞

∑
n=0

b(n)≥ −1, and b(n) < 0, for some n ∈ Z
+, and

∞

∑
n=0

b(n) is suffi-

ciently small.
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In the next theorem, we use z-transform to asymptotically analyze the solutions
of (1.1.13) when a(n) = can, for positive constants a and c.

Theorem 1.1.6 ([57, 100]). Suppose a(n) = can, such that 0 < a+ c < 1. Then any
solution y(n) of (1.1.13) satisfies

lim
n→∞

y(n) =
εc

1− (a+ c)

which implies the spread of the disease will not reach an epidemic proportion.

Proof. Taking the z-transform on both sides of (1.1.13) yields,

zỹ(z) = ã(z)
εz

z− 1
+ ã(z)ỹ(z),

or

ỹ(z) =
εzã(z)

(z+ 1)(z− ã(z))
.

By setting a(n) = can, and performing partial fraction we arrive at

ỹ(z) =
εcz)

(z− 1)(z− (a+ c))
=

εc
1− a− c

[ 1
z− 1

− a+ c
z− (a+ c)

]
.

Taking the inverse z-transform gives

y(n) =
εc)

1− (a+ c))
[1− (a+ c)n]

and hence the results.

In Chapter 5, we will use Lyapunov functional and obtain uniform asymptotic sta-
bility for nonlinear systems that are similar to (1.1.12).
Next we discuss the role that finite delay Volterra difference equations play in mod-
eling neural networks with delay. Suppose an artificial neural network consisting of
electronic neurons (amplifiers) interconnected through a matrix of resistors. Here
an electronic neuron, the building block of the network, consists of a nonlinear am-
plifier that transforms an input signal ui into the output signal vi, and the input
impedance of the amplifier unit is described by the combination of a resistor ρi and
a capacitor Ci. We assume that the input-output relation is completely characterized
by a voltage amplification function vi = fi(ui). The synaptic connections of the net-
work are represented by resistors Ri j that connect the output terminal of the amplifier
j with the input part of the neuron i. In order for the network to function properly,
the resistances Ri j must be able to take on negative values. This can be realized by
supplying each amplifier with an inverting output line that produces the signal −v j.
Applying Kirchhoff’s law and input-output relation replaced by vi = fi(ui(t − τi))
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with a positive constant τi ∈ Z
+, we obtain after some calculations and simplifica-

tions the Volterra discrete equation

u(n+ 1) =CiRi[−u(n)+
k

∑
j=1

Ri

Ri j
f j(u j(n− τ j))], 1 ≤ i ≤ k.

For more on such construction we refer to [73].

1.2 Introduction to Lyapunov Functions

In this section, we briefly go over some definitions and theorems regarding Lya-
punov functions/functionals. Let G ⊂ R

k be an open set and consider the au-
tonomous difference equation

x(n+ 1) = f (x(n)), (1.2.1)

where f : G → R
k, is continuous . We assume that x∗ is an equilibrium solution

of (1.2.1), that is f (x∗) = x∗.

Definition 1.2.1. Let the function V : Rk →R be continuous.

1. The variation of V with respect to (1.2.1) is defined as

�V (x(n)) =V ( f (x(n)))−V (x(n)) =V (x(n+ 1))−V(x(n)).

2. The function V is said to be a Lyapunov function/functional on a subset H of
R

k if
i) V (x∗) = 0, and V (x)> 0, for x 	= x∗ and
ii) �V (x)≤ 0, whenever x and f (x) belong to the set H.

3. The function V is said to be a strict Lyapunov function/functional on a subset H
of Rk if �V (x)< 0.

4. Let B(x,γ) denote the open ball in R
k of radius γ and center x defined by B(x,γ) =

{y ∈ R
k | ||y− x|| < γ}. We say V is positive definite at x∗ if V (x∗) = 0, and

V (x∗)> 0, for all x ∈ B(x∗,γ),x 	= x∗, for some γ > 0.

We have the following standard stability and boundedness theorems.

Theorem 1.2.1 (Lasalle Stability Theorem). Suppose V is a Lyapunov function
for (1.2.1) in a neighborhood of H of the equilibrium solution x∗, then x∗ is stable.
Moreover, x∗ is asymptotically stable if V is a strict Lyapunov function.

Theorem 1.2.2. Suppose V is a Lyapunov function for (1.2.1) on the set H = {x ∈
R

k : ||x||> α} for some α > 0, and if

V (x)→ ∞ as ||x|| → ∞,

then all solutions of (1.2.1) are bounded.
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The theory for boundedness stability and existence of periodic solutions for non-
functional difference equations have been fully developed, unlike functional differ-
ence equations which include Volterra difference equations. In the next theorems
we provide some results taken from [85] and [106] concerning the nonautonomous
nonlinear discrete system

x(n+ 1) = f (n,x(n)), n ≥ 0, (1.2.2)

x(n0) = x0, n0 ≥ 0

where x(n) ∈ R
k, f : Z+ ×D → R

k where D ⊂ R
k is an open set containing the

origin, is a given nonlinear function satisfying f (n,0) = 0 for all n ∈ Z
+. For x(n)∈

R
k, ||x|| denotes the Euclidean norm of x. For any k× k matrix A, define the norm

of A by |A|= sup{|Ax| : ||x|| ≤ 1}.

Definition 1.2.2. A solution x(n) of (1.2.2) is said to be bounded if for any n0 ∈
Z
+ and number r there exists a number α(n0,r) depending on n0 and r such that

||x(n,n0,x0)|| ≤ α(n0,r) for all n ≥ n0 and x0, |x0|< r. It is uniformly bounded if α
is independent of the initial time n0.

Definition 1.2.3. Let x(n) be solution of (1.2.2) with respect to initial condition x0

and y(n) be solution of (1.2.2) with respect to initial condition y0. The solution x(n)
is then said to be sable, if, whenever ε > 0 is given, there exists δ (ε) for which

||x(n)− y(n)||< ε, whenever ||x0 − y0||< δ .

Consider the linear difference equation

x(n+ 1) = x(n)+ 1, x(0) = x0. (1.2.3)

It is easy to check that x(n) = x0 + (n− n0) is the solution of (1.2.3). If y(n) is
another solution with y(n0) = y0, then we have y(n) = y0 +(n−n0). For any ε > 0,
let δ = ε. Then

||x(n)− y(n)||= ||x0 +(n− n0)− y0 − (n− n0)||= ||x0 − y0)||< ε

whenever, ||x0 − y0|| < δ . Hence, the solution x(n) is stable, but unbounded. This
simple example shows that the properties of boundedness of all solutions and sta-
bility of a solution do not coincide. On the other hand, the difference equation

x(n+ 1) = x1/3(n),

has its solution x(n) satisfies |x(n)| → 1 for all initial values x0 	= 0. Therefore, the
solution x(n) = 0 is unstable.

Definition 1.2.4. The zero solution of system (1.2.2) is said to be exponentially sta-
ble if any solution x(n,n0,x0) of (1.2.2) satisfies

||x(n,n0,x0)|| ≤C
(
||x0||,n0

)
a−δ (n−n0), for all n ≥ n0,
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where a is constant with a > 1, C : R+×Z
+ → R

+, and δ is a positive constant.
The zero solution of (1.2.2) is said to be uniformly exponentially stable if C is inde-
pendent of n0.

Theorem 1.2.3 ([85]). Let a be a constant with a > 1. Let D ⊂ R
k be an open set

containing the origin, and let V (n,x) : Z+×D →R
+ be a given function satisfying

λ1||x||p ≤V (n,x)≤ λ2||x||q, (1.2.4)

and
�V (n,x)≤−λ3||x||r + ka−δn, (1.2.5)

for some positive constants λ1,λ2,λ3, p,q,r,k and δ . Moreover, if for some positive
constants α and γ,

0 <
λ3

λ r/q
2

≤ α < 1 (1.2.6)

such that
V (n,x)−V r/q(n,x)≤ γa−δn (1.2.7)

with

δ >− ln(1−λ3/λ
r/q
2 )

ln(a)
,

then the zero solution of (1.2.2) is uniformly exponentially stable.

The next theorem does not require an upper bound on the Lyapunov function.

Theorem 1.2.4 ([85]). Let a be a constant with a > 1. Let D ⊂ R
k be an open set

containing the origin, and let V (n,x) : Z+×D →R
+ be a given function satisfying

λ1||x||p ≤V (n,x), (1.2.8)

and
�V (n,x)≤−λ2V (n,x)+ ka−δn,0 < λ2 < 1 (1.2.9)

for some positive constants λ1,λ2, p,k and δ .
Then, the zero solution of (1.2.2) is exponentially stable.

Theorems 1.2.3 and 1.2.4 were applied to the following nonlinear difference equa-
tions

x(n+ 1) = σx(n)+Rx1/3(n)a−ln,

and
x(n+ 1) = σx+Rx1/3 + aγ1nsin(x)

respectively, under appropriate conditions. However, the above theorems cannot be
applied to Volterra difference equations, and hence the need for new and general
theory that deal with the issues that lie ahead of us. Next we briefly discuss some of
the results in [36] about boundedness of solutions of (1.2.2). We will use notations
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that are more suitable and flow better with the book. The purpose of the next ex-
ample is to emphasize that there is a difference between uniform boundedness and
boundedness.

Example 1.2 ([36]). Consider the two-dimensional system

x(n+ 1) =

(
1 (n+ 2)2(n+ 3)−1

0 (n+ 2)3(n+ 3)−3

)
x(n)+

(
0 (n+ 1)−2

0 0

)
x0 (1.2.10)

Then the solution of (1.2.10) is given by

x(n) = R(n,n0)x0 +
n

∑
s=n0

R(n,s)g(s− 1), n ≥ n0 (1.2.11)

where the matrix R = (rl j), l, j = 1,2 and vector g are

R(n,n0) =

(
1 −(n0 + 1)(n0 + 2)2 +(n0 + 2)3(n+ 1)(n+ 2)−1

0 (n0 + 2)3(n+ 2)−3

)

g(n) =

(
0 (n+ 2)−2

0 0

)
.

Note that at n0 the matrix R(n0,n0) is the identity matrix. Let x0 =

(
x01

x02

)
. The

term
n

∑
s=n0

R(n,s)g(s− 1) = x02

n

∑
s=n0+1

(
s−2

0

)
≤ π2x02

(
1
0

)
,

which is uniformly bounded. On the other hand, for any positive integer K, we
obtain

r12(Kn0,n0) =
(n0 + 2)2

Kn0 + 2

[− (n0 + 1)(Kn0 + 2)2 +(n0 + 2)(Kn0 + 1)
]

= (n0 + 1)2(Kn0 − 1)2 +(Kn0 + 2)→ ∞, as n0 → ∞.

Then it is clear from the solution given by (1.2.11) that boundedness of solutions
depends on the initial value n0 and hence solutions are bounded but not uniformly
bounded.

Theorem 1.2.5 ([36]). Suppose there exists a function V (n,x) and W1 such that

W1(||x||)≤V (n,x), n ≥ n0 (1.2.12)

�V(x(n)) =V ( f (n,x(n)))−V (x(n)) =V (x(n+ 1))−V(x(n))≤ 0, (1.2.13)

and
W1(||x||)→ ∞, as ||x|| → ∞. (1.2.14)
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Assume for any initial time n0 with x(n0) = x0, V (n0,x0) is bounded, then solutions
of (1.2.2) are bounded.

Proof. Let r0 be any positive constant such that ||x0|| ≤ r0. By (1.2.14) and since
V (n0,x0) is bounded, there exists a function α(n0,r0) such that

V (n0,x0)≤W1
(
α(n0,r0)).

Utilizing conditions (1.2.12) and (1.2.13) we have

W1(||x||)≤V (n,x)≤V (n0,x0)≤W1
(
α(n0,r0)

)
. (1.2.15)

Taking inverse in (1.2.15) we arrive at ||x(n,n0,x0)|| ≤ α(n0,r0). This completes
the proof.

Theorem 1.2.6 ([163]). Let Bα := B(α,x) denote the ball of radius α centered at
x. Suppose there exist functions V (n,x) : Z+ ×Bα → R and W1 : Z+ ×Bα → R

+,
α > 0 where V (n,x),W (n,x) are continuous in x. Suppose that

�V (x(n)) =−p(n)a
(
W (n,x)

)
+ g(n) (1.2.16)

where g, p : Z+ →R
+, a(r)> 0,a(0) = 0 is continuous monotone and nondecreas-

ing,
∞

∑
s=1

p(ms) = ∞, for any subsequence {ms} with ms → ∞ and s → ∞ and there

exists an E > 0 such that
∞

∑
n=1

p(n) = E. If there exists a number M > 0 such that

M ≤V (n,x(n)) for all (n,x) ∈ Z
+×Bα , then for every solution x(n) of (1.2.2) with

x(n) ∈ Bα we have W (n,x(n))→ 0 as n → ∞.

Proof. Suppose that W (n,x(n))� 0 as n→∞ for some {x(n)}⊂Bα . Then there ex-
ists an ε > 0 and a subsequence {n j} with n j →∞ as j →∞ such that W (n j,x(n j))≥
ε. Summing (1.2.16) from n1 to n j yield

V (n j + 1,x(n j + 1))≤V (n1,x(n1))− a(ε)
n j

∑
s=1

p(s)+E, s ≥ 1,

which yields a contradiction. Thus, W (n,x(n))� 0 as n→∞ for every {x(n)}⊂Bα .
This completes the proof.

It is evident that Theorem 1.2.6 gives sufficient conditions for the asymptotic sta-
bility of the zero solution of (1.2.2) in the case f (n,0) = 0. Thus, if we replace
condition (1.2.16) by

�V (x(n)) =−W (n, |x|)
then the zero solution of (1.2.2) is asymptotically stable. As an application we have
the following example.

Example 1.3. Consider the scalar nonlinear Volterra difference equation
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x(n+ 1) = a(n)x(n)+ b(n)
x(n)

1+∑n−1
s=0 x2(s)

, n ≥ 0. (1.2.17)

If
|a(n)|+ |b(n)| ≤ 1,

then all solutions of (1.2.17) are bounded and the zero solution is asymptotically
stable. To see this, consider the Lyapunov function V (n,x) = |x(n)|. Then along the
solutions of (1.2.17) we have

�V (x(n)) = |x(n+ 1)|− |x(n)| ≤ (−1+ |a(n)|)|x(n)|+ |b(n)| |x(n)|
1+∑n−1

s=0 x2(s)

≤ (−1+ |a(n)|+ |b(n)|)|x(n)|.

The results follow from Theorems 1.2.5 and 1.2.6.

Theorems 1.2.5 and 1.2.6 have limitations as they cannot be applied to Volterra
difference equations of the form

x(n+ 1) = a(n)x(n)+
n−1

∑
s=0

b(n,s)x(s), n ≥ 0.

These type of equations will be handled in Chapter 2 once we develop the appropri-
ate theorems. We refer to [36] for the proofs of the next two theorems.

Theorem 1.2.7 ([36]). Suppose

|| f (n,x(n))|| ≤
n−n0

∑
s=0

a(n,s)||x(n− s)||+ b(n), n ≥ n0,

and

1− sup
n≥n0

∞

∑
s=n0

a(n+ s,s)> 0,
∞

∑
s=n0

|b(s)|< ∞.

Then solutions of (1.2.2) are uniformly bounded.

Definition 1.2.5. A continuous function W : [0,∞)→ [0,∞) with W (0) = 0,W (s)>
0 if s > 0, and W is strictly increasing is called a wedge. (In this book wedges are
always denoted by W or Wi, where i is a positive integer.)

One might asks if boundedness implies the existence of such a Lyapunov function
that satisfies (1.2.12)–(1.2.14). The answer is positive and is provided in the next
theorem.

Theorem 1.2.8 ([36]). Suppose solutions of (1.2.2) are bounded. Then there exists
a Lyapunov function V (n,x(n)) and a wedge W1 satisfying (1.2.12)–(1.2.14).

Theorem 1.2.7 will be generalized in Chapter 2. The rest of the materials in this
section is unpublished and belongs to the author, and hence the labelings.
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Definition 1.2.6 (Raffoul). A function U : Z+×D → [0,∞) is called

1. positive definite if U(n,0) = 0 and there is a wedge W1 with U(n,x)≥W1(|x|),
2. decrescent if there is a wedge W2 with U(n,x)≤W2(|x|),
3. negative definite if −U(n,x) is positive definite,
4. radially unbounded if D = R

k and there is a wedge W3(|x|) ≤ U(n,x) and
W3(r)→ ∞ as r → ∞.

Theorem 1.2.9 (Raffoul). Suppose there is a Lyapunov function V for (1.2.2) (see
Definition 1.2.1.)

1. If V is positive definite, then x = 0 is stable.
2. If V is positive definite and decrescent, then x = 0 is uniformly stable.
3. If V is positive definite and decrescent, and �V (n,x) is negative definite, then

x = 0 is uniformly asymptotically stable .
4. If D = R

k and if V is radially unbounded, then all solutions of (1.2.2) are
bounded.

Proof.
1. We have �V (n,x)≤ 0, V is continuous in x, V (n,0) = 0, and W1(|x|) ≤V (n,x).
Let ε > 0 and n0 ≥ 0 be given. We must find δ such that |x0|< δ and n ≥ n0 imply
|x(n,n0,x0)| < ε. (Throughout these proofs we assume ε is small enough so that
|x(n,n0,x0)| < ε implies that x ∈ D.) As V is continuous in x and V (n,0) = 0 there
is a δ > 0 such that |x0|< δ implies V (n0,x0)<W1(ε). Thus, if n ≥ n0 and |x0|< δ
and x = x(n,n0,x0), we have

W1(|x(n)|)≤V (n,x)≤V (n0,x0)<W1(ε),

or |x(n)|< ε as required.
2. For a given ε we select a δ > 0 such that W2(δ ) < W1(ε) where W1(|x|) ≤
V (n,x)≤W2(|x|). If n0 ≥ 0, we have

W1(|x(n)|)≤V (n,x) ≤ V (n0,x0)

≤ W2(|x0|)<W2(δ )<W1(ε),

or |x(n)|< ε as required.
3. Let ε = 1, and find δ of uniform stability and call it η . Let γ be given. We must
find T > 0 such that

|x0|< η , n0 ≥ 0, and n ≥ n0 +T

imply |x(n,n0,x0)| < γ. Pick μ > 0 with W2(μ) < W1(γ), so that there is n1 ≥ n0

with |x(n1)|< μ , then, for n ≥ n1, we have

W1(|x(n)|)≤V (n,x) ≤ V (n1,x1)

≤ W2(|x1|)<W2(δ )<W1(γ),
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or |x(n1)|< γ. Since�V (n,x)≤−W3(|x|), so as long as |x(n)|> μ , then�V (n,x)≤
−W3(μ); thus

V (n,x(n)) ≤ V (n0,x0)−
n−1

∑
s=n0

W3(|x(s)|)

≤ W2(|x0|)−W3(μ)(n− n0)

≤ W2(η)−W3(μ)(n− n0),

which vanishes at

n = n0 +
W2(η)
W3(μ)

≥ n0 +T,

where T ≥ W2(η)
W3(μ)

. Hence, if T > W2(η)
W3(μ)

, then |x(n)|> μ fails, and we have |x(n)|< γ
for all n ≥ n0 +T. This proves (UAS).
4. Since V is radially unbounded, we have V (n,x)≥W1(|x|)→∞ as |x| → ∞. Thus,
given n0 ≥ 0, and x0, there is an r > 0 with W1(r)>V (n0,x0). Hence, if n ≥ n0 and
x(n) = x(n,n0,x0), then

W1(|x(n)|)≤V (n,x(n))≤V (n0,x0)<W1(r),

or |x(n)|< r. The proof of Theorem 1.2.9 is complete.

According to Theorem 1.2.9, all solutions of (1.2.17) are bounded and its zero solu-
tion is (UAS).
The next example will show that �V (n,x) ≤ 0 is not enough to drive solutions to
zero.

Example 1.4 (Raffoul). Let g : [0,∞) → (0,β ] with g(0) = 1, and 0 < β ≤ 1. Con-
sider the nonautonomous difference equation

x(n+ 1) =
[
g(n+ 1)/g(n)

]
x(n). (1.2.18)

It is clear that x(n) = g(n) is a solution of (1.2.18). Our goal is to construct a function

V (n,x) = a(n)x2(n)

such that�V (n,x)=−α(n)x2(n), where a(n),α(n)> 0 for n∈Z
+, and ∑∞

s=0α(s)<
∞. That is �V (n,x)≤ 0. Along the solutions of (1.2.18) we have

�V(n,x) =
[
a(n+ 1)

g2(n+ 1)
g2(n)

− a(n)
]
x2(n).

By setting

a(n+ 1)
g2(n+ 1)

g2(n)
− a(n) =−α(n),
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we get the difference equation

a(n+ 1)− g2(n)
g2(n+ 1)

a(n) =− g2(n)
g2(n+ 1)

α(n). (1.2.19)

Using the variation of parameters formula given by (1.1.7), Equation (1.2.19) has
the solution, after some simplification,

a(n) =
( n−1

∏
i=0

g2(i)
g2(i+ 1)

)
a(0)−

n−1

∑
r=0

n−1

∏
i=r+1

g2(i)
g2(i+ 1)

g2(r)
g2(r+ 1)

α(r)

=
[
a(0)g2(0)−

n−1

∑
r=0

g2(r)α(r)
]
/g2(n)

≥ [
a(0)−β 2

n−1

∑
r=0

α(r)
]
/g2(n).

Since 0 < g ≤ 1, and ∑∞
s=0 α(s) < ∞, we may chose a(0) so large to imply that

a(n)> 1 for all n ≥ 1. Thus we have shown that V ≥ 0 and �V is negative definite
do not imply that solutions tend to zero. Notice that V is not decrescent. That is there
is no wedge W2 with V (n,x)≤W2(|x|).
In the investigation of stability and boundedness for nonlinear nonautonomous sys-
tems, the effective approach is to study equations that are related in some way to the
linear equations whose behavior is known to be covered by the known theory. For
example, the perturbed nonlinear system

x(n+ 1) = Ax(n)+ g(n,x(n)), n ≥ 0 (1.2.20)

where A is an k× k constant matrix and g : Z+ →R
k is continuous in x. The pertur-

bation g is assumed small in some sense. The next theorem pertains to the stability
of the perturbed nonlinear difference equation given by (1.2.20). But first for refer-
ence, a symmetric matrix C is positive definite if xTCx > 0 for x 	= 0.

Theorem 1.2.10 (Raffoul). Suppose there exists a positive definite symmetric ma-
trix B such that

AT BA−B =−I, (1.2.21)

lim
x→0

|g(n,x)|
|x| = 0, uniformly in n (1.2.22)

then the zero solution of (1.2.20) is stable.
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Proof. We write x for x(n) and we define the Lyapunov function V by V = xT Bx.
Using (1.2.21)–(1.2.22), we have along the solutions of (1.2.20) that

�V = (Ax+ g(n,x))T B(Ax+ g(n,x))− xTBx

= xT (AT BA−B)x+ 2xTAT Bg(n,x)+ gT(n,x)Bg(n,x)

= |x|2
(
− 1+ 2

xT

|x|A
T B

g(n,x)
|x| +

gT (n,x)
|x| B

g(n,x)
|x|

)

≤ |x|2
(
− 1+ 2|ATB| |g(n,x)||x| +

|gT (n,x)|
|x| B

|g(n,x)|
|x|

)

≤ 0,

for sufficiently small |x| and x 	= 0. The result follows from 1. of Theorem 1.2.9.
This completes the proof.

We have the following theorem concerning the existence of positive definite sym-
metric matrix B. Consider the autonomous linear system of difference equations

x(n+ 1) = Ax(n) (1.2.23)

where A is an k× k constant matrix.

Theorem 1.2.11 (Raffoul). For a given positive definite matrix C, the equation

AT BA−B =−C (1.2.24)

can be solved for a positive definite symmetric matrix B if and only if all eigenvalues
of A lie inside the unit circle.

Proof. Assume (1.2.24) and let V = xT Bx. Then �V < 0 for x 	= 0. Hence the zero
solution of (1.2.23) is asymptotically stable by Theorem 1.2.1 and hence all the
eigenvalues lie inside the unit circle.
Suppose all the eigenvalues of A lie inside the unit circle and define the matrix B by

B =
∞

∑
n=0

(AT )nCAn.

Since all the eigenvalues of A reside inside the unit circle, we have |An| ≤Ka−δn for
positive constants K,a and δ , such that 0< a< 1. Hence, the infinite sum converges
(geometric series). It is clear from the definition of B, the matrix B is symmetric.
Next we show it is positive definite.

xT (AT )nCAnx = (Anx)TC(Anx) = yTCy,

and if x 	= 0, then y 	= 0; as C is positive definite yTCy > 0 for x 	= 0. Thus B is
positive definite. Finally,
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AT BA−B = AT
∞

∑
n=0

(AT )nCAnA−
∞

∑
n=0

(AT )nCAn

=
∞

∑
n=0

(AT )n+1CAn+1 −
∞

∑
n=0

(AT )nCAn

=
∞

∑
n=0

�n
(
(AT )nCAn)

= (AT )nCAn∞
n=0 =−C.

This completes the proof.

When Lyapunov functionals are used to study the behavior of solutions of functional
difference equations, we often end up with a pair of inequalities of the form

V (n,x(·)) =W1(x(n))+
n−1

∑
s=0

K(n,s)W2(x(s)),

�V (n,x(·))≤−W3(x(n))+F(n).

The above two inequalities are rich in information regarding the qualitative behavior
of the solutions. However, getting such information will require deep knowledge of
Lyapunov functionals and analysis. In Chapter 2, we will develop general theorems
to deal with such inequalities that arise from the assumption of the existence of a
Lyapunov functional. To be specific, we consider the nonlinear Volterra difference
equation

x(n+ 1) =
n−1

∑
s=0

c(n,s) f (x(s))+ g(n,x(n)) (1.2.25)

for all integers n ≥ 0 and for integers, 0 ≤ s ≤ n. The functions g and f are
continuous in x and satisfy | f (x)| ≤ δ |x|, and |g(n,x)| ≤ λ (n)

(|x|+ 1
)
, where

λ : Z+ → (0,1). Define the functional V by

V (n,x) = |x(n)|+ δ
n−1

∑
s=0

∞

∑
u=0

|c(u,s)||x(s)|.

After some calculations, by evaluating �V along the solutions of (1.2.25), we
arrive at

�V (n,x) ≤ [
λ (n)+ δ

∞

∑
u=n+1

|c(u,n)|− 1
]|x(n)|+λ (n)

≤ −α|x(n)|+λ (n),

where we have assumed that λ (n)+δ
∞

∑
u=n+1

|c(u,n)|−1≤−α, for positive constant

α. It will be shown in Chapter 2, Theorem 2.1.1 that all solutions of (1.2.25) are
uniformly bounded.
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Next we address instability of (1.2.2).

Definition 1.2.7. The zero solution of (1.2.2) is unstable if there is an ε > 0, and
n0 ≥ 0, such that for any δ > 0 there is an x0 with |x0| < δ and there is an n1 > n0

such that |x(n1,n0,x0)| ≥ ε .

Theorem 1.2.12 (Raffoul). Suppose there exists a continuous Lyapunov function
V : Z+×D → [0,∞) which is locally Lipschitz in x such that

W1(|x|)≤V (n,x)≤W2(|x|), (1.2.26)

and along the solutions of (1.2.2) we have

�V (n,x)≥W3(|x|). (1.2.27)

Then the zero solution of (1.2.2) is unstable.

Proof. Suppose not, then for ε = min{1,d(0,∂D)} we can find a δ > 0 such that
|x0| < δ and n ≥ 0 imply that |x(n,0,x0)| < ε. We may pick x0 in such a way so
that |x0|= δ/2 and find γ > 0 with W2(γ) =W1δ/2). Then for x(n) = x(n,0,x0) we
have �V (n,x)≥ 0 so that

W2(|x(n)|)≥V (n,x(n))≥V (0,x0)≥W1(δ/2) =W2(γ)

from which we conclude that γ ≤ |x(n)| for n ≥ 0. Thus

�V(n,x)≥W3(|x(n)|)≥W3(γ).

Thus,
W2(|x(n)|)≥V (n,x(n))≥V (0,x0)+ nW3(γ),

from which we conclude that |x(n)| → ∞, which is a contradiction. This completes
the proof.

We have the following example. Consider the two-dimensional system

x(n+ 1) =

(
2 1
0 −2

)
x(n) := Ax(n). (1.2.28)

Let

V (n,x) = xT (n)

(
1/3 2/15

2/15 2/5

)
x(n) := x2

1(n)/3+ 2x2
2(n)/5+ 4x1(n)x2(n)/15.

Then along the solutions of (1.2.28) we have

�V (n,x) = x2
1(n)+ x2

2(n).

It is clear that V is positive definite since the matrix B =

(
1/3 2/15
2/15 2/5

)
is positive

definite. Moreover, we have
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(x1(n)/3+ 2x2(n)/5)2 ≤V (n,x)≤ x2
1(n)+ x2

2(n)

and hence an application of Theorem 1.2.12 shows the zero solution of (1.2.28)
is unstable. Next we explain how we constructed the Lyapunov function V . It is a
known fact that if A is an k× k constant matrix all of whose eigenvalues lie outside
the unit circle, then there is a positive definite matrix C (xTCx≥ 0) that is symmetric
such that the equation

AT BA−B =C

can be solved for B = BT . Thus in the above example, we took V = xT Bx with

C =

(
1 0
0 1

)
.

We state and prove variant forms of discrete Gronwall’s Inequality.

Theorem 1.2.13 (Discrete Gronwall’s Inequality). Let Nn0 = {n0,n0 + 1,n0 +
2, · · ·} where n0 is a fixed nonnegative integer. Assume u(n),α(n),β (n), and γ(n) be
nonnegative scalar sequences for all n ≥ n0. Let n ∈Nn0 and assume, for all n ≥ n0,
the inequality

u(n)≤ α(n)+β (n)
n−1

∑
s=n0

γ(s)u(s) (1.2.29)

holds. Then,

u(n)≤ α(n)+β (n)
n−1

∑
s=n0

α(s)γ(s)
n−1

∏
r=s+1

(
1+β (r)

)
γ(r) (1.2.30)

holds for all n ≥ n0.

Proof. Define ϕ : Nn0 →R by ϕ(n) =
n−1

∑
s=n0

γ(s)u(s). Then,

�ϕ(n) = γ(n)u(n), ϕ(n0) = 0.

Substituting u(n)≤ α(n)+β (n)ϕ(n), in the above equality yields,

�ϕ(n) = γ(n)u(n)≤ γ(n)
(
α(n)+β (n)ϕ(n)

)
,

from which we conclude

ϕ(n+ 1)− (1+β (n)γ(n))ϕ(n)≤ α(n)γ(n). (1.2.31)

Since all sequences are nonnegative, we have that 1+β (n)γ(n)> 0, for all n ≥ n0.
Thus, (1.2.31) is equivalent to

�
[ n−1

∏
s=n0

(
1+β (s)γ(s)

)−1ϕ(s)
]≤ α(n)γ(n)

n

∏
s=n0

(
1+β (s)γ(s)

)−1
.

Summing the above inequality from n0 to n− 1 yields
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n−1

∏
s=n0

(
1+β (s)γ(s)

)−1ϕ(n)≤
n−1

∑
s=n0

α(s)γ(s)
n

∏
r=n0

(
1+β (r)γ(r)

)−1

or

ϕ(n)≤
n−1

∑
s=n0

α(s)γ(s)
n−1

∏
r=s+1

(
1+β (r)γ(r)

)
.

As a consequence

n−1

∑
s=n0

γ(s)u(s) ≤
n−1

∑
s=n0

α(s)γ(s)
n−1

∏
r=s+1

(
1+β (r)γ(r)

)
.

Hence

u(n) ≤ α(n)+β (n)
n−1

∑
s=n0

γ(s)u(s)

≤ α(n)+β (n)
n−1

∑
s=n0

α(s)γ(s)
n−1

∏
r=s+1

(
1+β (r)γ(r)

)
.

This completes the proof.

We have the following special cases of Gronwall’s inequality. Also by noting that
1+Lβγ(s)≤ eLβγ(s), where L ≥ 1 and constant, yields the followings.

Corollary 1.1. If α(n) = α,β (n) = β , for all n ∈Nn0 , then we have

u(n)≤ α
n−1

∏
s=n0

(
1+βγ(s)

)
,

or
u(n)≤ αe∑

n−1
s=n0

βγ(s).

Corollary 1.2. Assume the hypothesis of Corollary 1.1. If

u(n)≤ m
[
α+β

n−1

∑
s=n0

γ(s)u(s)
]
, for all n ∈ Nn0 ,n ≥ n0 and m ≥ 1

then we have

u(n)≤ α
n−1

∏
s=n0

(
1+mβ (s)γ(s)

)
,

or
u(n)≤ αe∑

n−1
s=n0

mβγ(s).

Proof. Define ϕ :Nn0 →R by ϕ(n)=mβ
n−1

∑
s=n0

γ(s)u(s). The rest of the proof follows

along the lines of the proof of Theorem 1.2.13. For more on Gronwall’s inequality
we refer to [57].
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Now is the time to introduce functional delay difference equations. It has been
observed in modeling physical or biological situations that the rate of change of
the systems’ current status is more likely to depend on the history of the system and
not only on the current status. This usually leads to the delay functional difference
system

x(n+ 1) = f (x(n),x(n− τ)), (1.2.32)

where x(n) is the system’s state at time n, f : Rk ×R
k → R

k is a given function,
and the time lag τ ∈ Z

+. Equation (1.2.32) arises naturally in modeling population
dynamics of a single-species structured population. For example, in such situation,
if x(n) denotes the population density of the mature and reproductive population,
and if the maturation period is assumed to be constant, then we have

f (x(n),x(n− τ)) = dmx(n)+ e−diτb(x(n− τ))

where dm and di are the death rates of the mature and immature populations, respec-
tively, and b : R→ R is the birth rate. Assuming death is instantaneous, and so the
term dmx(n) is without delay. However, the rate into the mature population is the
maturation rate (not the birth rate), that is, the birth rate at time τ , multiplied by the
survival probability e−diτ during the maturation process.
To specify a solution x(n) of (1.2.32) for n ∈ Z

+, we must prescribe the history of x
on [−τ,0], say x(s) = φ(s), s ∈ [−τ,0] where

φ : [−τ,0]→ Z
k,

which we refer to it throughout the book, as a given initial function. That is

f (x(n),x(n− τ)) = f (x(n),φ(n− τ)), n ∈ [0,τ].

Functional delay difference equations will be studied in detail in Chapters 2 and 3.

1.3 Total Stability via Resolvent

We shall obtain asymptotic stability criteria for the discrete Volterra equation

x(n+ 1) = A(n)x(n)+
n

∑
s=0

B(n,s)x(s)+ g(n,x(n)) (1.3.1)

for all integers n ≥ 0 and for integers, 0 ≤ s ≤ n, where A,C are k× k matrix func-
tions, and x is a k× 1 unknown vector. We also assume that |g(n,x)| ≤ λ (n)|x| for
some function λ whose properties are given below. Hino and Murakami [82] defined
total stability for Volterra integro-differential equations and applied the concept to
obtain asymptotic stability criteria. Elaydi and Murakami [61] have extended these
definitions and methods to (1.3.4) in the linear case with g = 0. Recently, Zhang
[177] extended the original work of Hino and Murakami [82], by defining a con-
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cept, ψ-total stability. In the case, ψ = 1, Zhang’s definition reduces to that of Hino
and Murakami. Zhang exhibits examples with ψ 	= 1 and obtains some new asymp-
totic stability criteria in the linear case.
For x ∈ R

k, |x| denotes the Euclidean norm of x. For any k× k matrix A, define the
norm of A by |A| = sup{|Ax| : |x| ≤ 1}. Let C(n) denote the set of functions φ :
[0,n]→R and ‖φ‖= sup{|φ(s)| : 0 ≤ s ≤ n}. For each ψ : Z+ → (0,∞), we denote
by Cψ (τ) the space of all functions p : [τ,∞]→R such that sups≥τ |p(s)/ψ(s)|<∞.
We set

|p|ψ = sup{|p(s)/ψ(s)| : s ≥ τ}.
For each n0 ∈ Z

+ and φ ∈ C(n0), there is a unique function x : Z+ → R which
satisfies (1.3.1) on [n0,∞) with x(s) = φ(s) for 0 ≤ s ≤ n0. Such a function x(n) is
called a solution of (1.3.1) through (n0,φ) and is denoted by x(n,n0,φ).
Most of the materials here are taken from [65, 128] and the references therein. In
this section, we adopt the stability definitions given by Definition 1.1.4.

Definition 1.3.1. The zero solution of (1.3.1) is ψ-totally stable (ψ−T S) if for any
ε > 0, there exists a δ = δ (ε) > 0 such that [n0 ≥ 0, φ ∈C(n0), p ∈Cψ (n0),‖φ‖<
δ , |p|ψ < δ ] imply |y(n,n0,φ , p)| < ε , where y(n) = y(n,n0,φ , p) is a solution of

y(n+ 1) = A(n)y(n)+
n

∑
s=0

B(n,s)y(s)+ g(n,y(n))+ p(n), n ≥ n0 (1.3.2)

such that y(s) = φ(s) for s ∈ [0,n0]. It follows from the above definitions that the
zero solution of (1.3.1) is ψ−TS implies it is (US).

Next we consider a simple difference equation to illustrate that a zero solution can be
uniformly stable and asymptotically stable but not uniformly asymptotically stable.
Consider the difference equation

x(n+ 1) =
n

n+ 1
x(n), x(n0) = x0 	= 0, n ≥ n0 ≥ 1. (1.3.3)

Let z(n) = nx(n). Then x(n+ 1) = z(n+ 1)/n+ 1, and hence (1.3.3) becomes

z(n+ 1) = z(n), z(n0) = x0n0,

which has the solution z(n) = x0n0 and the solution to (1.3.3) is then found to be

x(n) := x(n,n0,x0) =
x0n0

n
.

Clearly the zero solution is (US) and (AS). However, for n0 = n, we have

x(2n,n,x0) =
x0n
2n

→ x0

2
	= 0

which implies that the zero solution is not (UAS).
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We begin by considering the Volterra difference equation

x(n+ 1) = A(n)x(n)+
n

∑
s=0

B(n,s)x(s) (1.3.4)

for all integers n ≥ 0 and for integers, 0 ≤ s ≤ n, where A,C are k× k matrix func-
tions, and x is a k × 1 unknown vector. Equation (1.3.4) is of convolution type
when B(n,s) = B(n− s). We will develop one of the resolvent equations associ-
ated with (1.3.4). In particular, if R(n,s) denote the resolvent of (1.3.4), then it was
shown in [52] that R(n,s) must satisfy

R(n+ 1,s) = A(n)R(n,s)+
n

∑
u=s

B(n,u)R(u,s), (1.3.5)

if s ≤ n, R(s,s) = I and R(n,s) = 0 if n < s. We shall also show that

R(n,s+ 1)(A(s)− I)+
n−1

∑
u=s

R(n,u+ 1)B(u,s)+�sR(n,s) = 0, (1.3.6)

if s ≤ n, R(n,n) = I and R(n,s) = 0 if n< s, where �sR(n,s) = R(n,s+1)−R(n,s).
In the case (1.3.4) is of convolution type; that is B(n,s) =B(n−s), then the resolvent
matrix equation (1.3.5) takes the form

R(n+ 1) = A(n)R(n)+
n

∑
u=0

B(n− u)R(u), R(0) = I, n ∈ Z
+. (1.3.7)

Note that, if we consider the matrix A(n) = A, A constant and nonsingular, then it
can be easily shown that the fundamental matrix F(n) of (1.3.4), which is non-
singular with F(0) = I and by the uniqueness of solutions, one can verify that
R(n,0) = F(n) and R(n,s) = F(n− s), n ≥ s. For the rest of this chapter we uti-
lize the resolvent equations coupled with suitable Lyapunov functionals and apply
Gronwall’s inequality to obtain total stability and hence (UAS) of the zero solution
of different forms of (1.3.4). Let n0 ≥ 0, φ ∈ C(n0), and x(n) = x(n,n0,φ) be a
solution of (1.3.4) Let

x(n) = R(n,n0)φ(n0)+
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u)φ(u) (1.3.8)

where R(n,s) satisfies (1.3.6).

Lemma 1.1 (Variation of Parameters). Suppose x(n) is a solution of (1.3.4). Then
x(n) satisfies (1.3.8), if and only if R(n,s) satisfies (1.3.6).

Proof. Let D(s) = A(s)− I. Summing

�(R(n,s)x(s)) = R(n,s+ 1)�(x(s))+ (�sR(n,s))x(s)
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from s = n0 to n− 1 we obtain,

x(n)−R(n,n0)φ(n0) =
n−1

∑
s=n0

R(n,s+ 1)�(x(s))+ (�sR(n,s))x(s).

Thus,

x(n)−R(n,n0)φ(n0) =
n−1

∑
s=n0

R(n,s+ 1)
[
D(s)x(s)+

s

∑
u=0

B(s,u)x(u)
]

+
n−1

∑
s=n0

(�sR(n,s))x(s)

=
n−1

∑
s=n0

R(n,s+ 1)
[
D(s)x(s)+

n0−1

∑
u=0

B(s,u)φ(u)

+
s

∑
u=n0

B(s,u)x(u)
]
+

n−1

∑
s=n0

(�sR(n,s))x(s)

=
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u)φ(u)+
n−1

∑
s=n0

R(n,s+ 1)D(s)x(s)

+
n−1

∑
s=n0

s

∑
u=n0

R(n,s+ 1)B(s,u)x(u)+
n−1

∑
s=n0

(�sR(n,s))x(s).

Interchange the order of summation to obtain

n−1

∑
s=n0

s

∑
u=n0

R(n,s+ 1)B(s,u)x(u) =
n−1

∑
u=n0

n−1

∑
s=u

R(n,s+ 1)B(s,u)x(u)

=
n−1

∑
s=n0

n−1

∑
u=s

R(n,u+ 1)B(u,s)x(s).

Hence,

x(n)−R(n,n0)φ(n0)−
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u)φ(u)

=
n−1

∑
s=n0

[
R(n,s+ 1)D(s)+

n−1

∑
u=s

R(n,u+ 1)B(u,s)+�sR(n,s)
]
x(s).

Since x(n) satisfies (1.3.8), we have the left side of the above equality is zero and
hence the summation on the right is equal to zero. This results in R(n,s) satisfy-
ing (1.3.6). On the other hand, if R(n,s) satisfies (1.3.6), we have the summation on
the right is equal to zero and hence x(n) satisfies (1.3.8).
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We note that (1.3.8) is a variation of parameters formula. For more on the subject,
we refer to [52] and [135]. The next lemma offers a new variation of parameters
formula that we need throughout the book.

Lemma 1.2 (New Variation of Parameters). [Raffoul] Consider the perturbed
Volterra difference equation that is given by (1.3.1) with such that x(s) = φ(s) for
s ∈ [0,n0]. If R(n,s) satisfies (1.3.6), then any solution x(n) of (1.3.1) is given by

x(n) = R(n,n0)φ(n0)+
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u)φ(u)

+
n−1

∑
s=n0

R(n,s+ 1)g(s,x(s)). (1.3.9)

Proof. The proof follows along the line of the proof of Lemma 1.1 with minor
modifications. To see this, we let D(s) =A(s)−I. Then from the proof of Lemma 1.1
we have that

x(n)−R(n,n0)φ(n0) =
n−1

∑
s=n0

R(n,s+ 1)
[
D(s)x(s)+

s

∑
u=0

B(s,u)x(u)+ g(s,x(s))
]

+
n−1

∑
s=n0

(�sR(n,s))x(s)

=
n−1

∑
s=n0

R(n,s+ 1)
[
D(s)x(s)+

n0−1

∑
u=0

(B(s,u)φ(u)

+
s

∑
u=n0

B(s,u)x(u)+ g(s,x(s))
]
+

n−1

∑
s=n0

(�sR(n,s))x(s)

=
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u)φ(u)+
n−1

∑
s=n0

R(n,s+ 1)D(s)x(s)

+
n−1

∑
s=n0

s

∑
u=n0

R(n,s+ 1)B(s,u)x(u)+
n−1

∑
s=n0

R(n,s+ 1)g(s,x(s))

+
n−1

∑
s=n0

(�sR(n,s))x(s).

By interchanging the order of summation on the same term as in Lemma 1.1 we
arrive at

x(n)−R(n,n0)φ(n0)−
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u)φ(u)−
n−1

∑
s=n0

R(n,s+ 1)g(s,x(s))

=
n−1

∑
s=n0

[
R(n,s+ 1)D(s)+

n−1

∑
u=s

R(n,u+ 1)B(u,s)+�sR(n,s)
]
x(s).
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As R(n,s) satisfies (1.3.6) for all n and s, we have the summation on the right is
equal to zero and hence x(n) satisfies (1.3.9). This completes the proof.

We have the following lemma that provides sufficient conditions for the bounded-
ness of the resolvent.

Lemma 1.3. If

sup
n≥0

1
1+ |A(n)|

n

∑
s=0

|B(n,s)| ≤ L∗ (1.3.10)

and

sup
n≥1

n−1

∑
s=0

|R(n,s+ 1)|
(

1+ |A(s)|
)
≤ M∗ (1.3.11)

for some positive constants L∗ and M∗, then there exists a positive constant Q such
that |R(n,s)| ≤ Q for all 0 ≤ n0 ≤ s ≤ n < ∞.

Proof. By solving equation (1.3.6) for �sR(n,s), and summing it from s to n− 1
and then changing the order of summation we arrive at

R(n,s) = I−
n−1

∑
u=s

R(n,u+ 1))(I−A(u))+
n−1

∑
v=s

n−1

∑
u=v

R(n,u+ 1)B(u,v)

= I−
n−1

∑
u=s

R(n,u+ 1)(I−A(u))+
n−1

∑
u=s

u

∑
v=s

R(n,u+ 1)B(u,v).

Thus

|R(n,s)| ≤ 1+
n−1

∑
u=s

|R(n,u+ 1)|
(

1+ |A(u)|
)

+
n−1

∑
u=s+1

|R(n,u+ 1)|
(

1+ |A(u)|
)

sup
τ≥0

1
1+ |A(τ)|

τ

∑
v=0

|B(τ,v)|

≤ 1+M∗+M∗L∗ =: Q.

The resolvent is an abstract term and hence verifying conditions that are associated
with it is challenging. With the aid of (1.3.6) and Lyapunov functionals we shall
furnish an example in which we verify condition (1.3.11).

Lemma 1.4. If y(n) = u(n− n0)x(n) where x(n) is a solution of (1.3.1), then y(n)
satisfies (1.3.2) with

p(n) = (�nu(n− n0))x(n+ 1)

+
n

∑
s=0

B(n,s)
[
u(n− n0)− u(s− n0)

]
x(s)

+u(n− n0)g(n,x(n))− g(n,u(n− n0)x(n)). (1.3.12)
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Proof.

y(n+ 1) = u(n+ 1− n0)x(n+ 1)

= (�nu(n− n0))x(n+ 1)+ u(n− n0)x(n+ 1).

The rest of the proof follows easily by substituting the right side of (1.3.1) in the
second term of the above equality and then by adding and subtracting the necessary
terms.

Theorem 1.3.1. Suppose (1.3.10),

1
1+ |A(n)|

n0

∑
s=0

|B(n,s)| → 0 (1.3.13)

as n− n0 → ∞ uniformly, and for any ζ = ζ (ε), 0 < ε < 1, there exists an N > 0
such that

λ (n)
1+ |A(n)| < ζ (ε) (1.3.14)

for all n≥ N where ε is the one given below. If the zero solution of (1.3.1) is ψ−TS
with ψ = 1+ |A(n)|, then it is (UAS).

Proof. By definition the zero solution of (1.3.1) is ψ − TS implies it is (US). Let
n0 ∈ Z+ and ||ϕ || < δ (1), where δ (·) is the one given for the (ψ −TS) of (1.3.1)
with ψ(n) = 1+ |A(n)| for all n ∈ Z+. Then |x(n,n0,ϕ)|< 1 for all n ≥ n0. Now for
any ε > 0, 0 < ε < 1, α > 0, we set

u(t) = u(t,α,ε) =
{ 1+2αt

1+αεt for t ≥ 0
1 for t < 0

Set y(n) = u(n− n0)x(n); then y(n) solves (1.3.8) where p(n) is given by (1.3.2). It
follows from (1.3.10) that for any η > 0, there exists an S = S(η)> 0 such that

1
1+ |A(n)|

n−S(η)

∑
s=0

|B(n,s)|< η

for all n ≥ S(η). Also, |u(n)| ≤ 2
ε (see [177]) and |�nu(n− n0)| ≤ 2α . By (1.3.2)

we have

|p(n)| ≤ |�nu(n− n0)|
+(1+ |A(n)|) 1

(1+ |A(n)|)
n

∑
s=n−S(η)+1

|B(n,s)||u(n− n0)− u(s− n0)|

+(1+ |A(n)|) 1
(1+ |A(n)|)

n−S(η)

∑
s=0

|B(n,s)||u(n− n0)− u(s− n0)|

+
(

1+ |A(n)|
)[

|u(n− n0)||g(n,x(n))|
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+|g(n,u(n− n0)x(n))|
] 1

1+ |A(n)|
≤ 2α+ 2αL∗S(η)(1+ |A(n)|)+ 4

η
ε
(1+ |A(n)|)

+
4
ε

λ (n)
1+ |A(n)|(1+ |A(n)|)

≤
[
2α+ 2αL∗S(η)+ 4

η
ε
+

4ζ
ε

]
[1+ |A(n)|].

Take small numbers, η = η(ε), α = α(ε) and ζ = ζ (ε) so that

α(1 + L∗S(η)) < δ (1)
6 , η < δ (1)ε

12 and ζ < δ (1)ε
12 . Then, |p(n)|ψ < δ (1). Conse-

quently, it follows from the ψ−T S of the zero solution of (1.3.1) that |y(n)|< 1 for

all n ≥ n0 ≥ 0. Hence, if n ≥ n0 +
(1−ε)
αε we have

|x(n,n0,ϕ)| = |y(n)|
|u(n− n0)|

<
1

|u(n− n0)|

<
1+ εα(n− n0)

1+ 2α(n− n0)
< ε.

This completes the proof.

Theorem 1.3.2. If (1.3.10), (1.3.11), (1.3.13) and

sup
n≥0

n

∑
s=0

λ (n)< ∞ (1.3.15)

hold, then the zero solution of (1.3.1) is (UAS).

Proof. We first show that the zero solution of (1.3.1) is ψ − TS with ψ(n) = 1+
|A(n)|. Let p∈Cψ (n0) and y(n) = y(n,n0,ϕ , p) be a solution of (1.3.2). By replacing
g(n,x(n)) with g(n,x(n))+ p(n) in (1.3.9) we have that

y(n) = R(n,n0)φ(n0)+
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u)φ(u)

+
n−1

∑
s=n0

R(n,s+ 1)g(s,y(s))+
n−1

∑
s=n0

R(n,s+ 1)p(s)

and

|y(n)| ≤ ||φ ||
[
R(n,n0)

+
n−1

∑
s=n0

|R(n,s+ 1)|(1+ |A(n)|)sup
τ≥0

1
1+ |A(τ)|

τ

∑
u=0

|B(τ,u)|
]
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+|p|ψ
n−1

∑
s=n0

R(n,s+ 1)(1+ |A(s)|)+
n−1

∑
s=n0

|R(n,s+ 1)|λ (s)|y(s)|

≤ ||φ ||[Q+M∗L∗]+ |p|ψM∗+Q
n−1

∑
s=n0

λ (s)|y(s)|).

Applying Gronwall’s inequality (Corollary 1.1) we obtain

|y(n)| ≤
[
||φ ||(Q+M∗L∗)+ |p|ψM∗

]
eQ∑n−1

s=n0
λ (s).

This implies that the zero solution of (1.3.1) is ψ − T S and therefore by Theo-
rem 1.3.1 it is (UAS).

In the next example we use Lyapunov’s method to directly verify condition (1.3.11).
This is of special interest to us because, in difference equations, this produces a new
summability criteria of the resolvent .

1.3.1 Application to Perturbed Volterra Difference Equations

In this section, we use Lyapunov functional in terms of the resolvent and obtain
stability results concerning nonlinear scalar Volterra difference equations.

Example 1.5. Consider the perturbed and scalar Volterra difference equation

x(n+ 1) = a(n)x(n)+
n

∑
s=0

b(n,s)x(s)+ g(n,x(n)) (1.3.16)

with the assumption that |g(n,x)| ≤ λ (n)|x|. Assume (1.3.10) and (1.3.13) hold for
the scalar equation (1.3.16). Also, suppose there is a sequence ϕ : Z+×Z+ → (0,∞)
such that

�sϕ(n,s)≥ |b(n,s)| (1.3.17)

and
−|a(n)|+K

(
1−|b(n,n)|−ϕ(n,n)

)
≥ β (1.3.18)

where β and K are positive constants with 0 < K < 1. If (1.3.15) holds, then the
zero solution of (1.3.16) is (UAS).

Proof. Define the Lyapunov functional V (s) on [0,n− 1] by

V (s) = |R(n,s)|+
n−1

∑
u=s

ϕ(u,s)|R(n,u+ 1)| (1.3.19)

where R(n,s) is the resolvent of (1.3.6) with g = 0, satisfying

R(n,s+ 1)a(s)+
n−1

∑
u=s

R(n,u+ 1)b(u,s)−R(n,s) = 0.
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Then,

�V(s) = |R(n,s+ 1)|− |R(n,s)|

+
n−1

∑
u=s+1

ϕ(u,s+ 1)|R(n,u+ 1)|−
n−1

∑
u=s

ϕ(u,s)|R(n,u+ 1)|

≥ (−|a(s)|+ 1)|R(n,s+ 1)|−
n−1

∑
u=s

|R(n,u+ 1)||b(u,s)|

+
n−1

∑
u=s+1

ϕ(u,s+ 1)|R(n,u+ 1)|−ϕ(s,s)|R(n,s+ 1)|

−
n−1

∑
u=s+1

ϕ(u,s)|R(n,u+ 1)|.

Or

�V (s) =
[
1−|a(s)|− |b(s,s)|−ϕ(s,s)

]
|R(n,s+ 1)

+
n−1

∑
u=s+1

(
�sϕ(u,s)−|b(u,s)|

)
|R(n,u+ 1)|

≥
[
1−|a(s)|− |b(s,s)|−ϕ(s,s)

]
|R(n,s+ 1)

= (−1+
1
K
)|a(s)||R(n,s+ 1)|

+
1
K

[
−|a(s)|+K

(
1−|b(s,s)|−ϕ(s,s)

)]
|R(n,s+ 1)|

≥ k
(

1+ |a(s)|
)
|R(n,s+ 1)| (1.3.20)

where k = min
[
− 1+ 1

K ,
β
K

]
. Summing (1.3.20) from 0 to n− 1 yields

k
n−1

∑
s=0

(1+ |a(s)|)|R(n,s+ 1)| ≤ V (n)−V(0)

= |R(n,n)|− |R(n,0)|. (1.3.21)

Thus,

sup
n≥0

n−1

∑
s=0

|R(n,s+ 1)(|1+ |a(s)|)< 1
k
. (1.3.22)

Hence condition (1.3.11) is satisfied and by Theorem 1.3.2 the zero solution of
(1.3.16) is (UAS).



34 1 Stability and Boundedness

Note that the Lyapunov functional V (s) defined by (1.3.19) is of general type. To
see this, let ϕ(u,s) =∑s−1

v=0 |b(u,v)|. Then ϕ satisfies (1.3.17) and condition (1.3.18)
reduces to

−|a(n)|+K
(

1−
n

∑
s=0

|b(n,s)|
)
≥ β . (1.3.23)

It is easy to see that (1.3.21) implies that ∑n
s=0 |b(n,s)| < 1 and hence (1.3.10) is

satisfied. We note that inequality (1.3.22) implies R(n,s) is bounded for 1 ≤ s ≤
n. Also, from inequality (1.3.21) R(n,0) is bounded, since V (s) is increasing. We
conclude that Lemma 1.3 is not needed for this example.

1.4 Uniform Asymptotic Stability via Resolvent

In this section, we study the stability properties of the zero solution of the nonlinear
perturbed Volterra discrete system

x(n+ 1) = A(n)x(n)+
n

∑
s=0

B(n,s)x(s)+ g(n,x(n)) (1.4.1)

where g(n,x) is continuous in x and satisfies |g(n,x(n))| ≤ λ (n) |x|, where λ (n)
is such that 0 ≤ λ (n) ≤ N < +∞, for some constant N. Moreover, A, B are k× k
matrix functions on Z

+ and Z
+×Z

+, respectively. Recently, several authors have
studied the behavior of solutions of variant forms of (1.4.1). Medina [113, 114, 117],
Eloe et al. [65], and Raffoul [135] obtained stability and boundedness results of the
solutions of the homogenous part of (1.4.1) by means of representing the solution in
terms of the resolvent matrix. In addition, Eloe et al. [65] and Elaydi et al. [61] used
the notion of total stability and established results on the asymptotic behavior of
the zero solution of (1.4.1). Their work heavily depended on showing or assuming
the summability of the resolvent matrix. For more results on stability of the zero
solution of Volterra discrete system we refer the reader to Crisci, Komanovskii, and
Vecchio [36], Elaydi [52], and Agarwal and Pang [5]. This research is a continuation
of the research initiated by the authors in [84] and related to the work in [65]. In this
section we extend some of the results in [83], and later on we furnish an example as
an application to some of our theorems, in which we show the summability of the
resolvent matrix.
For x ∈ R

k, |x| denotes the Euclidean norm of x. For any k× k matrix A, we define
the norm of A by |A|= max{|Ax| : |x| ≤ 1}. We define the set C(n) = {φ ∈ R

k : φ :
[0,n]→R

k} with the norm ||φ ||= max{|φ(s)| : 0 ≤ s ≤ n} on it.
For each n0 ∈ Z

+, and φ ∈ C(n0), there is a unique (vector) function φ : Z+ → R
k

on 0 ≤ s ≤ n0 on [n0,∞) with x(s) = φ(s) for 0 ≤ s ≤ n0. Such a function x(n) is
called a solution of (1.4.1), and is denoted by x(n,n0,φ). Throughout this section
we write x(n) for x(n,n0,φ) unless it is stated otherwise.
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Theorem 1.4.1. Let

Q(n) = |A(n) |+λ (n)+
∞

∑
u=n

|B(u,n)|.

Suppose that, for all n ≥ n0 ≥ 0,

∞

∑
n=n0

Q(n) |R(n,n0) |< ∞ ,
∞

∑
u=n

Q(u)|R(u,n+ 1)| ≤ K1 Q(n)< ∞, (1.4.2)

and for the upper bound N, on λ (n),0 ≤ N K1 < 1, hold. Then the zero solution
of (1.4.1) is stable.

Proof. Suppose that x(n) is a solution of (1.4.1). If R(n,s) satisfies (1.3.6), then x(n)
is given by, see Lemma 1.2,

x(n) = R(n,n0)φ(n0)+
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u)φ(u)

+
n−1

∑
s=n0

R(n,s+ 1)g(s,x(s)). (1.4.3)

First we take the absolute value on both sides of (1.4.3), multiply through by Q(n),
and then sum from n = n0 to n = ∞ to obtain

∞

∑
n=n0

Q(n) |x(n)| ≤
∞

∑
n=n0

Q(n) |R(n,n0)| ||φ ||

+
∞

∑
n=n0

Q(n)
n−1

∑
s=n0

|R(n,s+ 1)|
n0−1

∑
u=0

|B(s,u)| ||φ ||

+
∞

∑
n=n0

Q(n)
n−1

∑
s=n0

|R(n,s+ 1)|λ (s) |x(s)|

≤
∞

∑
n=n0

Q(n) |R(n,n0)| ||φ ||

+
∞

∑
n=n0

n

∑
s=n0

Q(n) |R(n,s+ 1)|
n0

∑
u=0

|B(s,u)| ||φ ||

+
∞

∑
n=n0

n

∑
s=n0

Q(n) |R(n,s+ 1)| λ (s) |x(s)|.

By changing the order of summations, we have

∞

∑
n=n0

n

∑
s=n0

Q(n) |R(n,s+ 1)|=
∞

∑
s=n0

∞

∑
n=s

Q(n) |R(n,s+ 1)| .
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Thus, from the above inequality, we obtain

∞

∑
n=n0

Q(n) |x(n)| ≤
∞

∑
n=n0

|R(n,n0) |Q(n) ||φ ||

+
∞

∑
s=n0

∞

∑
n=s

Q(n) |R(n,s+ 1)|
n0

∑
u=0

|B(s,u) | ||φ ||

+
∞

∑
n=n0

∞

∑
u=n

Q(u) |R(u,n+ 1)|λ (n) |x(n)|. (1.4.4)

By (1.4.2) there exists an M1 > 0, and M2 > 0 such that

∞

∑
n=s

Q(n)|R(n,s)|< M1, and
∞

∑
s=n

Q(s)|R(s,n+ 1)|< M2.

Let

C∗(n0) =
∞

∑
s=n0

n0

∑
u=0

|B(s,u)|.

Then from (1.4.4), we have

∞

∑
n=n0

Q(n) |x(n)| ≤ M1 ||φ ||+M2

∞

∑
s=n0

n0

∑
u=0

|B(s,u)| ||φ ||

+N K1

∞

∑
n=n0

Q(n) |x(n)|

≤ M1 ||φ ||+M2 C∗(n0)||φ ||

+N K1

∞

∑
n=n0

Q(n) |x(n)| .

Solving for ∑∞
n=n0

Q(n) |x(n)|, we get

∞

∑
n=n0

Q(n) |x(n)| ≤ ||φ ||(M1 +M2C∗(n0))

1−N K1
. (1.4.5)

Next we rewrite (1.4.1) as

�x(n) = D(n)x(n)+
n

∑
s=0

B(s,u)x(s)+ g(n,x(n))

where I is the identity matrix and D(n) = A(n)− I. By summing the above equation
over n from n0 to n− 1 we get
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|
n−1

∑
s=n0

�x(s)| =
∣
∣∣
∣
∣

n−1

∑
s=n0

[

D(s)x(s)+
s

∑
u=0

B(s,u)x(u)+ g(s,x(s))

]∣∣∣
∣
∣

≤
∣∣
∣
∣
∣

n−1

∑
s=n0

[

D(s)x(s)+
s

∑
u=n0+1

B(s,u)x(u)+ g(s,x(s))

]∣∣
∣
∣
∣

+

∣
∣
∣
∣
∣

n−1

∑
s=n0

n0

∑
u=0

B(s,u)x(u)

∣
∣
∣
∣
∣

≤
∞

∑
n=n0

|D(n) | |x(n)|+
∞

∑
n=n0

n

∑
u=n0

|B(n,u)| |x(n)|

+
∞

∑
n=n0

λ (n) |x(n)|+
∞

∑
n=n0

n0

∑
u=0

|B(n,u)| ||φ ||.

By interchanging the order of summations in the second term of the right side of the
above inequality, we arrive at

|
n−1

∑
s=n0

�x(s)| ≤
∞

∑
n=n0

[

|D(n) |+
n

∑
u=n0

|B(n,u)|+λ (n)

]

|x(n)|+C∗(n0) ||φ ||

≤
∞

∑
n=n0

Q(n) |x(n)|+C∗(n0) ||φ ||. (1.4.6)

By substituting (1.4.5) into (1.4.6), we get

|
n−1

∑
s=n0

�x(s) | ≤ ||φ ||(M1 +M2 C∗(n0))

1−N K1
+C∗(n0) ||φ ||.

Thus,

|x(n)− x(n0)| ≤ ||φ ||
[ ||φ ||(M1 +M2 C∗(n0))

1−N K1
+C∗(n0)

]
.

But |x(n)|− |x(n0)| ≤ |x(n)− x(n0)|, and hence we have

|x(n)| ≤ ||φ ||
[
(M1 +M2 C∗(n0))

1−N K1
+C∗(n0)+ 1

]
.

We remark that if C∗(n0) is uniformly bounded, then Theorem 1.4.1 implies that the
zero solution of (1.4.1) is (US).

Theorem 1.4.2. Suppose
i.

sup
n≥n0≥0

∞

∑
s=n

|R(s,n0)|<+∞, (1.4.7)
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sup
n≥n0≥0

{

|R(n,n0) |+
n0−1

∑
u=0

|
n−1

∑
s=n0

R(n,s+ 1) B(s,u)

}

<+∞, (1.4.8)

sup
n≥n0≥0

λ (n)
∞

∑
s=n

|R(s,n+ 1) | ≤ L < 1, (1.4.9)

and there exist a D > 0 such that

∞

∑
s=n0

(
∞

∑
n=s

|R(n,s+ 1) |
n0−1

∑
u=0

|B(s,u) |
)

≤ D (1.4.10)

then the zero solution of (1.4.1) is (US).
ii. If the zero solution of (1.4.1) is (US) and

sup
n≥n0≥0

n−1

∑
s=n0

|R(n,s+ 1)|< ∞ (1.4.11)

then (1.4.8) holds.

Proof.
i. Suppose that (1.4.8)–(1.4.10) hold. Summing (1.4.3) over n from n = n0 to n =∞
and using |g(n,x)| ≤ λ (n)|x|, we get

∞

∑
n=n0

|x(n)| ≤
∞

∑
n=n0

|R(n,n0) | ||φ ||

+
∞

∑
n=n0

(
n−1

∑
s=n0

|R(n,s+ 1) |
n0−1

∑
u=0

B(s,u) ||φ ||
)

+
∞

∑
n=n0

(
n

∑
s=n0

|R(n,s+ 1) | |g(s,x(s)) |
)

≤
∞

∑
n=n0

|R(n,n0) | ||φ ||

+
∞

∑
n=n0

(
n

∑
s=n0

|R(n,s+ 1) |
n0−1

∑
u=0

B(s,u) ||φ ||
)

+
∞

∑
n=n0

∞

∑
s=n

|R(s,n+ 1) | λ (n)|x(n)|.

From (1.4.7), there exists a positive constant F such that ∑∞
s=n |R(n,n0)| ≤ F. Thus,

using (1.4.9) and (1.4.10) we arrive at

∞

∑
n=n0

|x(n)| ≤ F +
∞

∑
s=n0

(
∞

∑
n=s

|R(n,s+ 1) |
n0−1

∑
u=0

B(s,u)

)

||φ ||

+L
∞

∑
n=n0

|x(n)‖. (1.4.12)
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Hence (1.4.12) yields

∞

∑
n=n0

|x(n)| ≤ F ||φ ||+D ||φ ||+L
∞

∑
n=n0

|x(n) |.

Thus,
∞

∑
n=n0

|x(n)| ≤ (F +D) ||φ ||
1−L

. (1.4.13)

Using equation (1.4.3), we obtain

|x(n)| ≤ |R(n,n0)| ||φ ||+
n0−1

∑
u=0

(

|
n−1

∑
s=n0

R(n,s+ 1)B(s,u) |
)

||φ ||

+
n−1

∑
s=n0

|R(n,s+ 1)|λ (s) |x(s)|. (1.4.14)

By (1.4.8) and the fact that λ (n) is bounded, there exists a constant P > 0 such that
|R(n,s)|λ (s) ≤ P for 0 ≤ n0 ≤ s ≤ n. Also by (1.4.8), there exists a constant E > 0
such that

sup
n≥n0≥0

{

|R(n,n0)|+
n0−1

∑
u=0

|
n−1

∑
s=u0

R(n,s+ 1)B(s,n)|
}

< E.

Thus (1.4.13) and (1.4.14) yield

|x(n)| ≤
{

|R(n,n0)|+
n0−1

∑
u=0

|
n−1

∑
s=n0

R(n,s+ 1)B(s,u) |
}

||φ ||

+P
n−1

∑
s=n0

|x(s)|

≤ E ||φ ||+P
(F +D) ||φ ||

1−L
:= J ||φ ||. (1.4.15)

Thus, (1.4.15) implies that the zero solution of (1.4.1) is (US). Suppose that the
zero solution of (1.4.1) is (US). Then for ε = 1, there exists a δ > 0 such that
[n0 ≥ 0, φ ∈ C(n0), ||φ || ≤ δ , n ≥ n0] implies |x(n,n0,φ)| < 1. Let m be a positive
integer and define the sequence of functions φm by

φm(u) = va−m(n0−u) on 0 ≤ u ≤ n0. (1.4.16)

Let ψm(u) = δ
2 va−m(n0−u) for 0 ≤ u ≤ n0. Then, |ψm(u)| ≤ δ

2 . Hence we have
|x(n,n0,ψm(s))| < ε . It is clear from (1.4.16) that φm(n0) = v and |φm(s)| ≤ 1 for
0 ≤ s ≤ n0. Thus, from (1.4.3) we have

|R(n,n0)| δ2 ≤ |x(n,n0,ψm)|+ δ
2
|

n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u) a−m(n0−u)|
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+|
n−1

∑
s=n0

|R(n,s+ 1)| λ (s) |x(s,n0,ψm(s))|

≤ 1+
δ
2
|

n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u) a−m(n0−u)|

+|
n−1

∑
s=n0

|R(n,s+ 1)| λ (s). (1.4.17)

Now, for fixed n,

|
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u) a−m(n0−u)| → 0 as m → ∞.

By (1.4.11), there exists a G > 0 such that ∑n−1
s=n0

|R(n,s + 1)|λ (s) ≤ G. Thus
from (1.4.17)

|R(n,n0)| ≤ 2
δ
(1+G). (1.4.18)

Next, let φ ∈ C(n0) with ||φ || < 1. Define ψ = δ φ . Then ||ψ || < δ . Thus, by the
definition of δ , we have |x(n,n0,ψ)| < 1 for all n ≥ n0. It follows from (1.4.3)
and (1.4.18) that

∣∣
∣
∣
∣

n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

B(s,u)ψ(u)

∣∣
∣
∣
∣
≤ |x(n,n0,ψ)|+ |R(n,n0)| |ψ(n0)|

+
n−1

∑
s=n0

|R(n,s+ 1)|λ (s) | |x(s,n0,ψ)|

≤ |x(n,n0,ψ)|+ |R(n,n0)| ||ψ(n0)||+G

≤ 1+ 2(1+G)+G.

Hence,

|
n0−1

∑
u=0

n−1

∑
s=n0

R(n,s+ 1)ϕ(u)| ≤ 1
δ
|

n0−1

∑
n=0

n−1

∑
s=n0

R(n,s+ 1)ψ(n) | ≤ 3
δ
(1+G)

for n≥ n0 and the proof is complete. The next Lemma gives necessary and sufficient
conditions for the uniform boundedness of R(n,s).

Lemma 1.5. There exists a positive constant H such that |R(n,s)| ≤H for n ≥ s ≥ 0
if and only if

sup
n≥s≥0

∣
∣
∣
∣
∣

n−1

∑
u=s

R(n,u+ 1)

(
D(u)+

u

∑
v=s

R(n,u+ 1)B(u,v)

)∣∣
∣
∣
∣
< ∞. (1.4.19)
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Proof. By solving equation (1.3.6) for �sR(n,s), and summing it from s to n− 1
and then changing the order of summations, we arrive at

R(n,s) = I +
n−1

∑
u=s

R(n,u+ 1) [A(u)− I]+
n−1

∑
v=s

n−1

∑
u=v

R(n,u+ 1)B(u,v)

= I +
n−1

∑
u=s

R(n,u+ 1)D(u)+
n−1

∑
u=s

u

∑
v=s

R(n,u+ 1)B(u,v)

= I +
n−1

∑
u=s

R(n,u+ 1)

[
D(u)+

u

∑
v=s

B(u,v)

]
.

Hence, the result follows.

For the next theorem, we assume

sup
n≥n0≥0

n0−1

∑
u=0

|
n

∑
s=n0

R(n,s+ 1) B(s,u)|<+∞. (1.4.20)

Theorem 1.4.3. Assume that |R(n,s+ 1)| ≤ H(s) for 0 ≤ s ≤ n < ∞ with

sup
n≥0

n−1

∑
s=0

H(s)λ (s) ≤ K for K > 0. (1.4.21)

Then, the zero solution of (1.4.1) is (US) if and only if (1.4.8) holds .

Proof. If (1.4.8) holds, then for 0 ≤ n0 ≤ s ≤ n, we have |R(n,s+ 1)| ≤ H(s) < ∞.
From (1.4.14), we obtain

|x(n)| ≤
{

|R(n,n0) |+
n0−1

∑
u=0

|
n−1

∑
s=n0

R(n,s+ 1) B(s,u) |
}

||φ ||

+
n−1

∑
s=n0

|R(n,s+ 1)| λ (s) |x(s)|

≤ E ||φ ||+
n−1

∑
s=n0

H(s)λ (s) |x(s)|.

Applying the discrete Gronwall’s inequality (Corollary 1.1), we get

|x(n)| ≤ E ||φ || exp

(
n−1

∑
s=n0

H(s)λ (s)

)

≤ E ||φ || exp(K) := L||φ ||. (1.4.22)

This proves that the zero solution of (1.4.1) is (US). The proof of the converse of
this theorem is similar to the proof of the converse of Theorem 1.4.2.
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Theorem 1.4.4. (i) If (1.4.8)–(1.4.10) and (1.4.19)–(1.4.20) hold, then the zero so-
lution of (1.4.1) is (US). (ii) If the zero solution of (1.4.1) is (US) and (1.4.11) holds,
then (1.4.19)–(1.4.20) hold.

Proof. Conditions (1.4.19)–(1.4.20) hold if and only if (1.4.8) holds. Therefore the
results follow directly from Theorem 1.4.1.

Theorem 1.4.5. i. Suppose that (1.4.7)–(1.4.10), and
{

|R(n,n0) |+
n0−1

∑
u=0

|
n−1

∑
s=n0

R(n,s+ 1)B(s,u) |
}

→ 0 (1.4.23)

as n− n0 →+∞ uniformly,

n−1

∑
s=n0

|R(n,s+ 1)| → 0, (1.4.24)

as n− n0 →+∞ uniformly hold. Then, the zero solution of (1.4.1) is (UAS).
ii. If the zero solution of (1.4.1) is (UAS) and (1.4.24) hold, then (1.4.23) holds.

Proof. Suppose that (1.4.7)–(1.4.10) hold. Then, by Theorem 1.4.2, the zero solu-
tion is obviously (US). Let B1 > 0 be given and φ ∈ C(n0) on 0 ≤ s ≤ n0 with
||φ || ≤ B1. Then, it follows from (1.4.14) and (1.4.15) that,

|x(n)| ≤
{

|R(n,n0)|+
n0−1

∑
u=0

|
n−1

∑
s=n0

R(n,s+ 1)B(s,u) |
}

||φ ||

+
n−1

∑
s=n0

|R(n,s+ 1)|N J ||φ ||

≤
[

|R(n,n0)|+
n0−1

∑
u=0

|
n−1

∑
s=n0

R(n,s+ 1)B(s,u) |
]

B1

+

[

N J
n−1

∑
s=n0

|R(n,s+ 1)|
]

B1.

From (1.4.23) and (1.4.24), it follows that for any ε > 0, there exists a constant
T > 0 such that

[

|R(n,n0)|+
n0−1

∑
u=0

|
n−1

∑
s=n0

R(n,s+ 1)B(s,u) |+N J
n−1

∑
s=n0

|R(n,s+ 1)|
]

<
ε

B1

for all n ≥ T + n0. Thus, |x(n)| < ε for all n ≥ T + n0. This implies that the zero
solution of (1.4.1) is (UAS). Conversely, suppose that the zero solution of (1.4.1)
is (UAS). Then it is (US). Let φ ∈ C(n0) with ||φ || ≤ 1. Then, for any ε > 0, there
exists T > 0 such that |x(n,n0,φ)| < ε for n ≥ T + n0. By making use of (1.4.17)
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and by the argument of Theorem 2.2 (ii), we have |R(n,n0)|< ε for all n ≥ T + n0.
Now using (1.4.14) in (1.4.3), we get

|
n0−1

∑
u=0

(
n−1

∑
s=n0

R(n,s+ 1)B(s,u)

)

φ(u)|

≤ |x(n,n0,φ)|+ |R(n,n0)|+N J
n−1

∑
s=n0

|R(n,s+ 1)|< 3ε

for all n ≥ T + n0. This implies

n0−1

∑
u=0

|
n−1

∑
s=n0

R(n,s+ 1)B(s,u)|< 3ε

for all n ≥ T + n0. This shows that (1.4.23) holds and the proof is complete.

Remark 1.1. The function

|R(n,s)|+
n−1

∑
u=s

|
s−1

∑
v=0

R(n,u+ 1)B(u,v) | (1.4.25)

can serve as a Lyapunov functional to directly verify conditions (1.4.8) and (1.4.23)–
(1.4.24) as we shall see in the next example.

Lemma 1.6. The resolvent R(n,s)→ 0 as n− s →+∞ uniformly if and only if

{

I +
u=n−1

∑
u=s

|R(n,u)|
(

D(u)+
u

∑
v=s

B(u,v) |
)}

→ 0 (1.4.26)

as n− s →+∞ uniformly.

Proof. The proof follows directly from Lemma 1.5.

Theorem 1.4.6. If (1.4.7)–(1.4.10), (1.4.24)–(1.4.26), and

n0−1

∑
u=0

|
n−1

∑
s=n0

R(n,s+ 1)B(s,u) | → 0 (1.4.27)

as n− n0 →+∞ uniformly hold, then the zero solution of (1.4.1) is (UAS).

Proof. The proof of Theorem 1.4.6 follows directly from Lemma 1.6 and Theo-
rem 1.4.5

Using (1.4.22) of Theorem 1.4.3, we obtain the following theorem which is more
practical when the sum of R(n,s+ 1) along with A(n) and ∑n

s=0 B(n,s) can be esti-
mated.
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Theorem 1.4.7. Suppose that (1.4.8) and (1.4.21) hold. Then, the zero solution
of (1.4.1) is (UAS) if and only if (1.4.23) and

n−1

∑
s=0

|R(n,s+ 1)|λ (s)→ 0 for n− n0 →+∞ uniformly (1.4.28)

hold.

Proof. Suppose that (1.4.8) and (1.4.21) hold. Then, by Theorem 1.4.3, the zero so-
lution is (US).
Let B1 > 0 be a given constant and φ ∈ C(n0) on 0 ≤ s ≤ n0 with ||φ || < B1. Us-
ing (1.4.22) in (1.4.3), we obtain

|x(n)| ≤
{

|R(n,n0) |+
n0−1

∑
u=0

(
n−1

∑
s=n0

R(n,s+ 1)B(s,u)

)}

||φ ||

+L
n−1

∑
s=n0

|R(n,s+ 1)|λ (s) ||φ ||.

Applying (1.4.23) and (1.4.28) in the above inequality gives the (UAS). The con-
verse of Theorem 1.4.7 follows from the proof of the converse of Theorem 1.4.3.

1.4.1 Application to Scalar Equations

We end the section by furnishing an example in which we show that the zero solution
of the scalar nonlinear Volterra discrete equation

x(n+ 1) = a(n)x(n)+
n

∑
s=0

b(n,s)x(s)+ g(n,x(n)) (1.4.29)

where |g(n,x)| ≤ λ |x|, is (UAS).

Example 1.6. Consider equation (1.4.29) and suppose there are positive constants
γ,h,B, and K with K < 1 satisfying the following conditions for n ≥ 0:

(i) −a(n)+K
(
1−

n

∑
s=0

|b(n,s)|)> 0,

(ii) For each γ > 0, there exists h > 0 such that
n+h−1

∑
s=n

|a(s)| ≥ γ ,

(iii)
1

|a(n)|
n0

∑
s=0

|b(n,s)| → 0 as n− n0 →+∞ uniformly on {n |a(n) 	= 0},

(iv)
n0−1

∑
s=0

|b(n,s)| ≥ λ (n) for n0 ≥ 0,
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(v)
n

∑
0
λ (s)<∞ for all n ≥ 0, and

(vi)
∞

∑
u=0

|b(u,s)| ≤ B.

Then the zero solution of (1.4.29) is (UAS).

Proof. Define the discrete Lyapunov functional, V (s) on [0,n− 1] by

V (s) = |R(n,s)|+
n−1

∑
u=s

s−1

∑
v=0

|R(n,u+ 1)| |b(u,v)|

where R(n,s) is the resolvent of (1.4.29) with g = 0, satisfying

R(n,s+ 1)a(s)+
n−1

∑
u=s

R(n,u+ 1)b(u,s)−R(n,s) = 0, R(n,n) = 1.

Then using (i) we have

�V (s) = |R(n,s+ 1)|− |R(n,s)|

+
n−1

∑
u=s+1

s

∑
v=0

|R(n,u+ 1)| |b(u,v)|−
n−1

∑
u=s

s−1

∑
v=0

|R(n,u+ 1)| |b(u,v)|

≥ (−|a(s)|+ 1) |R(n,s+ 1)|

−|R(n,s+ 1)| |b(s,s)|− |R(n,s+ 1)|
s−1

∑
v=0

|b(s,v)|

=

(

1−|a(s)|−
s

∑
v=0

|b(s,v)|
)

|R(n,s+ 1)|

≥ ( 1
K
− 1
)|a(s)||R(n,s+ 1)|. (1.4.30)

So we have �V (s)> 0.
This yields that for n ≥ n0 ≥ 0, V (n0)≤V (n) = |R(n,n)|= 1. That is,

|R(n,n0)|+
n−1

∑
u=n0

n0−1

∑
v=0

|R(n,u+ 1)| |b(u,v)| ≤ 1. (1.4.31)

Hence (1.4.8) is satisfied.
By summing (1.4.30) from 0 to n− 1, we obtain

( 1
K
− 1
)n−1

∑
s=0

|a(s)||R(n,s+ 1)| ≤V (n)−V(0)≤ 1 (1.4.32)
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or
n−1

∑
s=0

|a(s)||R(n,s+ 1)| ≤ K
1−K

=: D.

Note that (1.4.31) implies that there exists a constant H > 0 such that

sup
s≥n0≥0

|R(n,s+ 1)|= H ≤ 1 for 0 ≤ s ≤ n < ∞.

Hence, by (v) we have

sup
n≥1

n−1

∑
s=0

H λ (s)< ∞.

Thus condition (1.4.21) is satisfied and by Theorem 1.4.3, the zero solution of
(1.4.29) is (US). By (iii), for any ε > 0 there exists N1 > 0 such that for u≥N1+s−1
implies

s−1

∑
v=0

|b(u,v)| ≤ ε
(3+B)D

|a(u)|.

Thus, for n ≥ N1 + s− 1 we have

s+N1−1

∑
u=s

|R(n,u+ 1)|
s−1

∑
v=0

|b(u,v)|

=
n−1

∑
u=s

|R(n,u+ 1)|
s−1

∑
v=0

|b(u,v)|+
n−1

∑
u=s+N1

|R(n,u+ 1)|
s−1

∑
v=0

|b(u,v)|

≤ ε
(3+B)D

n−1

∑
u=s+N1

|R(n,u+ 1)||a(u)|+
s+N1−1

∑
u=s

|R(n,u+ 1)|
s−1

∑
v=0

|b(u,v)|

≤ ε
3+B

+
s+N1−1

∑
u=s

|R(n,u+ 1)|
s−1

∑
v=0

|b(u,v)|. (1.4.33)

Let β = K
1−K and α = 3+B

εβ . By (ii), there exists an h> 0 such that ∑s+h−1
v=s |a(v)| ≥α ,

and

|R(n,ns+ 1)|β
s+h−1

∑
v=s

|a(v)| ≤ β
s+h−1

∑
u=s

|R(n,u+ 1)||a(u)|,

for ns ∈ [s,s+ h− 1] and n ≥ s+ h, where

|R(n,ns + 1)|= min
s≤u≤s+h−1

|R(n,u+ 1)|.

Using (1.4.32) in the above inequality we arrive at

|R(n,ns + 1)| ≤ 1

β ∑s+h−1
v=s |a(v)| <

ε
3+B

.
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Choose N > 1 so that βNε
3+B > 1. For each n0 ≥ 0 and n ≥ n0 +(N + 1)(N1 + h− 1),

define {n j} with

n( j− 1)+N1 ≤ n j ≤ n( j− 1)+N1+ h− 1, j = 1,2,3.....N

such that
|R(n,n j + 1)|< ε

3+B
. (1.4.34)

It follows that nN ≤ n0 +N(N1 + h− 1) and by (1.4.32) we arrive at

N

∑
j=1

(n j+N1−1

∑
u=n j

β |R(n,u+ 1)||a(u)|)≤
n−1

∑
u=n0

β |R(n,u+ 1)||a(u)| ≤ 1.

Since βNε
3+B > 1, it follows from the above inequality there exists nk,1 ≤ k ≤ N such

that

N
nk+N1−1

∑
u=nk

β |R(n,u+ 1)||a(u)| ≤ 1.

Or,
nk+N1−1

∑
u=nk

|R(n,u+ 1)||a(u)|< ε
3+B

. (1.4.35)

Since V (s) is increasing, we have

V (nk)≤V (nk + 1).

Hence, using (1.4.33)–(1.4.34) and (vi) we arrive at

|R(n,nk)|+
n−1

∑
u=nk

nk−1

∑
v=0

|R(n,u+ 1)| |b(u,v)|

≤ |R(n,nk + 1)|+
n−1

∑
u=nk

nk−1

∑
v=0

|R(n,u+ 1)| |b(u,v)|

+
n−1

∑
u=nk+1

|R(n,u+ 1)| |b(u,nk)|

≤ ε
3+B

+
2ε

3+B
+

Bε
3+B

= ε.

This yields

|R(n,n0)|+
n−1

∑
u=n0

n0−1

∑
v=0

|R(n,u+ 1)| |b(u,v)|=V (n0)≤V (nk)< ε (1.4.36)
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for n ≥ n0 +(N + 1)(N1 + h− 1)≥ nk,N > 3+B
βε . Hence condition (1.4.23) is satis-

fied. Next, for n ≥ n0 +(N + 1)(N1 + h− 1)≥ nk we have by using condition (iv)
in (1.4.36).

|R(n,n0)| +
n−1

∑
u=n0

|R(n,u+ 1)|λ (u)

≤ |R(n,n0)|+
n−1

∑
u=n0

|R(n,u+ 1)|
n0−1

∑
v=0

|b(u,v)|

≤ |R(n,n0)|+
n−1

∑
u=n0

n0−1

∑
v=0

|R(n,u+ 1)||b(u,v)|

< ε. (1.4.37)

Hence, (1.4.28) follows directly from (1.4.37) and the zero solution of (1.4.29) is
(UAS) by Theorem 1.4.7

1.4.2 Homogenous Volterra Equations; (g(n,x) = 0)

Theorems of the previous section were complicated due to the presence of the per-
turbation term g(n,x). In this section, we state necessary and sufficient conditions
for the (US) and (UAS) of the unperturbed Volterra difference equation

x(n+ 1) = a(n)x(n)+
n

∑
s=0

b(n,s)x(s). (1.4.38)

We will state two parallel theorems concerning (1.4.38). The proof of the next the-
orem follows along the lines of the proof of Theorem 1.4.2.

Theorem 1.4.8 ([83]). The zero solution of (1.4.38) is (US) if and only if (1.4.8)
holds.

Similarly, the proof of the next theorem follows along the lines of the proof of
Theorem 1.4.7.

Theorem 1.4.9 ([83]). The zero solution of (1.4.38) is (UAS) if and only if (1.4.8)
and (1.4.23) hold.

In the next theorems we apply the results of Theorems 1.4.8 and 1.4.9 to (1.4.38).

Theorem 1.4.10 ([83]). The zero solution of (1.4.38) is (US) if and only if

∣
∣

n−1

∏
i=n0

a(i)
∣
∣+

n−1

∑
s=n0

∣
∣

n−1

∏
i=s+1

a(i)
n0−1

∑
u=0

b(s,u)
∣
∣≤ L (1.4.39)

holds for some positive constant L.
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Proof. Let n0 ≥ 0, φ ∈ C(n0), and x(n) = x(n,n0,φ) be a solution of (1.4.38). By
the variation of parameters formula ([52, 135]), we have

x(n) =
n−1

∏
i=n0

a(i)φ(n0)+
n−1

∑
s=n0

n−1

∏
i=s+1

a(i)
n0−1

∑
u=0

b(s,u)φ(u)

:= R(n,n0)φ(n0)+
n−1

∑
s=n0

R(n,s+ 1)
n0−1

∑
u=0

b(s,u)φ(u), (1.4.40)

where

R(n,n0) =
n−1

∏
i=n0

a(i).

By taking supremum in (1.4.40), we satisfy (1.4.8) by invoking (1.4.39) and results
follow from Theorem 1.4.8.

The next result is very interesting since the growth of ∑n
s=0 b(n,s) is controlled by

the size of a(n).

Theorem 1.4.11 ([83]). The zero solution of (1.4.38) is (US) if and only if there ex-
ist positive constant α such that

|a(n)| ≤ α < 1, for all n ≥ 0 (1.4.41)

and

sup
n→∞

1
|a(n)|

∣
∣

n0−1

∑
s=0

b(n,s)
∣
∣< ∞, provided that a(n) 	= 0 for large n. (1.4.42)

Proof. First we note that condition (1.4.42) implies that there exists a positive con-
stant L such that

∣
∣

n0−1

∑
s=0

b(n,s)
∣
∣≤ L|a(n)|.

Let n0 ≥ 0, φ ∈ C(n0), and x(n) = x(n,n0,φ) be a solution of (1.4.38). Then
by (1.4.40) we have that

|R(n,n0)| +
n−1

∑
s=n0

|R(n,s+ 1)
n0−1

∑
u=0

b(s,u)|

≤ |
n−1

∏
i=n0

a(i)|+
n−1

∑
s=n0

|
n−1

∏
i=s+1

a(i)||
n0−1

∑
u=0

b(s,u)|

≤ αn−n0 +L
n−1

∑
s=n0

|αn−s−1)|a(s)|

≤ αn−n0 +Lα
n−1

∑
s=n0

αn−s−1)|a(s)|
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≤ 1+αL
1−αn+n0

1−α

≤ 1+
αL

1−α
.

Hence the proof follows by Theorem 1.4.8.

The next theorem provides necessary and sufficient conditions for the (UAS) of the
zero solution of (1.4.38).

Theorem 1.4.12 ([83]). The zero solution of (1.4.38) is (UAS) if and only if (1.4.39)
holds together with

n−1

∑
s=n0

∣
∣

n0−1

∑
u=0

b(s,u)
∣
∣→ 0, as n− n0 → ∞ uniformly. (1.4.43)

Proof. Let n0 ≥ 0, φ ∈ C(n0), and x(n) = x(n,n0,φ) be a solution of (1.4.38). We
must show that (1.4.23) holds. For our scalar equation (1.4.38), condition (1.4.23)
is equivalent to

|
n−1

∏
i=n0

a(i)|+
n−1

∑
s=n0

|
n−1

∏
i=s+1

a(i)||
n0−1

∑
u=0

b(s,u)| → 0, as n− n0 → ∞ uniformly.

Now by (1.4.41), we have that |
n−1

∏
i=n0

a(i)| → 0. Also, by (1.4.43) we get

n−1

∑
s=n0

|
n−1

∏
i=s+1

a(i)||
n0−1

∑
u=0

b(s,u)| ≤
n−1

∑
s=n0

n0−1

∑
u=0

b(s,u)| → 0, as n− n0 → ∞ uniformly.

By Theorem 1.4.12 the proof is complete.

Next, we state some (USA) results concerning the vector Volterra difference equa-
tion of convolution type

x(n+ 1) = A(n)x(n)+
n

∑
s=0

B(n− s)x(s) (1.4.44)

for all integers n ≥ 0 and for integers, 0 ≤ s ≤ n, where A(n),B(n− s) are k × k
matrix functions, and x is a k× 1 unknown vector. For the next theorem, we let

h(n) =
∞

∑
u=0

∣∣
n−1

∑
s=0

R(n− s− 1)B(s+ u+ 1)
∣∣.

Theorem 1.4.13 ([60]). Suppose that
∞

∑
j=0

|B( j)| < ∞ and let R(n) be the resolvent

of (1.4.44) satisfying (1.3.5). Then for (1.4.44) the following are equivalent.
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(a) det(zI −A− ˜B(z)) 	= 0, for |z| ≥ 1,
(b) R(n) ∈ l1(Z+),
(c) The zero solution of (1.4.44) is (UAS),
(d) Both R(n) and h(n) tend to zero as n → ∞.

For more on such equivalent conditions we refer to the interesting survey papers and
[59] and [114].
It is crucial to mention that the method of resolvent does not work for nonlinear
Volterra difference equations of the form

x(n+ 1) = A(n)x(n)+
n

∑
s=0

B(n,s) f (x(s)) (1.4.45)

since the function f enters nonlinearly which makes it impossible to determine the
resolvent. In later chapters, we shall employ suitable Lyapunov functionals to qual-
itatively analyze the solutions of (1.4.45). The following results can be found in
[115] and [117]. We consider

x(n+ 1) = A(n)x(n)+
n

∑
j=n0

B(n, j)x(s), x(n0) = x0 (1.4.46)

and its perturbation

y(n+ 1) = A(n)x(n)+
n

∑
j=n0

B(n, j)y(s)+F(n) (1.4.47)

where A and B are matrices and R(n,s) is given by (1.3.5). Then the solution
of (1.4.47) is given by

x(n,0,x0) = R(n,0)x0 +
n−1

∑
j=0

R(n, j+ 1)F( j). (1.4.48)

Now we state a definition that we need in the sequel.

Definition 1.4.1. The zero solution of (1.4.46) is said to be h-stable if there exists a
positive and bounded function h and a constant c ≥ 1 such that

|x(n,0,x0)| ≤ c|x0| h(n)
h(n0)

, n ≥ n0 ≥ 0, and x0 is small enough .

If the boundedness condition on h in Definition 1.4.1 is removed, then (1.4.46) is
called an h-system around the null solution. We have the following theorem.

Theorem 1.4.14 ([115]). System (1.4.46) is an h-system, if and only if there exists a
positive function h and a constant c ≥ 1 such that

|R(n,n0)| ≤ c
h(n)
h(n0)

, n ≥ n0 ≥ 0. (1.4.49)
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Theorem 1.4.15 ([115]). Assume system (1.4.46) is an h-system. Let λ : Z+ →R
+.

Then the nonlinear perturbed system

y(n+ 1) = A(n)x(n)+
n

∑
j=n0

B(n, j)y(s)+ p(n,y(n)) (1.4.50)

with p(n,0) = 0, is an h-system, provided that

|p(n,y(n))| ≤ h(n)
h(n+ 1)

λ (n)|y(n)|,

where
∞

∑
n=n0

h(n)
h(n+ 1)

λ (n)< ∞. (1.4.51)

The proof follows by expressing the solution of (1.4.50) in the form

y(n,n0,y0) = R(n,n0)y0 +
n−1

∑
j=0

R(n, j+ 1)p( j,y( j)).

Remark 1.2. It is clear that condition 1.4.51 translates into

n−1

∑
s=0

R(n,s+ 1)λ (s)< ∞,

which is equivalent to our condition (1.4.21). Moreover, a careful reading of [117]
and [114] reveals that the resolvent of (1.4.46) has to approach zero as n goes to
infinity.

It is obvious that conditions (1.4.49) and (1.4.51) require the boundedness and
summability of the resolvent . Unlike others, we were successfully able to verify
such conditions in Sections 1.3.1 and 1.4.1 with the aid of Lyapunov functionals.

1.5 Open Problems

We just saw that the resolvent method could not be directly applied to nonlinear
Volterra difference equations. However, if we impose Almost-Linear conditions on
the nonlinear functions, then it might be possible to carry out some of the work of
the chapter to nonlinear Volterra difference equations. To be precise, we consider
the Volterra difference equation

y(n+ 1) = A(n)y(n)+
n

∑
s=0

C(n,s)y(s)+ p(n), y(0) = y0. (1.5.1)

If the resolvent R(n,s) satisfies (1.3.5), then the solution of (1.5.1) is given by
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y(n) = R(n,0)y0 +
n−1

∑
s=0

R(n,s+ 1)p(s). (1.5.2)

By imposing conditions on the resolvent (see [3]), one may show that all solutions
of (1.5.1) are bounded for every bounded p(n). Next, we consider the nonlinear
Volterra difference equation

x(n+ 1) = A(n)h(x(n))+
n

∑
s=0

C(n,s)g(x(s)) (1.5.3)

in which h and g are continuous and real valued functions. Equation (1.5.3) is
Almost-Linear in the sense that there is a positive constant K such that

|h(x)− x| ≤ K, |g(x)− x| ≤ K.

We write (1.5.3) as

x(n+ 1) = A(n)h(x(n))+
n

∑
s=0

C(n,s)x(s)

− A(n)[x(n)− h(x(n))]−
n

∑
s=0

C(n,s)[x(s)− g(x(s))] (1.5.4)

and express its solution as

x(n) = R(n,0)x0 +
n−1

∑
s=0

R(n,s+ 1)[A(s)(x(s)− h(x(s)))

+
n−1

∑
s=0

R(n,s+ 1)
s

∑
u=0

C(s,u)[x(u)− g(x(u)). (1.5.5)

The results say: in (1.5.3) replace g(x) and h(x) by x to obtain

y(n+ 1) = A(n)y(n)+
n

∑
s=0

C(n,s)y(s). (1.5.6)

Now an interested researcher can pursue different paths. First he or she can fol-
low the study of the last section of this chapter and prove parallel results concern-
ing (1.5.4), by making use of (1.5.5). Another path is using fixed point theory (see
Chapter 3), namely contraction mapping principle and obtain results regarding sta-
bility and boundedness of solutions, by working directly with (1.5.5). For more on
this we ask that you consult with [28].
Next, we explore the possibility of existence of a periodic solution. Again, con-
sider (1.5.1) and suppose we have proved that every solution of (1.5.1) is bounded.
Suppose y1(n) is a fixed solution of (1.5.1) and that y2(n) is any other solution, then

y(n) := y1(n)− y2(n)
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solves (1.5.6). Say we can show that every solution of (1.5.6) tends to zero. Hence,
if y1(n) is a fixed solution of (1.5.1), then every other solution converges to it. Thus,
if A and p are periodic, might y1(n) be periodic under more assumption on C?



Chapter 2
Functional Difference Equations

In this chapter we consider functional difference equations that we apply to all types
of Volterra difference equations. Our general theorems will require the construction
of suitable Lyapunov functionals, a task that is difficult but possible. As we have
seen in Chapter 1, the concept of resolvent can only apply to linear Volterra dif-
ference systems. The theorems on functional difference equations will enable us to
qualitatively analyze the theory of boundedness, uniform ultimate boundedness, and
stability of solutions of vectors and scalars Volterra difference equations. We extend
and prove parallel theorems regarding functional difference equations with finite or
infinite delay, and provide many applications. In addition, we will point out the need
of more research in delay difference equations. In the second part of the chapter, we
state and prove theorems that guide us on how to systematically construct suitable
Lyapunov functionals for a specific nonlinear Volterra difference equation. We end
the chapter with open problems. Most of the results of this chapter can be found in
[37, 38, 128, 133, 135, 141, 147, 181], and [182].

2.1 Uniform Boundedness and Uniform Ultimate Boundedness

We begin by considering Lyapunov functionals to prove general theorems about
boundedness, uniform ultimate boundedness of solutions, and stability of the zero
solution of the nonlinear functional discrete system

x(n+ 1) = G(n,x(s); 0 ≤ s ≤ n)
de f
= G(n,x(·)) (2.1.1)

where G : Z+×R
k → R

k is continuous in x. When Lyapunov functionals are used
to study the behavior of solutions of functional difference equations of the form
of (2.1.1), we often end up with a pair of inequalities of the form
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V (n,x(·)) =W1(x(n))+
n−1

∑
s=0

K(n,s)W2(x(s)), (2.1.2)

�V (n,x(·))≤−W3(x(n))+F(n) (2.1.3)

where V is a Lyapunov functional bounded below, x is the known solution of the
functional difference equation, and K, F , and Wi, i = 1,2,3, are scalar positive func-
tions. Inequalities (2.1.2) and (2.1.3) are rich in information regarding the qualitative
behavior of the solutions of (2.1.1).
The goal is to use inequalities (2.1.2) and (2.1.3) to conclude boundedness of
x(n) when F is bounded. Also, we obtain stability results about the zero solution
of (2.1.1) when F = 0 and G(n,0) = 0. In the celebrated paper of Kolmanovskii
et al. [36], the authors investigated the boundedness of solutions of Volterra differ-
ence equations by means of Lyapunov functionals. Also, in [37] the same authors
constructed general theorems for the stability of the zero solution of Volterra type
difference equations.
As we have seen in Chapter 1, several authors like Medina [113, 115, 116], Islam
and Raffoul [83], and Raffoul [135] obtained stability and boundedness results of
the solutions of discrete Volterra equations by means of representing the solution
in terms of the resolvent matrix of the corresponding system of difference Volterra
equations. Eloe et al. [65] and Elaydi et al. [61] used the notion of total stability and
established results on the asymptotic behavior of the solutions of discrete Volterra
system with nonlinear perturbation. Their work heavily depended on the summa-
bility of the resolvent matrix. For more results on stability of the zero solution of
Volterra discrete system we refer the reader to Elaydi [52] and Agarwal and Pang
[5] and [117].
Boundedness of solutions of linear and nonlinear discrete Volterra equations was
also studied by Diblik and Schmeidel [47], Gronek and Schmeidel [72], and the
references therein. A survey of the fundamental results on the stability of linear
Volterra difference equations, of both convolution and non-convolution type, can be
found in Elaydi [59].
We say that x(n) = x(n,n0,φ) is a solution of (2.1.1) with a bounded initial function
φ : [0,n0]→R

k if it satisfies (2.1.1) for n > n0 and x( j) = φ( j) for j ≤ n0.
If D is a matrix or a vector, |D| means the sum of the absolute values of the ele-
ments. Since we are now dealing with functional difference equations, we restate
the following stability definitions.

Definition 2.1.1. Solutions of (2.1.1) are uniformly bounded (UB) if for each B1 > 0
there is B2 > 0 such that

[
n0 ≥ 0,φ : [0,n0]→R

k with |φ(n)|< B1 on [0,n0],n > n0
]

implies |x(n,n0,φ)|< B2.

Definition 2.1.2. Solutions of (2.1.1) are uniformly ultimately bounded (UUB) for
bound B if there is a B > 0 and if for each M > 0 there exists N > 0 such that[
n0 ≥ 0,φ : [0,n0] → R

k with |φ(n)| < M on [0,n0],n > n0,n > n0 +N
]

implies
|x(n,n0,φ)| < B.
If G(n,0) = 0, then x(n) = 0 is a solution of (2.1.1). In this case we state the follow-
ing definitions.
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Definition 2.1.3. The zero solution of (2.1.1) is stable (S) if for each ε > 0, there is
a δ = δ (ε)> 0 such that

[
φ : [0,n0]→R

k with |φ(n)|< δ on [0,n0],n≥ n0
]

implies
|x(n,n0,φ)| < ε . It is uniformly stable (US) if δ is independent of n0.

Definition 2.1.4. The zero solution of (2.1.1) is uniformly asymptotically stable
(UAS) if it is (US) and there exists a γ > 0 with the property that for each μ > 0 there
exists N > 0 such that

[
n0 ≥ 0,φ : [0,n0]→R

k with |φ(n)|< γ on [0,n0],n≥ n0+N
]

implies |x(n,n0,φ)|< μ .

We begin by proving general theorems regarding boundedness and stability of solu-
tions of (2.1.1).

Theorem 2.1.1 ([133]). Let ϕ(n,s) be a scalar sequence for 0 ≤ s ≤ n < ∞ and
suppose that ϕ(n,s) ≥ 0,�nϕ(n,s) ≤ 0,�sϕ(n,s) ≥ 0 and there are constants B
and J such that ∑n

s=0 ϕ(n,s)≤ B and ϕ(0,s)≤ J. Also, suppose that for each n0 ≥ 0
and each bounded initial function φ : [0,n0]→R

k, every solution x(n) = x(n,n0,φ)
of (2.1.1) satisfies

W1(|x(n)|)≤V (n,x(·))≤W2(|x(n)|)+
n−1

∑
s=0

ϕ(n,s)W3(|x(s)|) (2.1.4)

and
�V(2.1.1)(n,x(·))≤−ρW3(|x(n)|)+K (2.1.5)

for some constants ρ and K ≥ 0. Then solutions of (2.1.1) are (UB).

Proof. H > 0 and |φ(n)| < H on [0,n0], and set V (n) = V (n,x(·)). Let V (n∗) =
max0≤n≤n0 V (n). If V (n)≤V (n∗) for all n ≥ n0, then by (2.1.4) we have

W1(|x(n)|)≤V (n) ≤ V (n∗)

≤ W2(|x(n∗)|)+
n∗−1

∑
s=0

ϕ(n∗,s)W3(|φ(s)|)

≤ W2(|φ(n∗)|)+
n∗−1

∑
s=0

ϕ(n∗,s)W3(|φ(s)|)

≤ W2(H)+BW3(H).

From which it follows that

|x(n)≤W−1
1

[
W2(H)+BW3(H)

]
.

On the other hand, if V (n)>V (n∗) for some n ≥ n0, so that V (n) = max0≤s≤nV (s).
We multiply both sides of (2.1.5) by ϕ(n,s) and then sum from s = n0 to s = n− 1,
we obtain

n−1

∑
s=n0

(�V (s)
)
ϕ(n,s)≤−ρ

n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|)+KB.
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Summing by parts the left side we arrive at

V (n)ϕ(n,n) − V (n0)ϕ(n,n0)−
n−1

∑
s=n0

V (s+ 1)�sϕ(n,s)

≤ −ρ
n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|)+KB.

Hence

ρ
n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|) ≤ V (n)ϕ(n,n)+V(n0)ϕ(n,n0)

+
n−1

∑
s=n0

V (s+ 1)�sϕ(n,s)+KB. (2.1.6)

Since �sϕ(n,s)≥ 0, we have for V (n) = max0≤s≤n−1V (s+ 1),

n−1

∑
s=n0

V (s+ 1)�sϕ(n,s) ≤ V (n)
n−1

∑
s=n0

�sϕ(n,s)

= V (n)[ϕ(n,n)−ϕ(n,n0)].

Thus, from inequality (2.1.6) we have

ρ
n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|) ≤ V (n)[ϕ(n,n)−ϕ(n,n0)]

− V (n)ϕ(n,n)+V(n0)ϕ(n,n0)+KB

≤ V (n0)ϕ(n,n0)+KB

≤ V (n0)ϕ(0,n0)+KB

≤ V (n0)J+KB. (2.1.7)

In view of (2.1.4), we have

V (n0) ≤ W2(|φ(n0)|)+
n0−1

∑
s=0

ϕ(n0,s)W3(|φ(s)|)

≤ W2(H)+BW3(H).

As a result, inequality (2.1.7) yields

n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|) ≤ W2(H)+BW3(H)

ρ
+

KB
ρ

.

Now, inequality (2.1.4) implies that
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V (n) ≤ W2(|x(n)|)+
n0−1

∑
s=0

ϕ(n,s)W3(|x(s)|)+
n−1

∑
s=n0

ϕ(n,s)W3(|x(s)|)

≤ W2(|x(n)|)+BW3(H)+
W2(H)+BW3(H)

ρ
+

KB
ρ

≤ W2(|x(n)|)+D(H),

where D(H) = BW3(H)+ W2(H)+BW3(H)
ρ + KB

ρ .

As W3(r)→∞ as r →∞, there exists an L> 0 such that W3(L) =
K
ρ . Now, by (2.1.5),

if |x| > L, then �V < 0. Thus, V (n) attains its maximum when |x| ≤ L. Hence we
have

W1(|x(n)|) ≤ V (n)≤W2(|x(n)|)+D(H)

≤ W2(L)+DH.

Finally, from the above inequality we arrive at

|x(n)| ≤W−1
1

[
W2(L)+D(H)

]
.

This completes the proof.

The next theorem extends Theorem 2.1.1.

Theorem 2.1.2 ([133]). Let ϕi(n,s) be a scalar sequence for 0 ≤ s ≤ n < ∞ and
suppose that ϕi(n,s)≥ 0,�nϕi(n,s)≤ 0,�sϕi(n,s)≥ 0 and there are constants Bi

and Ji such that ∑n
s=0 ϕi(n,s) ≤ Bi and ϕi(0,s) ≤ Ji. Also, suppose that for each

n0 ≥ 0 and each bounded initial function φ : [0,n0] → R
k, every solution x(n) =

x(n,n0,φ) of (2.1.1) satisfies

W1(|x(n)|) ≤ V (n,x(·))

≤ W2(|x(n)|)+
n−1

∑
s=0

ϕ1(n,s)W3(|x(s)|)

+
n−1

∑
s=0

ϕ2(n,s)W4(|x(s)|) (2.1.8)

and
�V(2.1.1)(n,x(·))≤−ρ1W3(|x(n)|)−ρ2W4(|x(n)|)+K (2.1.9)

for some constants ρi ≥ 0, i = 1,2 and K ≥ 0. Then solutions of (2.1.1) are (UB).

Proof. We follow the proof of the previous theorem. Let V (n) = max0≤s≤nV (s),
n ≥ n0. If the max of V (n) occurs on [0,n0], then it is trivial. Multiply both sides
of (2.1.9) by ϕi(n,s) and then sum from s = n0 to s = n− 1 to obtain

ρi

n−1

∑
s=n0

ϕi(n,s)W3(|x(s)|) ≤V (n0)J +KB, i = 1,2. (2.1.10)
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For H > 0 and |φ(n)|< H, we have

V (n0)≤W2(H)+BW3(H)+B2W4(H)
de f
= R(H),

and

n0−1

∑
s=0

ϕi(n,s)Wi+2(|x(s)|) ≤Wi+2Bi.

Thus, inequality (2.1.10) yields,

n−1

∑
s=0

ϕi(n,s)Wi+2(|x(s)|) ≤ R(H)Ji +KBi

ρi
+Wi+2Bi

de f
= Si(H).

Now, by (2.1.9), if |x| > L, then �V < 0. Thus, V (n) attains its maximum when
|x| ≤ L and hence

W1(|x(n)|) ≤ V (n)≤W2
[|x(H)|+ S1(H)

]
+ S2(H)

≤ W2
[
L+ S1(H)

]
+ S2(H).

From the above inequality we obtain

|x(n)| ≤W−1
1

[
W2
[
L+ S1(H)

]
+ S2(H)

]
.

This completes the proof.

In the next theorem we obtain boundedness and stability results about solutions and
the zero solution of (2.1.1).

Theorem 2.1.3 ([133]). Let ϕ(n) ≥ 0 be a scalar sequence for n ≥ 0 and V and
Wi, i = 1,2, be defined as before. Also, suppose that for each n0 ≥ 0 and each
bounded initial function φ : [0,n0]→R

k, every solution x(n) = x(n,n0,φ) of (2.1.1)
satisfies

W1(|x(n)|)≤V (n,x(·))≤ αW2(|x(n)|)+
n−1

∑
s=0

ϕ(n− s− 1)W2(|x(s)|) (2.1.11)

and
�V(2.1.1)(n,x(·))≤−ρW2(|x(n)|) (2.1.12)

for some constants ρ and α > 0.

a) If ∑∞
s=0 ϕ(s) = B, then solutions of (2.1.1) are (UB) and the zero solution

of (2.1.1) is (US).
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b) If ∑∞
n=0 ∑

∞
s=n ϕ(s) = J, then solutions of (2.1.1) are (UAB) and the zero solu-

tion of (2.1.1) is (UAS).

Proof. Let H > 0 and |φ(n)|< H on [0,n0], and set V (n) =V (n,x(·)). By (2.1.12),
V (n) is monotonically decreasing and hence, by (2.1.11), we have

W1(|x(n)|)≤V (n) ≤ V (n0)

≤ αW2(H)+W2(H)
n0−1

∑
u=0

ϕ(u)

≤ W2(H)
(
α+B

)
. (2.1.13)

Let ε > 0 be given. Choose H such that H < ε and

W2(H)
(
α+B

)
<W1(ε).

Hence from (2.1.13), we have |x(n)|< ε, for n≥ n0. Consequently, the zero solution
of (2.1.1) is US). Also, it follows from (2.1.13) that

|x(n)|<W−1
1

[
W2(H)

(
α+B

)]
,

which implies solutions of (2.1.1) are (UB).
Sum (2.1.12) from s = n0 to s = n− 1 to obtain

−V(n0)≤V (n)−V(n0)≤−ρ
n−1

∑
s=n0

W2(|x(s)|)

and hence

n−1

∑
s=n0

W2(|x(s)|) ≤ V (n0)

ρ
≤ (α+B)W2(H)

ρ
.

On the other hand, if we sum (2.1.11) from s = n0 to s = n− 1 we arrive at

n−1

∑
s=n0

V (s) ≤ α
(α+B)W2(H)

ρ
+

n−1

∑
u=n0

u−1

∑
s=0

ϕ(u− s− 1)W2(|x(s)|)

≤ (α+B)W2(H)

ρ
+

n0−1

∑
s=0

n−1

∑
u=n0

ϕ(u− s− 1)W2(|x(s)|)

+
n−1

∑
s=n0

n−1

∑
u=s

ϕ(u− s− 1)W2(|x(s)|)

≤ (α+B)W2(H)

ρ
+

n0−1

∑
s=0

W2(|x(s)|)
n−1

∑
u=n0

ϕ(u− s− 1)

+
n−1

∑
s=n0

W2(|x(s)|)
n−1

∑
u=s

ϕ(u− s− 1)
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≤ (α+B)W2(H)

ρ
+W2(H)

n0−1

∑
s=0

n−1

∑
u=n0

ϕ(u− s− 1)

+B
n−1

∑
s=n0

W2(|x(s)|)

≤ (α+B)2W2(H)

ρ
+W2(H)

n0−1

∑
s=0

u−n

∑
r=n0−s−1

ϕ(r)

≤ (α+B)2W2(H)

ρ
+W2(H)

∞

∑
ξ=0

∞

∑
r=ξ

ϕ(r)

≤ (α+B)2W2(H)

ρ
+W2(H)J

≤ [
J+

(α+B)2

ρ
]
W2(H)

de f
= aW2(H). (2.1.14)

Since V (n) is positive and decreasing for all n ≥ n0 ≥ 0, we have

n−1

∑
s=n0

V (s)≥V (n)(n− n0).

Let ε > 0 be given. Then, for n ≥ n0 +
aW2(H)
W1(ε)

we have form (2.1.11) and (2.1.14)
that

W1(|x(n)|)≤V (n)≤ aW2(H)

n− n0
<W1(ε). (2.1.15)

Hence, inequality (2.1.15) implies that

|x(n)| ≤W−1
1

(aW2(H)

n− n0

)
< ε.

From this we have the (UAB) and the (UAS).

2.2 Functional Delay Difference Equations

Next, we discuss the papers by Zhang [181], the paper [182] by Zhang, and MinG-
Po, and the papers by Raffoul [133, 145], in which the authors prove general the-
orems regarding boundedness and stability of functional difference equations with
infinite or finite delay. In [145], the author proves general theorem in which he offers
necessary and sufficient conditions for the uniform boundedness of all solutions. We
begin by noting that Definition 2.1.4 can be easily extended to accommodate infinite
or finite delays systems by considering the initial sequence φ : [−α,n0]→R

k where
α can either be taken finite or infinite. We consider the functional delay difference
equation
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x(t + 1) = F(t,xt). (2.2.1)

We assume that F is continuous in x and that F : Z×C → R
n where C is the set of

sequences φ : [−α,0]→R
n, α > 0. Let

C(t) = {φ : [t −α, t]→ R
n}.

It is to be understood that C(t) is C when t = 0. Also φt denotes φ ∈ C(t) and
||φt ||= max

t−α≤s≤t
|φ(t)|, where | · | is a convenient norm on R

n. For t = 0,

C(0) = {φ : [−α,0]→ R
n}.

Theorem 2.2.1 ([181]). Let ϕ(n) ≥ 0 be a scalar sequence for n ≥ 0 and V
and Wi, i = 1,2, be defined as before. Also, suppose that for each n0 ≥ 0 and
each bounded initial function φ : [0,n0] → [0,∞), every solution x(n) = x(n,n0,φ)
of (2.1.1) satisfies

W1(|x(n)|)≤V (n,x(·))≤W2(|x(n)|)+W3

( n

∑
s=l

ϕ(n− s)W4(|x(s)|)
)

(2.2.2)

and
�V(2.2.1)(n,x(·))≤−W5(|x(n)|). (2.2.3)

In addition, if ∑ϕ(s) = J, then the zero solution of (2.2.1) is (UAS).

It is widely known that there are two methods in studying the qualitative theory of
delay differential or difference equations. The basic and more natural one is what
we call the Razumikhin Lyapunov method and the most popular one is the direct
method of Lyapunov function or functional. In some cases one has an advantage
over the other and that all depends on the system being studied. It is the opinion of
the author that Razumikhin Lyapunov method is easier to use since the Lyapunov
function is readily available. Moreover, the imposed conditions are less restrictives.
We consider (2.2.1) for n ∈ Z

+. We assume F : Z+×CH →R
n, where

CH = {φ ∈C(0) : ||φ ||< H},

for some positive constant H. Also, xt(s) = x(t + s), s ∈ C(0). We assume that
F(t,0) = 0, so that x = 0 is a solution. It is assumed that for any t0 ∈ Z

+ and a given
function φ ∈ CH , there is a unique solution of (2.2.1), denoted by x(t, t0,φ), such
that it satisfies (2.2.1) for all integers t ≥ t0, and x(t0, t0,φ) = φ . Lastly, we assume
there is a constant L > 0 such that

|F(t,φ)| ≤ L||φ ||, for t ∈ Z
+ and φ ∈CH .

In the next theorem, we use Lyapunov-Razumikhin method type functions to prove
the (UAS) of the zero solution of (2.2.1). Its proof is too long for our purpose and it
can be found in [182].
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Theorem 2.2.2 ([182]). In addition to the above assumptions, suppose there exists
a continuous Lyapunov function V : Z+×BH →R

+ with BH = {x ∈ R
k : |x|< H},

such that
W1(|x|)≤V (t,x)≤W2(|x|), (2.2.4)

and
�V (t,x(.))≤−W3(|x(t + 1)|). (2.2.5)

If P
(
V (t + 1,x(t + 1))

) ≥ V (t + s,x(t + s)), for s ∈ C(0) and P : R+ → R
+

is continuous function with P(s) > s, for s > 0, then the zero solution of (2.2.1)
is (UAS).

Next, we display an example in the form of a theorem to show the application of
Theorem 2.2.2. Consider the Volterra difference equation with multiple delays

x(t + 1) = a(t)x(t)+
k

∑
i=1

bi(t)x(t − hi), (2.2.6)

where the delays hi are positive integers for i = 1,2,3, ....k.

Theorem 2.2.3. Let

a∗ = max
t∈Z+

|a(t)|, b∗i = max
t∈Z+

|bi(t)|, i = 1,2,3, ...k.

If

a∗+
k

∑
i=1

b∗i < 1, (2.2.7)

then the zero solution of (2.2.6) is (UAS).

Proof. Consider the Razumikhin type Lyapunov function

V (t,x) = |x(t)|.

Then along the solutions of (2.2.6) we have that

�V (t,x) = |x(t + 1)|− |x(t)|. (2.2.8)

Due to condition (2.2.7), there exists a constant μ ∈ (0,1) such that

k

∑
i=1

b∗i < μ(1− a∗).

Set P(t) =
1
μ

t, for t ≥ 0. Let t0 ∈ Z
+, whenever

P
(
V (t + 1,x(t + 1))

)≥V (t + s,x(t + s)), for s ∈C(0),
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or
1
μ
|x(t + 1)|> |x(t + s)|, for s ∈C(0)

then, by (2.2.6), we have

|x(t + 1)| ≤ |a(t)||x(t)|+
k

∑
i=1

|bi(t)||x(t − hi)|

≤ a∗|x(t)|+ 1/μ
( k

∑
i=1

|b∗i |
)|x(t + 1)|,

which implies that

|x(t)| ≥ μ−∑k
i=1 |b∗i |

a∗μ
|x(t + 1)|.

Thus, by (2.2.8) we have

�V (t,x) ≤
(

1− μ−∑k
i=1 |b∗i |

a∗μ

)
|x(t + 1)|

≤ −
(
− (μ(1− a∗)−∑k

i=1 |b∗i |
a∗μ

)
|x(t + 1)|,

if P
(
V (t + 1,x(t + 1))

) ≥ V (t + s,x(t + s)), for s ∈ C(0). Thus the conditions of
Theorem 2.2.2 are satisfied with

W1(|x|) =W2(|x|) = |x|

and

W3(|x(t + 1)|) =
(
− (μ(1− a∗)−∑k

i=1 |b∗i |
a∗μ

)
|x(t + 1)|,

and the zero solution is (UAS). This completes the proof.

Equations of the form (2.2.6) play a leading role in modeling additive neural net-
works. It is worth mentioning that Theorem 2.2.2 cannot be applied to Volterra equa-
tions of the form

x(n+ 1) = A(n)x(n)+
n

∑
s=0

C(n,s)x(s).

We will revisit such equation later in the chapter using Razumihkin-Lyapunov type
functions. The next theorem offers easily verifiable conditions. Its proof can be
found in [145]

Theorem 2.2.4 ([145]). Let D > 0 and there is a scalar functional V (t,ψt) that is
continuous in ψ and locally Lipschitz in ψt when t ≥ t0 and ψt ∈C(t) with ||ψt ||<
D. In addition we assume that if x : [t0 −α,∞) → R

n is a bounded sequence, then
F(t,xt) is bounded on [t0,∞). Suppose there is a function V such that V (t,0) = 0,

W1(|ψ(t)|)≤V (t,ψt)≤W2(||ψt ||),
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and
�V (t,ψt)≤−W3(|ψ(t)|),

then the zero solution of (2.2.1) is (UAS).

It is noted that Theorem 2.2.4 requires Lyapunov functional, unlike Theorem 2.2.2.
In the next theorem we use a Lyapunov functional, and with the aid of Theo-
rem 2.2.4, we show the zero solution of (2.2.6) is (UAS).

Theorem 2.2.5 ([145]). Assume there exists a δ > 0 such that

|a(t)|− 1+ kδ < 0 and δ ≥
k

∑
i=1

|bi(t)|.

Then the zero solution of (2.2.6) is (UAS).

Proof. Consider the Lyapunov functional

V (t,xt) = |x(t)|+ δ
k

∑
i=1

t−1

∑
s=t−hi

|x(s)|. (2.2.9)

Then along the solutions of (2.2.6) we have

�V (t,xt) = |x(t + 1)|− |x(t)|+ δ
k

∑
i=1

[ t

∑
s=t−hi+1

|x(s)|−
t−1

∑
s=t−hi

|x(s)|]

= |x(t + 1)|− |x(t)|+ δ
k

∑
i=1

|x(t)|− δ
k

∑
i=1

|x(t − hi)|

≤ (|a(t)|− 1+ kδ )|x(t)|+
k

∑
i=1

(|bi(t)|− δ )|x(t − hi)|

≤ −α|x(t)|, for some positive constant α.

To make sure the conditions of Theorem 2.2.4 are satisfied, we note that

|x(t)| ≤ V (t,xt) = |x(t)|+ δ
k

∑
i=1

t−1

∑
s=t−hi

|x(s)|

= |x(t)|+ δ
k

∑
i=1

−1

∑
u=−hi

|x(u+ t)|.

Hence, if we take W1(|ψ(t)|) = |ψ(t)|, W3(|ψ(t)|) = α|ψ(t)|, and W2(|ψt |) =
δ

k

∑
i=1

−1

∑
u=−hi

|ψ(u+ t)|, then we satisfy all the requirements of Theorem 2.2.4, and

hence we have the zero solution of (2.2.6) is (UAS). This completes the proof.

It is very obvious that Theorem 2.2.1 would not work for our Lyapunov functional
in Theorem 2.2.5. Theorem 2.2.1 is suitable for Volterra difference equations of
convolution types. For example, if we consider
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x(n+ 1) = a(n)x(n)+
n−1

∑
s=0

b(n− s)g(n,x(n)),

then a typical Lyapunov functional would be

V (n,x) = |x(n)|+
n−1

∑
s=0

∞

∑
u=n−s

|b(u)||x(s)|,

where the function g satisfies |g(n,x)| ≤ λ |x| for all n ∈ Z
+ for positive constant

λ < 1. By assuming that

|a(n)|+λ |b(0)|
∞

∑
u=1

|b(u)|− 1 ≤−α, α > 0,

we have along the solutions that

�V (n,x) ≤ (|a(n)|+λ |b(0)|
∞

∑
u=1

|b(u)|− 1
)|x(n)|+(λ − 1)

n−1

∑
s=0

|b(n− s)||x(s)|

≤ −α|x(n)|.

Thus all the conditions of Theorem 2.2.1 are satisfied for W1 = W2 = W3 = W4 =
|x|, W5 = α|x|, l = 0, and φ(n− s) = ∑∞

u=n−s |b(u)|.
We end this section with an application to the second order difference equation with
constant delay, r > 0

x(t + 2)+ ax(t+ 1)+ bx(t− r) = 0, t ∈ Z, (2.2.10)

where a and b are constants.

Theorem 2.2.6 ([145]). Suppose there are positive constants η1,η2,α1,α2 and γ
such that

α1|b|−α2+ γr ≤−η1, α1|a|−α1 +α2 + γr ≤−η2,

and
|b|− γ ≤ 0.

Then the zero solution of (2.2.10) is (UAS).

Proof. First we write (2.2.10) into a system by letting y(t) = x(t + 1). Then by
noting that

�x(t) = y(t)− x(t),

we have

b
−1

∑
s=−r

(
y(t + s)− x(t + s)

)
= b

−1

∑
s=−r

�x(t + s) = bx(t)− bx(t− r).

This implies that Equation (2.2.10) is equivalent to the system
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{
x(t + 1) = y(t)
y(t + 1) =−bx(t)− ay(t)+ b∑−1

s=−r

(
y(t + s)− x(t + s)

) (2.2.11)

Let
β = max{η1, η2}

and define the Lyapunov functional

V (xt ,yt) = α1|y(t)|+α2|x(t)|+ γ
−1

∑
s=−r

t−1

∑
u=t+s

(|y(u)|+ |x(u)|).

Then along the solutions of (2.2.11) we have

�V (xt ,yt) ≤ (α1|b|−α2 + γr)|x(t)|+(α1|a|−α1 +α2 + γr)|y(t)|

+ (|b|− γ)
−1

∑
s=−r

(|y(t + s)|+ |x(t + s)|)

≤ −β
(|x|+ |y|). (2.2.12)

The results follow from Theorem 2.2.4.

Remark 2.1. In Theorem 2.2.6 we saw that the stability depended on the size of the
delay, which was not the case in Theorem 2.2.5.

In [112] the authors considered the linear difference system with diagonal delay

x(n+ 1) = ax(n− h)+ by(n)

y(n+ 1) = cx(n)+ ay(n− h) (2.2.13)

where a,b, and c are real numbers and h is a positive integer. They used the
method of characteristics and proved two theorems on the asymptotic stability of
the zero solution of (2.2.13) by imposing conditions on the size of the delay; that
is
√|ab|< (h+ 1)/h. Also, they required b and c be of the same sign and the de-

lay h is odd. The above system has some limitations by considering all constant
coefficients and diagonal entries have the same coefficient. Next we shall display a
Lyapunov functional to obtain (UAS) of the zero solution of (2.2.13) by appealing
to Theorem 2.2.4.

Theorem 2.2.7 ([145]). Let δ be a positive constant such that

|a|− δ ≤ 0, |c|+ δ − 1 < 0, and |b|+ δ − 1 < 0.

Then the zero solution of (2.2.13) is (UAS).

Proof. Let
β = min{|c|+ δ − 1, |b|+ δ − 1}

and define the Lyapunov functional
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V (x,y) = |x(n)|+ |y(n)|+ δ
n−1

∑
s=n−h

(|x(s)|+ |y(s)|).

Then along the solutions of (2.2.13)

�V (x,y) ≤ (|a|− δ )|x(n− h))|+(|c|+ δ− 1)|x(n)|
+ (|a|− δ )|y(n− h)|+(|c|+ δ− 1)|y(n)|
≤ β

(|x|+ |y|).

The (UAS) follows from Theorem 2.2.4.

Next we extend Theorem 2.2.7 to the Volterra delay system

x(n+ 1) = ax(n− h)+ by(n)+ d1

−1

∑
s=−h

y(n+ s)

y(n+ 1) = cx(n)+ ay(n− h)+ d2

−1

∑
s=−h

x(n+ s) (2.2.14)

Theorem 2.2.8 ([145]). Let δ be a positive constant such that

|a|+ hδ1+ δ2 − 1 < 0, |b|+ hδ1+ δ2 − 1 < 0,

and
|a|− δ2 ≤ 0, and |d1|+ |d2|− δ1 ≤ 0.

Then the zero solution of (2.2.14) is (UAS).

Proof. Let
β = min{|a|+ hδ1+ δ2 − 1, |b|+ hδ1+ δ2 − 1}

and define the Lyapunov functional

V (x,y) = |x(n)|+ |y(n)|+ δ2

n−1

∑
s=n−h

(|x(s)|+ |y(s)|)

+ δ1

−1

∑
s=−h

n−1

∑
u=n+s

(|x(u)|+ |y(u)|).

Then along the solutions of (2.2.14)

�V (x,y) ≤ (|a|− δ2)|x(n− h))|+(|a|+ hδ1+ δ2 − 1)|x(n)|
+ (|a|− δ2)|y(n− h)|+(|b|+ hδ1+ δ2 − 1)|y(n)|
≤ β

(|x|+ |y|)

+ (|d1|+ |d2|− δ1)
−1

∑
s=−h

(|x(n+ s)|+ |y(n+ s)|)

≤ β
(|x|+ |y|).
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Hence, the result of (UAS) follows from Theorem 2.2.4.

The next theorem shows that the zero solution of the nonlinear delay difference
equation

x(n+ 1) = a(n) f (x(n))+ b(n)g(x(n− τ)), h ∈ Z
+ (2.2.15)

is (UAS).

Theorem 2.2.9. Suppose f and g are continuous and there are positive constants
α,β , and γ with γ > 1+α such that

γ|a(n)|| f (x)| ≥ |x|, | f (x)| ≥ |g(x)| for 0 < |x|< β , (2.2.16)

and
(1− γ)|a(n)|+ |b(n+ τ)|≤ −α|a(n)|. (2.2.17)

Then the zero solution of (2.2.15) is (UAS).

Proof. Define the Lyapunov functional

V (n,xn) = |x(n)|+
n−1

∑
s=n−τ

(|b(s+ τ)||g(x(s))|). (2.2.18)

Then along the solutions of (2.2.15) we have

�V (n,xn) ≤ |a(n)|| f (x(n))|+ |b(n)||g(x(n− τ))|− |x(n)|
+ |b(n+ τ)||g(x(n))|− |b(n)||g(x(n− τ))|.

Using (2.2.16) and (2.2.17) we arrive at

�V(n,xn) ≤
(|a(n)|+ |b(n+ τ)|− γ

∣
∣a(n)|)| f (x(n))|

≤ −α|a(n)|| f (x(n))|. (2.2.19)

The (UAS) follows from Theorem 2.2.4. This completes the proof.

2.2.1 Application to Volterra Difference Equations

In this section we apply Theorems 2.1.1, 2.1.2, and 2.1.3 to establish stability and
boundedness results regarding the nonlinear Volterra discrete system

x(n+ 1) = A(n)x(n)+
n

∑
s=0

C(n,s) f (x(s))+ g(n,x(n) (2.2.20)

where A, C, are k× k matrices, g, f are k× 1 vector functions with |g(n,x(n))| ≤ N
and | f (x)| ≤ λ |x|, for some positive constants N and λ .
In the case of f (x) = x, Medina [117], showed that if the zero solution of the ho-
mogenous equation associated with (2.2.20) is uniformly asymptotically stable, then
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all solutions of (2.2.20) are bounded when C(n,s) = C(n− s) and g(n,x) = g(n) is
bounded. In proving his results, Medina used the notion of the resolvent matrix
coupled with the variation of parameters formula. Also, the author in [128] used
Lyapunov functionals of convolution type coupled with the z-transform and ob-
tained results about boundedness of solutions of (2.2.20) when g(n,x(n)) = g(n).
Moreover, we saw in Chapter 1 that when f is linear in x, unlike the case here, we
used total stability and under suitable conditions, we showed that the zero solution
of (2.2.20) is uniformly asymptotically stable, when |g(n,x)| ≤ λ (n)|x|. We remark
that the notion of the resolvent cannot be used to obtain boundedness of solutions
of (2.2.20), since the summation term in (2.2.20) is nonlinear.

Theorem 2.2.10 ([133]). Suppose A(n)=A is a k×k constant matrix, and CT (n,s)=
C(n,s). Let I be the k×k identity matrix. Also, suppose there exist positive constants
ρ , μ , and a constant k× k symmetric matrix B such that

AT BA−B =−μI, (2.2.21)

λ |AT B|
n

∑
s=0

|C(n,s)|+ |B|
∞

∑
s=n

|C(n,s)|+N2 − μ ≤−ρ , (2.2.22)

and

λ |AT B|
n

∑
s=0

|C(n,s)|+λ 2|B|
n

∑
s=0

|C(n,s)|+λ −|B| ≤ 0. (2.2.23)

Then solutions of (2.2.20) are (UB).

Proof. Define the Lyapunov functional V (n) =V (n,x(n, ·)) by

V (n,x(·)) = xT (n)Bx(n)+ |B|
n−1

∑
j=0

∞

∑
s=n

|C(s, j)|x2( j), (2.2.24)

where x2( j) = xT ( j)x( j). Then along solutions of (2.2.20) we have

�V(2.2.20)(n) = xT (n)
[
AT BA−B

]
x(n)+ 2xT (n)AT B

n

∑
s=0

C(n,s) f (x(s))

+2xT (n)AT Bg(n,x(n))+ 2gT(n,x(n))B
n

∑
s=0

C(n,s) f (x(s))

+
n

∑
s=0

f T (x(s))C(n,s)T B
n

∑
s=0

C(n,s) f (x(s))

+|B|
∞

∑
s=n+1

|C(n,s)|x2(n)−|B|
n−1

∑
s=0

|C(n,s)|x2(s)

+gT (n,x(n))Bg(n,x(n)). (2.2.25)

Using (2.2.21)–(2.2.23) and the fact that for any two real numbers a and b, 2ab ≤
a2 + b2, equation (2.2.25) reduces to
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�V(2.2.20)(n) ≤
[
λ |AT B|

n

∑
s=0

|C(n,s)|+ |B|
∞

∑
s=n

|C(n,s)|+N2 − μ
]
x2(n)

+
[
λ |AT B|

n

∑
s=0

|C(n,s)|+λ 2|B|
n

∑
s=0

|C(n,s)|+λ−|B|
] n

∑
s=0

|C(n,s)|x2(s)

+|AT B|2 +λN2|B|2
n

∑
s=0

|C(n,s)+ |gT Bg|

≤ −ρx2(n)+K,

where K = |AT B|2 + λN2|B|2 ∑n
s=0 |C(n,s) + |gT Bg|. Thus, by Theorem 2.1.1 all

solutions of (2.2.20) are (UB).

In the next theorem, we use Theorem 2.1.3 to establish (UB) and (UAS) for (2.2.20),
when g(n,x(n)) is identically zero.

Theorem 2.2.11 ([133]). Assume g(n,x(n)) = 0 and suppose there is a function
ϕ(n)≥ 0, with �ϕ(n)≤ 0 for n ≥ 0, �nϕ(n− s−1)+ |C(n,s)|≤ 0 for 0 ≤ s < n <
∞. Also, suppose that for n≥ 0, |A(n)|+ |C(n,n)|+ϕ(0)≤ 1−ρ for some ρ ∈ (0,1).

a) If ∑∞
s=0 ϕ(s) = B, then solutions of (2.2.20) are (UB) and the zero solution

of (2.2.20) is (US).

b) If ∑∞
n=0 ∑

∞
s=n ϕ(s) = J, then solutions of (2.2.20) are (UUB) and the zero solution

of (2.2.20) is (UAS).

Proof. Define the Lyapunov functional V (n) =V (n,x(n, ·)), by

V (n) = |x(n)|+
n−1

∑
s=0

ϕ(n− s− 1)|x(s)|, n ≥ 0. (2.2.26)

Then along solutions of (2.2.20) we have

�V(2.2.20)(n) ≤
(|A(n)|+ |C(n,n)|+ϕ(0)− 1

)|x(n)|

+
n−1

∑
s=0

(�nϕ(n− s− 1)+ |C(n,s)|)|x(s)|

≤ −ρ |x(n)|,

and the results follow from Theorem 2.1.3.

2.3 Necessary and Sufficient Conditions

We prove a general theorem in which necessary and sufficient conditions for obtain-
ing uniform boundedness for functional difference system are present. We apply our
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results to finite and infinite delay Volterra difference equations. In the analysis we
state and prove a discrete Jensen’s type inequality. Thus we consider the system of
functional difference equations of the form

x(n+ 1) = G(n,xn), x ∈ R
k (2.3.1)

where G : Z+ ×R
k → R

k is continuous in x. Let C be set of bounded sequences
φ : (−∞,0] → R

k with the maximum norm. For n ∈ Z
+,C(n) denotes the set of

sequences ψ : [0,n] → R
k with ||ψ || = max{|ψ(s)| : 0 ≤ s ≤ n}, where | · | is the

Euclidean norm on R
k.

We assume that for each n0 ≥ 0, and each φ ∈ C(n0) there is at least one solution
x(n,n0,φ) of (2.3.1) defined on an interval [n0,α] with xn0 = φ . If the solution re-
mains bounded for all n, then α =∞. Notation wise, xn(s) = x(n+ s) for s ≤ 0. If D
is a matrix or a vector, |D| means the sum of the absolute values of the elements.

Definition 2.3.1. Solutions of (2.3.1) are (UB) if for each B1 > 0 there is B2 > 0
such that

[
n0 ≥ 0,φ ∈C, ||φ ||< B1, n ≥ n0

]
implies |x(n,n0,φ)|< B2.

Definition 2.3.2. Solutions of (2.3.1) are (UUB) if there is a B > 0 and for each
B3 > 0 there is N > 0 such that

[
n0 ≥ 0,φ ∈ C, ||φ || < B3, n ≥ n0 +N

]
implies

|x(n,n0,φ)| < B.

Theorem 2.3.1 ([133]). Let R+ = [0,∞) and assume there is a scalar sequence
Φ : Z+ → R

+ that satisfy Φ ∈ l∞(R+). Assume the existence of wedges Wj, j =
1,2, ·, ·, ,5. with W1(r)→ ∞, and positive constants K,M with W5(K)> M. Suppose
there is a functional V : R+×C →R

+ such that for each x ∈C(n), we have:

W1(|x(n)|)≤V (n,xn)≤W2(|x(n)|)+W3

( n−1

∑
s=0

Φ(n− s)W4(|x(s)|)
)

(2.3.2)

and
�V (n,xn)≤−W5(|x(n)|)+M. (2.3.3)

Then solutions of (2.3.1) are (UB) if and only if for each K1 > 0, there exists K2 > 0
such that if x(n) = x(n,n0,φ) is a solution of (2.3.1) with ||φ || ≤ K1, then

n∗−1

∑
s=n0

Φ(n∗ − s)W4(|x(s)|)≤ K2 (2.3.4)

whenever v(s)< v(n∗) for n0 ≤ s < n∗, where v(s) =V (s,xs).

Proof. Let x(n) = x(n,n0,φ) be a solution of (2.3.1) that is (UB). Then, for ever
B1 > 0 there exists a B2 > 0, say B2 > B1 so that for n0 ≥ 0, ||φ || < B1,n ≥ n0, we
have |x(n,n0,φ)< B2. Let J := ∑∞

u=0 Φ(u). Then, for n ≥ n0 we have that

n−1

∑
s=0

Φ(n− s)W4(|x(s)|) ≤
n−1

∑
s=0

Φ(n− s)W4(B2)≤ JW4(B2).
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This completes the proof of (2.3.4).
Conversely, suppose that (2.3.4) holds. Then for x(n) = x(n,n0,φ) and v(n) =
V (n,xn) with ||φ ||< B1, we have the two cases:

(i) v(n)≤ v(n0) for all n ≥ n0 or

(ii) v(s)≤ v(n∗) for some n∗ > n0 and all n0 ≤ s < n∗.

If (i) holds, then

W1(|x(n)|)≤V (n) ≤ V (n0)

≤ W2(|x(n0)|)+
n0−1

∑
s=0

ϕ(n0,s)W3(|φ(s)|)

≤ W2(|φ(n0)|)+
n0−1

∑
s=0

ϕ(n0,s)W3(|φ(s)|)

≤ W2(H)+BW3(H).

From which it follows that

|x(n)≤W−1
1

[
W2(H)+BW3(H)

]
.

On the other hand, if (ii) holds, then V (n, ·) is increasing and hence we have 0 ≤
−W5(|x(n∗)|)+M. Or, W5(|x(n∗)|) ≤ M. Now since W5(K) > M, we get |x(n∗)| ≤
W−1

5 (M). It follows from (i) and (2.3.2) that

v(n∗) ≤ W2(|x(n∗)|)+W3

( n0−1

∑
s=0

Φ(n∗ − s)W4(|x(s)|)+
n∗−1

∑
s=n0

Φ(n∗ − s)W4(|x(s)|)
)

≤ W2
[
W−1

5 (M)
]
+W3 [JW4(K1)+K2] .

Since n∗ is arbitrary, we have for all n ≥ n0 that

v(n) ≤ W2
[
W−1

5 (M)
]
+W3 [JW4(K1)+K2]+ v(n0).

≤ W2
[
W−1

5 (M)
]
+W3 [JW4(K1)+K2]+W2(K1)+W3(JW4(K1)).

On the other hand, from (2.3.2) we have W1(|x(n)|)≤ v(n), which implies that

|x(n)| ≤W−1
1

[
W2
[
W−1

5 (M)
]
+W3 [JW4(K1)+K2]+W2(K1)+W3(JW4(K1))

]
.

(2.3.5)
Finally, for all n ≥ n0, we have |x(n)| ≤ B2, where B2 is given by the right side
of (2.3.5).
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This completes the proof.
The next Lemma is needed for our next results. One could say it is a Jensen’s type
inequality.

Lemma 2.1 (Raffoul Jensen’s Type Discrete Inequality [133]). Assume Φ :Z+ →
R
+ such that Φ(u+1),�Φ(u)u∈ l1(Z+). Also, assume that q : [n0,n]→R

+ is such
that for constants α and β , we have

1
n− s

n−1

∑
u=s

q(u)≤ α+
β

n− s
(2.3.6)

for all n0 ≤ s < n. Then,

n−1

∑
s=n0

Φ(n− s)q(s)≤ α max
n≥0

{
Φ(n)n+

n−1

∑
u=0

|�Φ(u)|u}+β
∞

∑
u=0

|�Φ(u)|. (2.3.7)

Proof. Let b be any positive integer. Then since Φ(u+ 1),�Φ(u)u ∈ l1(Z+), we
have Φ(∞) = 0. Moreover,

∞

∑
u=b

|�Φ(u)| ≥ |
∞

∑
u=b

�Φ(u)|= |Φ(∞)−Φ(b)|,

from which we have

Φ(b)≤
∞

∑
u=b

|�Φ(u)|. (2.3.8)

We claim that since Φ(u+ 1),�Φ(u)u ∈ l1(Z+), we have Φ(∞) = 0. To see this
for any two sequences y and z, we use the summation by parts formula

∑(�z)y = yz−∑Ez�y,

where Ez(n) = z(n+ 1). With this in mind, we have

∞

∑
u=0

�Φ(u)u =Φ(u)u |∞u=0 −
∞

∑
u=0

Φ(u+ 1).

From which we get

Φ(u)u |∞u=0=
∞

∑
u=0

�Φ(u)u+
∞

∑
u=0

Φ(u+ 1)< ∞.

Suppose the contrary; that is Φ(∞)� 0. Then, there exists a T large enough so that
Φ(p)> ε, for p > T. Thus,

lim
p→∞

pΦ(p)≥ lim
p→∞

pε = ∞,
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which contradict the fact that �Φ(u)u,Φ(u+1)∈ l1(Z+). This completes the proof
of the claim.
Again, using summation by parts, we get

b−1

∑
u=0

|�Φ(u)u| ≥ |
b−1

∑
u=0

�Φ(u)u|= |Φ(b)b−
b−1

∑
u=0

Φ(u+ 1)|.

From this inequality we arrive at,

|Φ(b)b|− |
b−1

∑
u=0

Φ(u+ 1)| ≤ |Φ(b)b−
b−1

∑
u=0

Φ(u+ 1)|

≤
b−1

∑
u=0

|�Φ(u)u|,

from which we get

Φ(b)b ≤
∞

∑
u=0

[Φ(u+ 1)+ |�Φ(u)u|]< ∞.

Let y =Φ(n− s) and �z = q(s). Then we have z =−∑n−1
u=s q(u). Hence,

n−1

∑
s=n0

Φ(n− s)q(s) ≤ Φ(n− s)
(−

n−1

∑
u=s

q(u)
) |ns=n0

−
n−1

∑
s=n0

�Φ(n− s)
n−1

∑
u=s+1

q(u)

= Φ(n− n0)
n−1

∑
u=n0

q(u)−
n−1

∑
s=n0

�Φ(n− s)
n−1

∑
u=s+1

q(u)

≤ Φ(n− n0)
n−1

∑
u=n0

q(u)+
n−1

∑
s=n0

|�Φ(n− s)|
n−1

∑
u=s

q(u)

≤ Φ(n− n0)
(
(n− n0)α+β

)
+

n−1

∑
s=n0

|�Φ(n− s)|
(
(n− s)α+β

)

=

[

Φ(n− n0)(n− n0)+
n−1

∑
s=n0

|�Φ(n− s)|(n− s)

]

α

+

[

Φ(n− n0)+
n−1

∑
s=n0

|�Φ(n− s)|
]

β

=

[

Φ(n− n0)(n− n0)+
n−n0

∑
u=1

|�Φ(u)|u
]

α (letting u = n− s)

+

[

Φ(n− n0)(n− n0)+
n−n0

∑
u=1

|�Φ(u)|
]

β
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≤
[

Φ(n− n0)(n− n0)+
n−n0

∑
u=0

|�Φ(u)|u
]

α

+

[

Φ(n− n0)(n− n0)+
n−n0

∑
u=0

|�Φ(u)|
]

β

≤ α max
n≥0

{Φ(n)n+
n−1

∑
u=0

|�Φ(u)|u}

+ Φ(n− n0)(n− n0)+

[
∞

∑
u=0

|�Φ(u)|−
∞

∑
u=n−n0

|�Φ(u)|
]

β

≤ α max
n≥0

{Φ(n)n+
n−1

∑
u=0

|�Φ(u)|u}+β
∞

∑
u=0

|�Φ(u)|< ∞,

where we have used (2.3.8). This completes the proof.

Theorem 2.3.2 ([133]). Assume there is a scalar sequence Φ : Z+ → R
+ that

satisfies Φ ∈ l∞(R+). Assume the existence of wedges Wj, j = 1,2, ·, ·, ,5. with
W1(r)→ ∞, and positive constants K,M with W5(K)> M. Suppose there is a func-
tional V : R+×C → R

+ such that for each x ∈C(n), (2.3.2) and (2.3.3) hold. Sup-
pose that for every α > 0, there exists α∗ > 0 such that for 0 ≤ s < n,

1
n− s

n−1

∑
u=s

W5(|x(u)|)≤ α ⇒ 1
n− s

n−1

∑
u=s

W4(|x(u)|)≤ α∗. (2.3.9)

Then solutions of (2.3.1) are (UB.)

Proof. Let x(n) = x(n,n0,φ) be a solution of (2.3.1) and B1 > 0 with ||φ ||< B1. Set
v(n) =V (n,xn). In the case of (ii) we sum (2.3.3) from s to n∗ − 1 to get

v(n∗)− v(s)≤−
n∗−1

∑
u=s

W5(|x(u)|)+M(n∗− s).

This yields that
1

n− s

n∗−1

∑
u=s

W5(|x(u)|)≤ M. (2.3.10)

Then by (2.3.9), there exists M∗ > 0 such that

1
n− s

n∗−1

∑
u=s

W4(|x(u)|)≤ M∗.

If we let q(u) =W4(|x(u)|),α = M∗ then an application of Lemma 1 with β = 0, we
obtain (2.3.4) and hence by Theorem 2.3.1, solutions are (UB).
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It is worth noting that in general (2.3.9) does not hold for arbitrary wedges. To see
this, we let W5(r) = 1

r ,r > 0 and W4(r) = r. Let x(u) = 1
au−1 , |a|> 1. Then

1
n− 1

n

∑
u=1

W4(|x(u)|) = 1
n− 1

n

∑
u=1

(
1
a
)u−1 → ∞, as n → ∞.

On the other hand

1
n− 1

n

∑
u=1

W5(|x(u)|) = 1
n− 1

n

∑
u=1

au−1 =
1

n− 1

1− ( 1
a)

n

1− 1
a

≤ 1,

for n > 1.

Remark 2.2. If Φ : Z+ → R
+ with �Φ(n) ≤ 0, for all n ∈ Z

+ and Φ(u + 1) ∈
l1(Z+), then �Φ(u)u ∈ l1(Z+). As a matter of fact,

Φ(n)n+
n−1

∑
u=0

|�Φ(u)|u =Φ(n)n−
n−1

∑
u=0

�Φ(u)u =
n−1

∑
u=0

Φ(u+ 1).

For example, if we take Φ(n) = ansin(nπ/2) for 0 < a < 1, then

�Φ(n) = an+1cos(nπ/2)− ansin(nπ/2).

It is easy to see that �Φ(3) = a3 > 0. On the other hand

∞

∑
n=0

�Φ(n)n < ∞.

In Theorem 2.1.1 we asked that �nΦ(n)(n)≤ 0.

We end the section with the following theorem.

Theorem 2.3.3 ([133]). Solutions of the scalar difference equation

x(n+ 1) = a(n)x(n)+
n

∑
s=0

D(n− s)x(s)+ p(n), (2.3.11)

are (UB) if and only if

− 1+ |a(n)|+
∞

∑
u=0

|D(u)| ≤ −β , β > 0. (2.3.12)

Proof. First it is obvious that (2.3.12) implies ∑∞
u=0 |D(u)| is bounded. Consider the

Lyapunov functional

V (n,xn) = |x(n)|+
n−1

∑
s=0

∞

∑
u=n−s

|D(u)||x(s)|. (2.3.13)
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Let M = |p(n)|. Then along the solutions of (2.3.11) we have

�V (n,xn) = (|x(n+ 1)|− |x(n)|)+
n

∑
s=0

∞

∑
u=n−s+1

|D(u)||x(s)|

−
n−1

∑
s=0

∞

∑
u=n−s

|D(u)||x(s)|+ |p(n)|

≤
(
− 1+ |a(n)|+

∞

∑
u=0

|D(u)|
)
|x(n)|+ |p(n)|

≤ −β |x(n)|+M (2.3.14)

if and only if (2.3.12) holds (by noting that (2.3.12) is the condition given by (2.3.4)).
We have from equation (2.3.13) and inequality (2.3.14) that

|x(n)| ≤V (n,xn)≤ |x(n)|+
n−1

∑
s=0

Θ(n− s)|x(s)| (2.3.15)

and Θ(n) =
∞

∑
u=n

|D(u)|. The results follow from Theorem 2.3.1.

2.4 More on Boundedness

In this section, we state and prove general theorems that guarantee boundedness of
all solutions of (2.1.1). Then we utilize the theorems and use nonnegative definite
Lyapunov functionals to obtain sufficient conditions that guarantee boundedness of
solutions of (2.1.1). The theory is illustrated with several examples. A stereotype of
equation (2.1.1) is the Volterra discrete system

x(n+ 1) = A(n)x(n)+
n

∑
s=0

B(n,s) f (s,x(s)). (2.4.1)

Also, in [85], the author studied the exponential stability and boundedness of solu-
tions of the nonlinear discrete system

x(n+ 1) = F(n,x(n)); n ≥ 0

x(n0) = x0; n0 ≥ 0.

We emphasize that the results of [85] do not apply to equations similar to (2.4.1).
We are mainly interested in applying our results to Volterra discrete systems of the
form of (2.4.1)) with f (x) = xn where n is positive and rational. This section offers
a new perspective at looking at the notion of constructing Lyapunov functionals that
can be effectively used to obtain existence results. For this section, we use a slightly
different boundedness definition.
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Definition 2.4.1. We say that solutions of system (2.1.1) are bounded, if any solu-
tion x(n,n0,φ) of (2.1.1) satisfies

||x(n,n0,φ)|| ≤C
(
||φ ||,n0

)
, for all n ≥ n0,

where C : R+×R
+ →R

+ is a constant that depends on n0 and φ is a given bounded
initial function. We say that solutions of system (2.1.1) are uniformly bounded if C
is independent of n0.

Theorem 2.4.1 ([147]). Let D be a set in R
k. Suppose there exists a Lyapunov func-

tional V : Z+×D → R
+ that satisfies

λ1W1(|x|)≤V (n,x(.))≤ λ2W2(|x|)+λ2

n−1

∑
s=0

ϕ1(n,s)W3(|x(s)|) (2.4.2)

and

�V(n,x(.))≤−λ3W4(|x|)−λ3

n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)+L (2.4.3)

for some positive constants λ1,λ2,λ3 and L, and λ2 > λ3, where ϕi(n,s) ≥ 0 is a
scalar sequence for 0 ≤ s ≤ t < ∞, i = 1,2, such that for some constant γ ≥ 0 the
inequality

W2(|x|)−W4(|x|)+
n−1

∑
s=0

(
ϕ1(n,s)W3(|x(s)|)−ϕ2(n,s)W5(|x(s)|)

)
≤ γ (2.4.4)

holds. Moreover, if ∑n−1
s=0 φ1(n,s)≤B for some positive constant B, then all solutions

of (2.1.1) that stay in D are uniformly bounded.

Proof. Let M =− ln(1−λ3/λ2)> 0. For any initial value n0 ∈ Z
+, let x(n) be any

solution of (2.1.1) with x(n) = φ(n), for 0 ≤ n ≤ n0. Taking the difference of the
function V (n,x)eM(n−n0), we have

�
(

V (n,x)eM(n−n0)
)
=
[
V (n+ 1,x)eM −V(n,x)

]
eM(n−n0).

For x ∈ D, using (2.4.2) and (2.4.3) we get

�
(

V (n,x)eM(n−n0)
)

≤
[
V (n,x)eM −λ3W4(|x|)eM−λ3

n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)eM+LeM−V (n,x)
]
eM(n−n0)

=
[
V (n,x)(eM − 1)−λ3eM

(
W4(|x|)+

n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)
)
+LeM

]
eM(n−n0)
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≤
[
(eM − 1)λ2

(
W2(|x|)+

n−1

∑
s=0

ϕ1(n,s)W3(|x(s)|)
)
−λ3eM

(
(W4(|x|)

+
n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)
)
+LeM

]
eM(n−n0). (2.4.5)

Since M = − ln(1−λ3/λ2) > 0, we have λ2(eM − 1) = λ3eM. Thus, the above in-
equality reduces to

�
(

V (n,x)eM(n−n0)
)
≤
[
(eM − 1)λ2

(
W2(|x|)− (W4(|x|)+

n−1

∑
s=0

(
ϕ1(n,s)W3(|x(s)|)

−ϕ2(n,s)W5(|x(s)|)
)
+LeM

]
eM(n−n0). (2.4.6)

By invoking condition (2.4.4), the inequality (2.4.6) takes the form

�
(

V (n,x)eM(n−n0)
)
≤
(
(eM − 1)λ2γ+LeM

)
eM(n−n0) ≤ αeM(n−n0),

where α = (eM −1)λ2γ+LeM . Summing the above inequality from n0 to n−1, we
obtain,

V (n,x)eM(n−n0)−V(n0,φ)≤ α
n−1

∑
s=0

eM(s−n0) ≤ αe−Mn0
n−1

∑
s=0

(eM)s ≤ α
eM − 1

eM(n−n0),

that is,

V (n,x)≤V (n0,φ)e−M(n−n0) +
α

eM − 1
≤V (n0,φ)+

α
eM − 1

.

From condition (2.4.2), we have

‖x‖ ≤ W−1
1

[ 1
λ1

(
λ2W2(|φ |)+λ2W3(|φ |)

n0−1

∑
s=0

ϕ1(n0,s)
)
+

α
eM − 1

]
; for all n ≥ n0.

This completes the proof.

In the next theorems, we consider variables λi(n), i = 1,2,3,4,5.

Theorem 2.4.2 ([147]). Let D be a set in R
k. Suppose there exist a Lyapunov func-

tional V : Z+×D → R
+ that satisfies

λ1(n)W1(|x|)≤V (n,x(.))≤ λ2(n)W2(|x|)+λ2(n)
n−1

∑
s=0

ϕ1(n,s)W3(|x(s)|) (2.4.7)
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and

�V(n,x(.)) ≤−λ3(n)W4(|x|)−λ3(n)
n−1

∑
s=0

ϕ2(n,s)W5(|x(s)|)+L (2.4.8)

for some positive constant L, and positive sequence λ1(n),λ2(n),λ3(n), where λ1(n)
is nondecreasing sequence, and ϕi(n,s) ≥ 0 is a scalar sequence for 0 ≤ s ≤ n <
∞, i = 1,2. Assume that for some positive constants θ , and γ the inequality with

0 <
λ3(n)
λ2(n)

≤ θ < 1, (2.4.9)

and

W2(|x|)−W4(|x|)+
n−1

∑
s=0

(
ϕ1(n,s)W3(|x(s)|)−ϕ2(n,s)W5(|x(s)|)

)
≤ γ (2.4.10)

holds. If ∑n−1
s=0 φ1(n,s) ≤ B, λ2(n) ≤ N for some positive constants B and N, then

all solutions of (2.1.1) that stay in D are uniformly bounded.

Proof. First we note that due to condition (2.4.9), λ3(n) is bounded for all n ≥ n0 ≥
0. For any initial value n0 > 0, let x(n) be any solution of (2.1.1) with x(n) = φ(n)
for 0 ≤ n ≤ n0. Taking the difference of the function V (n,x)eM(n−n0) with

M = inf
n∈Z+

(
− ln(1− λ3(n)

λ2(n)
)
)
> 0,

we have

�
(

V (n,x)eM(n−n0)
)
=
[
V (n+ 1,x)eM −V(n,x)

]
eM(n−n0).

By a similar argument as in Theorem 2.4.1 we obtain,

�
(

V (n,x)eM(n−n0)
)
≤
(
(eM − 1)λ2(n)γ+LeM

)
eM(n−n0)

≤
(
(eM − 1)Nγ+LeM

)
eM(n−n0).

We let β = (eM −1)Nγ+LeM , and summing the above inequality from n0 to n−1,
we obtain

V (n,x)eM(n−n0) ≤ V (n0,φ(n0))+β
n−1

∑
s=0

eM(s−n0)

≤ V (n0,φ(n0))+
β

eM − 1
eM(n−n0).
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By condition (2.4.7), we have

‖x‖ ≤ W−1
1

[ 1
λ1(n0)

(
V (n0,φ(n0))e

M(n−n0) +
β

eM − 1

)]

≤ W−1
1

[ 1
λ1(n0)

(
λ2(n0)W2(|φ |)+λ2(n0)W3(|φ |)

n0−1

∑
s=0

φ1(n0,s)+
β

eM − 1

)]
,

for all n ≥ n0. Hence, the solutions of (2.1.1) that start in D are uniformly bounded.
This completes the proof.

Theorems 2.4.1 and 2.4.2 are of special importance since, by the aid of constructing
a suitable Lyapunov functionals, the theorems can be applied to nonlinear Volterra
systems of the form

x(n+ 1) = σ(n)x(n)+
n

∑
s=0

B(n,s)x2/3(s), n ≥ 0, x(n) = φ(n) for 0 ≤ n ≤ n0,

(2.4.11)
where φ(n) is a given bounded initial sequence.

2.5 Applications to Nonlinear Volterra Difference Equations

In this section, we apply the results of the previous section to nonlinear Volterra
difference equations. As we shall see that Theorems 2.4.1 and 2.4.2 will guide us
step by step on how such Lyapunov functionals are constructed.

Theorem 2.5.1 ([147]). Consider the scalar nonlinear Volterra difference equation
given by (2.4.11). Suppose there are constants β1, β2 ∈ (0,1) such that

σ2(n)+
2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
)
|B(n,n)|+

∞

∑
u=n+1

|B(u,n)|− 1 ≤−β1,

and
2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
)
− 1 ≤−β2. (2.5.1)

If
n−1

∑
s=0

∞

∑
u=n

|B(u,s)|,
n

∑
s=0

|B(n,s)|< ∞,

and

|B(n,s)| ≥
∞

∑
u=n

|B(u,s)|,

then all solutions of (2.4.11) are uniformly bounded.
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Proof. To see this, we consider the Lyapunov functional

V (n,x) = x2(n)+
n−1

∑
s=0

∞

∑
u=n

|B(u,s)|x2(s).

Then along solutions of (2.4.11) we have

�V (n,x) = x2(n+ 1)− x2(n)+
∞

∑
u=n+1

|B(u,n)|x2(n)−
n−1

∑
s=0

|B(u,s)|x2(s)

=
(
σ(n)x(n)+

n

∑
s=0

B(n,s)x2/3(s)
)2 − x2(n)

+2
∞

∑
u=n+1

|B(u,n)|x2(n)−
n−1

∑
s=0

|B(u,s)|x2(s)

=
(
σ2(n)+

∞

∑
u=n+1

|B(u,n)|− 1
)

x2(t)

+2σ(n)x(n)
n

∑
s=0

|B(n,s)|x2/3(s)+
( n

∑
s=0

|B(n,s)|x2/3(s)
)2

−
n−1

∑
s=0

|B(n,s)|x2(s). (2.5.2)

To further simplify the above inequality we perform the following calculations. Us-
ing the fact that ab ≤ a2/2+ b2/2,

2σ(n)x(n)
n

∑
s=0

|B(n,s)|x2/3(s) ≤ 2|σ(n)||x(n)|
n

∑
s=0

|B(n,s)|x2/3(s)

≤ |σ(n)|
n

∑
s=0

|B(n,s)|
(

x2(n)+ x4/3(s)
)
.

Using the Cauchy-Schwartz inequalities for series, one obtains

( n

∑
s=0

|B(n,s)|x2/3(s)
)2 ≤

( n

∑
s=0

|B(n,s)|1/2|B(n,s)|1/2x2/3(s)
)2

≤
n

∑
s=0

|B(n,s)|
n

∑
s=0

|B(n,s)|x4/3(s).

Adding the above two inequalities yields

2σ(n)x(n)
n

∑
s=0

|B(n,s)|x2/3(s)+
( n

∑
s=0

|B(n,s)|x2/3(s)
)2

≤ |σ(n)|
n

∑
s=0

|B(n,s)|
(

x2(n)+ x4/3(s)
)
+

n

∑
s=0

|B(n,s)|
n

∑
s=0

|B(n,s)|x4/3(s)
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= |σ(n)|
n

∑
s=0

|B(n,s)|x2(n)

+
(
|σ(n)|+

n

∑
s=0

|B(n,s)|
) n

∑
s=0

|B(n,s)|x4/3(s). (2.5.3)

Finally, we make use of Young’s inequality, which says for any two nonnegative real
numbers ω and ϖ , we have

ωϖ ≤ ωe

e
+

ϖ f

f
, with 1/e+ 1/ f = 1.

Thus, for e = 3/2 and f = 3, we get

n

∑
s=0

|B(n,s)|x4/3(s) =
n

∑
s=0

|B(n,s)|1/3|B(n,s)|2/3x4/3(s)

≤
n

∑
s=0

( |B(n,s)|
3

+
2
3
|B(n,s)|x2(s)

)

=
n

∑
s=0

|B(n,s)|
3

+
2
3
|B(n,s)|x2(s)+

2
3

n−1

∑
s=0

|B(n,s)|x2(s).

With this in mind, inequality (2.5.3) reduces to

2σ(n)x(n)
n

∑
s=0

|B(n,s)|x2/3(s)+
( n

∑
s=0

|B(n,s)|x2/3(s)
)2

≤ 2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
)
|B(n,n)|

+
1
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
) n

∑
s=0

|B(n,s)|

+
2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
) n−1

∑
s=0

|B(n,s)|x2(s). (2.5.4)

By substituting (2.5.4) into (2.5.2), we arrive at

�V (n,x) ≤
[
σ2(n)+

2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
)
|B(n,n)|+

∞

∑
u=n+1

|B(u,n)|− 1
]
x2(n)

+
2
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|− 1
)n−1

∑
s=0

|B(n,s)|x2(s)

+
1
3

(
|σ(n)|+

n

∑
s=0

|B(n,s)|
) n

∑
s=0

|B(n,s)|. (2.5.5)
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Let L= 1
3

(
|σ(n)|+∑n

s=0 |B(n,s)|
)
∑n

s=0 |B(n,s)|. Take W1 =W2 =W4 = x2(n), W3 =

W5 = x2(s), λ1 = λ2 = 1 and λ3 = min{β1,β2}. Also, we choose ϕ1(n,s) =

∑∞
u=n |B(u,s)|, and ϕ2(n,s) = |B(n,s)|, we see that conditions (2.4.7) and (2.4.8)

of Theorem 2.4.2 are satisfied. Next we make sure condition (2.4.10) is satisfied. To
see this,

W2(|x|)−W4(|x|)+
n−1

∑
s=0

(
ϕ1(n,s)W3(|x(s)|)−ϕ2(n,s)W5(|x(s)|)

)

= x2(n)− x2(n)+
n−1

∑
s=0

( ∞

∑
u=n

|B(u,s)|− |B(u,s)|
)

x2(s)

=
n−1

∑
s=0

( ∞

∑
u=n

|B(u,s)|− |B(u,s)|
)

x2(s)≤ 0.

Thus, condition (2.4.10) is satisfied for γ = 0. An application of Theorem 2.4.2
yields the results.

In the next theorem we establish sufficient conditions that guarantee the bounded-
ness of all solutions of the vector Volterra difference equation

�x(t) = Ax(t)+
t−1

∑
s=0

C(t,s)x(s)+ g(t), (2.5.6)

where t ≥ 0, x(t) = φ(t) for 0 ≤ t ≤ t0, φ(t) is a given bounded continuous initial
k×1 vector function. Also, A and C are k×k matrices and g is k×1 vector functions
that is continuous in x If D is a matrix, |D| means the sum of the absolute values of
the elements. For what to follow we write g and x for g(t) and x(t), respectively.

Theorem 2.5.2. Suppose CT (t,s) = C(t,s). Let I be the k× k identity matrix. As-
sume there exist positive constants L,ν,ξ ,β1,β2,λ3, and k×k positive definite con-
stant symmetric matrix B such that

[
AT B+BA+ATBA

]
≤−ξ I, (2.5.7)

[
− ξ + |Bg| +

t−1

∑
s=0

|B||C(t,s)|+
t−1

∑
s=0

|AT B||C(t,s)|

+ ν
∞

∑
u=t+1

|B(u, t)|
]
(1+λ3)≤−β1, (2.5.8)

[
|B|−ν+

(
(gT B)2 + 1+ |AT B|

+
t−1

∑
s=0

|C(t,s)|
)]

(1+λ3)≤−β2, (2.5.9)
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(|gT g|+ |Bg|)(1+λ3) = L, (2.5.10)

|C(t,s)| ≥ ν
∞

∑
u=t+1

|C(u,s)|, (2.5.11)

and

t−1

∑
s=0

∞

∑
u=t

|C(u,s)|,
t−1

∑
s=0

|C(t,s)|< ∞. (2.5.12)

Then solutions of (2.5.6) are uniformly bounded.

Proof. Since B is k×k positive definite constant symmetric matrix, then there exists
an r1 ∈ (0,1] and r2 > 0 such that

r1xT x ≤ xT Bx ≤ r2xT x. (2.5.13)

Define

V (t,x) = xT Bx+ν
t−1

∑
s=0

∞

∑
u=t

|C(u,s)|x2(s).

Here xT x = x2 = (x2
1 + x2

2 + · · ·+ x2
k). We have along the solutions that

�V(t,x) =
[
Ax+

t−1

∑
0

C(t,s)x(s)+ g
]T

Bx (2.5.14)

+ xT B
[
Ax+

t−1

∑
s=0

C(t,s)x(s)+ g
]

+
[
Ax+

t−1

∑
s=0

C(t,s)x(s)+ g
]T

B
[
Ax+

t−1

∑
0

C(t,s)x(s)+ g
]

− ν
t−1

∑
s=0

|B(t,s)|x2(s)+ν
∞

∑
u=t+1

|B(u, t)| x2.

By noting that the right side of (2.5.14) is scalar and by recalling that B is a sym-
metric matrix, expression (2.5.14) simplifies to

�V (t,x) = xT
(

AT B+BA+ATBA
)

x+ 2xT Bg (2.5.15)

+ 2
t−1

∑
s=0

xT BC(t,s)x(s)

+
[
xT AT Bg+ 2gTB

t−1

∑
s=0

C(t,s)x(s)+ 2xT AT B
t−1

∑
s=0

C(t,s)x(s)

+
t−1

∑
s=0

xT (s)C(t,s)�s B
t−1

∑
s=0

C(t,s)x(s)+ gT B g
]
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− ν
t−1

∑
s=0

|C(t,s)|x2(s)+ν
∞

∑
u=t+1

|C(u, t)|x2

≤ −ξ x2 + 2|xT ||Bg|+ 2
t−1

∑
s=0

|xT ||B||C(t,s)||x(s)|

+
[ t−1

∑
s=0

|C(t,s)|2|gT B||x(s)|+ 2
t−1

∑
s=0

|xT ||AT B||C(t,s)||x(s)|

+
t−1

∑
s=0

xT (s)C(t,s) B
t−1

∑
s=0

C(t,s)x(s)+ |gT g|
]

− ν
t−1

∑
s=0

|C(t,s)|x2(s)+ν
∞

∑
u=t+1

|C(u, t)|x2.

Next, we perform some calculations to simplify inequality (2.5.15).

2|xT ||Bg|= 2|xT ||Bg|1/2|Bg|1/2 ≤ x2|Bg|+ |Bg|,

2
t−1

∑
s=0

|xT ||B||C(t,s)||x(s)| ≤
t−1

∑
s=0

|B||C(t,s)|(x2 + x2(s)),

t−1

∑
s=0

|C(t,s)|2|gT B||x(s)| ≤
t−1

∑
s=0

|C(t,s)|(|gT B|2 + x2(s)),

and

2
t−1

∑
s=0

|xT ||AT B||C(t,s)||x(s)| ≤
t−1

∑
s=0

|AT B||C(t,s)|(x2 + x2(s)).

Finally,

t−1

∑
s=0

xT (s)C(t,s) B
t−1

∑
s=0

C(t,s)x(s)

|B| |
t−1

∑
s=0

xT (s)C(t,s)||
t−1

∑
s=0

C(t,s)x(s)|

≤ |B|
( t−1

∑
s=0

xT (s)C(t,s)
)2/

2+ |B|
( t−1

∑
s=0

C(t,s)x(s)
)2/

2

= |B|
( t−1

∑
s=0

C(t,s)x(s)
)2

= |B|
( t−1

∑
s=0

|C(t,s)| 1
2 |C(t,s)| 1

2 |x(s)|
)2

≤ |B|
t−1

∑
s=0

|C(t,s)|
t−1

∑
s=0

|C(t,s)|x2(s).
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Substitution of the above inequalities into (2.5.15) yields

�V (t,x)̇ ≤
[
− ξ + |Bg|+

t−1

∑
s=0

|B||C(t,s)|

+
t−1

∑
s=0

|AT B||C(t,s)|+ν
∞

∑
u=t+1

|C(u, t)|
]
x2

+
[
|B|−ν+

(
(gT B)2 + 1+ |ATB|+ |B|

t−1

∑
s=0

|C(t,s)|
) t−1

∑
s=0

|C(t,s)|x2(s)

+ (μ(t)|gT Bg|+ |Bg|)(1+λ3).

Applying conditions (2.5.8), (2.5.9), and (2.5.10), �V(t,x) reduces to

�V (t,x) ≤ −β1x2 −β2

t−1

∑
s=0

|C(t,s)|x2(s)+L,

where L = (μ(t)|gT Bg|+ |Bg|)(1+λ3). By taking W1 = r1xT x,W2 = xT Bx, W4 =
r2xT x, W3 =W5 = x2(s), λ1 = λ2 = 1 and λ3 =min{β1,β2}, φ1(t,s)= ν ∑∞

u=t |C(u,s)|,
and φ2(t,s) = |C(t,s)|, we see that conditions (2.4.7) and (2.4.8) of Theorem 2.4.2
are satisfied. Next we make sure condition (2.4.10) is satisfied. Using (2.5.11)
and (2.5.13) we obtain

W2(|x|)−W4(|x|)+
t−1

∑
s=0

(φ1(t,s)W3(|x|)−φ2(t,s)W5(|x(s)|))

= xT Bx− r2xT x+
t−1

∑
s=0

(
ν

∞

∑
u=t

|C(u,s)|− |C(t,s)|
)

x2(s)≤ 0.

Thus condition (2.4.10) is satisfied with γ = 0. An application of Theorem 2.4.2
yields the results.

2.6 Open Problems

Open Problem 1.
Reformulate Theorems 2.4.1 and 2.4.2 to obtain results concerning the exponential
stability of the zero solution of (2.1.1).
For Open Problem 2, we consider the functional delay difference equation

x(t + 1) = F(t,xt). (2.6.1)

We assume that F is continuous in x and that F : Z×C → R
n where C is the set of

sequences φ : [−α,0]→R
n, α > 0. Let

C(t) = {φ : [t −α, t]→ R
n}.
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It is to be understood that C(t) is C when t = 0. For φ ∈C(t) we denote

|||φt |||=
[ n

∑
i=1

t−1

∑
s=t−α

φ2
i (s)

]1/2

where φ(t) = (φ1(t), · · · ,φn(t)).

Open Problem 2.

Theorem 2.6.1. Let D > 0 and there is a scalar functional V (t,ψt) that is continu-
ous in ψ and locally Lipschitz in ψt when t ≥ t0 and ψt ∈ C(t) with ||ψt || < D. In
addition we assume that if x : [t0 −α,∞)→R

n is a bounded sequence, then F(t,xt)
is bounded on [t0,∞). If V such that V (t,0) = 0,

W1(|φ(t)|)≤V (t,φt )≤W2(|φt |)+W3(|||φt |||),

and
�V (t,φt)≤−W4(|φ(t)|),

then the zero solution of (2.6.1) is uniformly asymptotically stable .

Open Problem 3.
General theorem in the spirit of Theorems 2.1.1, 2.1.2, and 2.1.3 regarding func-
tional delay difference equations is nowhere to be found and hence there is a des-
perate need of such theorems. In particular, for h > 0 and constant, we ask that
parallel theorems to Theorems 2.1.1, 2.1.2, and 2.1.3 should be developed regard-
ing the functional discrete system

x(n+ 1) =
(
G(n,x(s); −h ≤ s ≤ n

) de f
= G(n,x(·)) (2.6.2)

where G : Z+×R
k → R

k is continuous in x. Then such theorems can be applied to
Volterra difference systems of the form

x(n+ 1) = b(n)x(n)+
n−1

∑
s=−h

C(n,s)g(x(s)), (2.6.3)

and

x(n+ 1) = b(n)x(n)+
n−1

∑
s=n−h

C(n,s)g(x(s)). (2.6.4)

In the next theorem we establish sufficient conditions that guarantee the bounded-
ness of all solutions of the vector Volterra difference equation by using Lyapunov-
Razumikhini method. It should serve as a guidance to formulate and prove bound-
edness results concerning functional difference equations. Thus, we consider the
Volterra difference equation
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x(t + 1) = Ax(t)+
t−1

∑
s=0

C(t,s)x(s)+ g(t), (2.6.5)

where t ≥ 0, x(t) = φ(t) for 0 ≤ t ≤ t0, φ(t) is a given bounded initial k×1 vector
functions. Also, A and C are k× k matrices and g is k× 1 vector functions. If D is
a matrix, |D| means the sum of the absolute values of the elements. Let ||g||[0,∞)
denote the norm of g.

Theorem 2.6.2 ([144]). Let I be the k×k identity matrix. Assume there exists a k×k
positive definite constant symmetric matrix B such that

AT B+BA =−I, (2.6.6)

Suppose that there is a positive constant M such that

t−1

∑
s=0

|BC(t,s)| ≤ M,

so that
2βhM

α
< 1,

where α,β , and h are all positive constants to specify in the proof. If in addition, g
is bounded, then all solutions of of (2.6.5) are uniformly bounded.

Proof. Since B is k×k positive definite constant symmetric matrix, then there exists
an α,β ∈ (0,1] such that

α2|x|2 ≤ xT Bx ≤ β 2|x|2.

Define the Lyapunov-Razumikhini function

V (t,x) = xT Bx.

Then clearly
α2|x|2 ≤V (t,x)≤ β 2|x|2.

Then along the solutions of (2.6.5) we have

�V(t,x) =
[
Ax+

t−1

∑
0

C(t,s)x(s)+ g
]T

Bx

+ xT B
[
Ax+

t−1

∑
s=0

C(t,s)x(s)+ g
]

= xT
(

AT B+BA
)

x+ 2xT Bg+ 2
t−1

∑
s=0

xT BC(t,s)x(s)

≤ −|x|2 + 2|x||B|||g||[0,∞)+ 2
t−1

∑
s=0

|BC(t,s)||x(s)|.
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Now, if h2V (t,x(t)) >V (s,x(s)) for 0 ≤ s ≤ t − 1, where h > 1 is a constant to be
determined, then

α2|x(s)|2 ≤V (s,x(s)) ≤ h2V (t,x(t))≤ h2β 2|x|2,

and
hβ
α

|x(t)| ≥ |x(s)|, s ≤ t − 1.

Thus,

�V (t,x) ≤ −|x|2 + 2
hβ
α

|x|2
t−1

∑
s=0

|BC(t,s)|+ 2|x||B|||g||[0,∞)

≤ −|x|2 + 2
hβM
α

|x|2 + 2|x||B|||g||[0,∞).

Since
2βhM

α
< 1, h maybe chosen so that h > 1 and

2hβhM
α

< 1, yielding

�V(t,x)≤ (2 hβ
α

− 1
)|x|2 + 2|x||B|||g||[0,∞) ≤ 0

provided that

|x| ≥ 2|B|||g||[0,∞)
1− 2βhM

α

:= K.

Now we summarize what we have

(a) W1(|x|)≤V (t,x)≤W2(|x|),
(b) there exists K > 0 so that if x(t) is a solution of (2.6.5) with |x(t)| ≥ K for some

t ≥ 0 and V (s,x(s))< p(V (t,x)) for 0 ≤ s ≤ t −1 and p(u)> u, then �V (t,x)≤
0, where p(u) = h2u.

Now choose any solution x(t) such that |φ(t)| < H for 0 ≤ t ≤ n0 for some H > 0.
Let L > max{H,K} and choose D > 0 with W2(L) < W1(D). If this solution is
unbounded, then there is t1 > 0 such that |x(t1)|>D, |x(t)| ≤D for 0< t ≤ t1−1.
If V (t1,x(t1)≤V (t0,x(t0), then we would have

W1(|x(t1|)≤V (t1,x(t1) ≤ V (t0,φ(t0)≤W2(|φ(t0|)
≤ W2(L)<W1(D),

from which we get |x(t1)| < D, a contradiction. Thus, V (t1,x(t1) > V (t0,x(t0). We
leave it for the reader to complete the proof using (a) and (b) as guidance.

Open Problem 4.
We propose that the reader develops general theorems for the boundedness and sta-
bility of functional difference equations using Lyapunov-Razumikhinimethod. Con-
ditions (a) and (b) should serve as guidance for stating and proving such theorems.
For more on the subject we refer to [181] and [182].



Chapter 3
Fixed Point Theory in Stability and
Boundedness

In the past hundred and fifty years, Lyapunov functions/functionals have been exclu-
sively and successfully used in the study of stability and existence of periodic and
bounded solutions. The author has extensively used Lyapunov functions/functionals
for the purpose of analyzing solutions of functional equations, and each time the
suitable Lyapunov functional presented us with unique difficulties, that could only
overcome by the imposition of severe conditions on the given coefficients. In prac-
tice, Lyapunov direct method requires pointwise conditions, while as so many real-
life problems call for averages. Moreover, it is rare that we encounter a problem
for which a suitable Lyapunov functional can be easily constructed. It is a common
knowledge among researchers that results on stability and boundedness go hand in
hand with the constructed Lyapunov functional.
In this chapter, we begin a systematic study of stability theory for ordinary and func-
tional difference equations by means of fixed point theory. The study of fixed point
theory is motivated by a number of difficulties encountered in the study of stability
by means of Lyapunov’s direct method. We notice that these difficulties frequently
vanish when we apply fixed point theory. We provide a brief introduction on topics
in Cauchy sequences, metric spaces, compactness, contraction mapping principle,
and Banach spaces. In some cases, contraction mapping principle fails to produce
any results. This forces us to look for other alternatives, namely the concept of Large
Contraction. We will restate the contraction mapping principle and Krasnoselskii’s
fixed point theorems in which the regular contraction is replaced with Large Con-
traction. Most of the work in this chapter can be found in [4, 140, 142, 150, 166],
and [167].
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3.1 Motivation

We begin by offering an example that exposes the difficulties encountered by the use
of Lyapunov functionals. Fixed point theory was first used in difference equations
by Raffoul in [136] to study the stability and the existence of periodic solutions of
the linear delay difference equation

�x(t) =−a(t)x(t − τ).

It was followed by a series of papers in which different authors considered the same
idea and analyzed various types of difference and Volterra difference equations. For
example, in [134] the author initiated the use of fixed point theory to alleviate some
of the difficulties that arise from the deployment of Lyapunov functionals to study
boundedness and stability of the neutral nonlinear delay differential equation

x′(t) =−a(t)x(t)+ c(t)x′(t − g(t))+ q(t,x(t),x(t− g(t))),

where a(t),b(t),g(t), and q are continuous in their respective arguments. Later on,
Islam and Yankson [87] extended the work of [134] to the neutral nonlinear delay
difference equation

x(t + 1) = a(t)x(t)+ c(t)�x(t − g(t))+ q(x(t),x(t− g(t)),

where a,c : Z→R,q : R×R→R, and g : Z→ Z.
To illustrate some of the difficulties that arise from the deployment of Lyapunov
functionals, we consider the delay difference equation

x(t + 1) = a(t)x(t)+ b(t)x(t− τ)+ p(t), t ∈ Z
+, (3.1.1)

where a,b, p : Z+ → R, τ is a positive integer. Assume

|a(t)|< 1, for all t ∈ Z
+ (3.1.2)

and there is a δ > 0 such that

|b(t)|+ δ < 1, t ∈ Z
+ (3.1.3)

and
|a(t)| ≤ δ , and |p(t)| ≤ K, for some positive constant K. (3.1.4)

Then all solutions of (3.1.1) are bounded. If p(t) = 0 for all t, then the zero solution
of (3.1.1) is (UAS). To see this we consider the Lyapunov functional

V (t,x(·)) = |x(t)|+ δ
t−1

∑
s=t−τ

|x(s)|.
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Then along solutions of (3.1.1) we have

�V = |x(t + 1)|− |x(t)|+ δ
t

∑
s=t+1−τ

|x(s)|− δ
t−1

∑
s=t−τ

|x(s)|

≤ |a(t)||x(t)|− |x(t)|+|b(t)||x(t − τ)|+δ
t

∑
s=t+1−τ

|x(s)|−δ
t−1

∑
s=t−τ

|x(s)|+|p(t)|

=
(|a(t)|+ δ − 1

)|x(t)|+ (|b(t)|− δ
)|x(t − τ)|+ |p(t)|

≤ (|a(t)|+ δ − 1
)|x(t)|+ |p(t)|

≤ −γ|x(t)|, for some positive constant γ.

The results follow from Chapter 2. It is severe to ask that a,b be bounded and that
|b(t)| is bounded by a all of the time. For another illustration, we consider the non-
linear delay difference equation

x(t + 1) = a(t)g(x(t))+ b(t)h(x(t− r)), (3.1.5)

where the functions g and h are continuous. Define the Lyapunov functional V by

V (t) = |x(t)|+
t−1

∑
s=t−r

|b(s+ r)||h(x(s))|.

We assume that there are positive constants γ1 and γ2 such that |g(x)| ≤ γ1|x| and
|h(x)| ≤ γ2|x|, so that

γ1|a(t)|+ γ2|b(t + r)|− 1 ≤−β , β > 0.

Then along solutions of (3.1.5) we have

�V = |x(t + 1)|− |x(t)|+ |b(t+ r)||h(x(t))|− |b(t)||h(x(t− r))|
≤ |a(t)||g(x(t))|+ |b(t)||h(x(t− r))|− |x(t)|
+ |b(t + r)||h(x(t))|− |b(t)||h(x(t− r))|
≤ (γ1|a(t)|+ γ2|b(t + r)|− 1)|x(t)|
≤ −β |x(t)|.

Now one may refer to Chapter 2 and argue that the zero solution of (3.1.5) is asymp-
totically stable.
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3.2 Metrics and Banach Spaces

This section is devoted to introductory materials related to Cauchy sequences, met-
ric spaces, contraction, compactness, contraction mapping principle, and Banach
spaces. Materials in this section are taken from class notes that the author have used
in graduate course on real analysis. For an excellent reference, we refer the reader
to [23].

Definition 3.2.1. A pair (E,ρ) is a metric space if E is a set and ρ : E ×E → [0,∞)
such that when y,z, and u are in E , then

(a) ρ(y,z) ≥ 0, ρ(y,y) = 0, and ρ(y,z) = 0 implies y = z.
(b) ρ(y,z) = ρ(z,y), and
(c) ρ(y,z) ≤ ρ(y,u)+ρ(u,z).

Definition 3.2.2 (Cauchy Sequence). A sequence {xn} ⊆ E is a Cauchy sequence
if for each ε > 0 there exists an N ∈ N such that n,m > N =⇒ ρ(xn,xm)< ε .

Definition 3.2.3 (Completeness of Metric Space). A metric space (E,ρ) is said to
be complete if every Cauchy sequence in E converges to a point in E .

Definition 3.2.4. A set L in a metric space (E,ρ) is compact if each sequence in L
has a subsequence with a limit in L.

Definition 3.2.5. Let { fn} be a sequence of real functions with fn : [a,b]→R.

1. { fn} is uniformly bounded on [a,b] if there exists M > 0 such that | fn(t)| ≤ M
for all n ∈N and for all t ∈ [a,b].

2. { fn} is equicontinuous at t0 if for each ε > 0 δ > 0 such that for all n ∈ N, if
t ∈ [a,b] and |t0 − t|< δ , then | fn(t0)− fn(t)| < ε . Also, { fn} is equicontinuous
if { fn} is equicontinuous at each t0 ∈ [a,b].

3. { fn} is uniformly equicontinuous if for each ε > 0 there exists d > 0 such that
for all n ∈N, if t1, t2 ∈ [a,b] and |t1 − t2|< δ , then | fn(t1)− fn(t2)|< ε .

Easy to see that { fn}= {xn} is not an equicontinuous sequence of functions on [0,1]
but each fn is uniformly continuous.

Proposition 3.1 (Cauchy Criterion for Uniform Convergence). If {Fn} is a se-
quence of bounded functions that is Cauchy in the uniform norm, then {Fn} con-
verges uniformly.

Definition 3.2.6. A real-valued function f defined on E ⊆ R is said to be Lipschitz
continuous with Lipschitz constant M if | f (x)− f (y)| ≤ M|x− y| for all x,y ∈ E .

Remark 3.1. It is an easy exercise that a Lipschitz continuous function is uniformly
continuous. Also, if each fn in a sequence of functions { fn} has the same Lipschitz
constant, then the sequence is uniformly equicontinuous.

Lemma 3.1. If { fn} is an equicontinuous sequence of functions on a closed bounded
interval, then { fn} is uniformly equicontinuous.
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Proof. Suppose { fn} is equicontinuous defined on [a,b] (which is contraction). Let
ε > 0. For each x ∈ K, let δx > 0 be such that |y−x|< δx =⇒ | fn(x)− fn(y)|< ε/2
for all n ∈ N. The collection {B(x,δx/2) : x ∈ [a,b]} is an open cover of [a,b] so
has a finite subcover {B(xi,δxi/2) : i = 1, . . . ,k}. Let δ = min{δxi/2 : i = 1, . . . ,k}.
Then, if x,y ∈ [a,b] with |x− y| < δ , there is some i with x ∈ B(xi,δxi/2). Since
|x−y|< δ ≤ δxi/2, we have |xi −y| ≤ |xi−x|+ |x−y|< δxi/2+δxi/2 = δxi . Hence
|xi−y|< δxi and |xi −x|< δxi . So, for any n ∈N we have | fn(x)− fn(y)| ≤ | fn(x)−
fn(xi)|+ | fn(xi)− fn(y)|< ε/2+ ε/2 = ε . So, { fn} is uniformly equicontinuous.

The next theorem gives us the main method of proving compactness in the spaces
in which we are interested.

Theorem 3.2.1 (Ascoli-Arzelà). If { fn(t)} is a uniformly bounded and equicontin-
uous sequence of real valued functions on an interval [a,b], then there is a subse-
quence which converges uniformly on [a,b] to a continuous function.

Proof. Since { fn(t)} is equicontinuous on [a,b], by Lemma 3.1, { fn(t)} is uni-
formly equicontinuous. Let t1, t2, . . . be a listing of the rational numbers in [a,b]
(note, the set rational numbers is countable, so this enumeration is possible). The
sequence { fn(t1)}∞n=1 is a bounded sequence of real numbers (since { fn} is uni-
formly bounded) so, it has a subsequence { fnk(t1)} converging to a number which
we call φ(t1). It will be more convenient to represent this subsequence without sub-
subscripts, so we write f 1

k for fnk and switch the index from k to n. So, the subse-
quence is written as { f 1

n (t1)}∞n=1. Now, the sequence { f 1
n (t2)} is bounded, so it has

a convergent subsequence, say { f 2
n (t2)}, with limit φ(t2). We continue in this way

obtaining a sequence of sequences { f m
n (t)}∞n=1 (one sequence for each m) each of

which is a subsequence of the previous. Furthermore, we have f m
n (tm) → φ(tm) as

n→∞ for each m∈N. Now, consider the “diagonal” functions defined Fk(t)= f k
k (t).

Since f m
n (tm) → φ(tm), it follows that Fr(tm) → φ(tm) as r → ∞ for each m ∈ N

(in other words, the sequence {Fr(t)} converges pointwise at each tm). We now
show that {Fk(t)} converges uniformly on [a,b], by showing it is Cauchy in the
uniform norm. Let ε > 0. Let δ > 0 be as in the definition of uniformly equicon-
tinuous for { fn(t)} applied with ε/3. Divide [a,b] into p intervals where p > b−a

δ .
Let ξ j be a rational number in the jth interval, for j = 1, . . . , p. Remember, {Fr(t)}
converges at each of the points ξ j, since they are rational numbers. So, for each
j, there is Mj ∈ N such that |Fr(ξ j)− Fs(ξ j)| < ε/3 whenever r,s > Mj. Let
M = max{Mj : j = 1, . . . , p}. If t ∈ [a,b], then it is in one of the p intervals, say
the jth. So, |t −ξ j|< δ and so | f r

r (t)− f r
r (ξ j)|= |Fr(t)−Fr(ξ j)|< ε/3 for every r.

Also, if r,s > M, then |Fr(ξ j)−Fs(ξ j)| < ε/3 (since M is the max of the Mi’s). So,
we have for r,s > M,

|Fr(t)−Fs(t)|= |Fr(t)−Fr(ξ j)+Fr(ξ j)−Fs(ξ j)+Fs(ξ j)−Fs(t)|

≤ |Fr(t)−Fr(ξ j)|+ |Fr(ξ j)−Fs(ξ j)|+ |Fs(ξ j)−Fs(t)|

≤ ε
3
+

ε
3
+

ε
3
= ε.
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By the Cauchy Criterion for convergence, the sequence {Fr(t)}converges uniformly
on [a,b]. Since each Fr(t) is continuous, the limit function φ(t) is also continuous.

Remark 3.2. The Ascoli-Arzelà Theorem can be generalized to a sequence of func-
tions from [a,b] to R

n. You apply the Ascoli-Arzelà to the first coordinate function
to get a uniformly convergent subsequence. Then, apply the theorem again, this time
to the corresponding subsequence of functions restricted to the second coordinate,
getting a sub-subsequence, and so on.

Banach spaces form an important class of metric spaces. We now define Banach
spaces in several steps.

Definition 3.2.7. A triple (V,+, ·) is said to be a linear (or vector) space over a field
F if V is a set and the following are true.

1. Properties of +

a. + is a function from V ×V to V . Outputs are denoted x+ y.
b. for all x,y ∈V , x+ y = y+ x. (+ is commutative)
c. for all x,y,w ∈V , x+(y+w) = (x+ y)+w. (+ is associative)
d. there is a unique element of V which we denote 0 such that for all x ∈ V ,

0+ x = x+ 0 = x. (additive identity)
e. for each x ∈ V there is a unique element of V which we denote −x such that

x+(−x) =−x+ x = 0. (additive inverse)

2. Scalar multiplication

a. · is a function from F ×V to V . Outputs are denoted α · x, or αx.
b. for all α,β ∈ F and x ∈V , α(βx) = (αβ )x.
c. for all x ∈V , 1 · x = x.
d. for all α,β ∈ F and x ∈V , (α+β )x = αx+βx.
e. for all α ∈ F and x,y ∈V , α(x+ y) = αx+αy.

Commonly, the real numbers or complex numbers are the field in the above defini-
tion. For our purposes, we only consider the field of real numbers F = R.

Definition 3.2.8 (Normed Spaces). A vector space (V,+, ·) is a normed space if
for each x ∈ V there is a nonnegative real number ‖x‖, called the norm of x, such
that for each x,y ∈V and α ∈ R

1. ‖x‖= 0 if and only if x = 0
2. ‖αx‖= |α|‖x‖
3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖
Remark 3.3. A norm on a vector space always defines a metric ρ(x,y) = ‖x− y‖ on
the vector space. Given a metric ρ defined on a vector space, it is tempting to define
‖v‖= ρ(v,0). But this is not always a norm.

Definition 3.2.9. A Banach space is a complete normed vector space. That is, a vec-
tor space (X ,+, ·) with norm ‖·‖ for which the metric ρ(x,y) = ‖x−y‖ is complete.



3.2 Metrics and Banach Spaces 99

Example 3.1. The space (Rn,+, ·) over the field R is a vector space (with the usual
vector addition, + and scalar multiplication, ·) and there are many suitable norms
for it. For example, if x = (x1,x2, . . . ,xn), then

1. ‖x‖= max
1≤i≤n

|xi|,

2. ‖x‖=
√

n

∑
i=1

x2
i , or

3. ‖x‖=
n

∑
i=1

|xi|

are all suitable norms. Norm 2. is the Euclidean norm: the norm of a vector is its
Euclidean distance to the zero vector and the metric defined from this norm is the
usual Euclidean metric. Norm 3. generates the “taxi-cab” metric on R

2.

Remark 3.4. Consider the vector space (Rn,+, ·) as a metric space with its metric
defined ρ(x,y) = ‖x− y‖ where ‖ · ‖ is any of the norms as in Example 3.1. The
completeness of this metric space comes directly from the completeness of R, hence
(Rn,‖ · ‖) is a Banach space.

Remark 3.5. In the Euclidean space R
n, compactness is equivalent to closed and

bounded (Heine-Borel Theorem). In fact, the metrics generated from any of the
norms in Example 3.1 are equivalent in the sense that they generate the same topolo-
gies. Moreover, compactness is equivalent to closed and bounded in each of those
metrics.

Example 3.2. Let C([a,b],Rn) denote the space of all continuous functions f :
[a,b]→R

n.

1. C([a,b],Rn) is a vector space over R.
2. If ‖ f‖ = max

a≤t≤b
| f (t)| where | · | is a norm on R

n, then (C([a,b],Rn),‖ · ‖) is a

Banach space.
3. Let M and K be two positive constants and define

L = { f ∈C([a,b],Rn) : ‖ f‖ ≤ M; | f (u)− f (v)| ≤ K|u− v|}

then L is compact.

Proof. (of Part 3.) Let { fn} be any sequence in L. The functions are uniformly
bounded by M and have the same Lipschitz constant, K. So, the sequence is uni-
formly equicontinuous. By the Ascoli-Arzelà Theorem, there is a subsequence,
{ fnk}, that converges uniformly to a continuous function f : [a,b] → R

n. We now
show that f ∈ L. Well, | fn(t)| ≤M for each t ∈ [a,b], so | f (t)| ≤ M for each t ∈ [a,b]
and hence ‖ f‖ ≤ M. Now, fix u,v ∈ [a,b] and fix ε > 0. Since { fnk} converges uni-
formly to f , there is N ∈ N such that | fnk (t)− f (t)| < ε/2 for all t ∈ [a,b] and all
k ≥ N. So, fix any k ≥ N and we have

| f (u)− f (v)|= | f (u)− fnk(u)+ fnk(u)− fnk(v)+ fnk(v)− f (v)|



100 3 Fixed Point Theory in Stability and Boundedness

≤ | f (u)− fnk(u)|+ | fnk(u)− fnk(v)|+ | fnk(v)− f (v)|
< ε/2+K|u− v|+ ε/2= K|u− v|+ ε.

Since ε > 0 was arbitrary, | f (u)− f (v)| ≤ K|u− v|. Hence f ∈ L. We have demon-
strated that { fn} has a subsequence converging to an element of L. Hence, L is
compact.

Example 3.3. Consider R as a vector space over R and define the metric d(x,y) =
|x− y|

1+ |x− y|. For each x ∈ R, we can define ‖x‖ = d(x,0). Explain why ‖ · ‖ is not a

norm on R.

Example 3.4. Let φ : [a,b] → R
n be continuous and let S be the set of continuous

functions f : [a,c] → R
n with c > b and with f (t) = φ(t) for a ≤ t ≤ b. Define

ρ( f ,g)= ‖ f −g‖= sup
a≤t≤c<

| f (t)−g(t)| for f ,g∈ S.Then (S,ρ) is a complete metric

space but not a Banach space since f + g is not in S.

Example 3.5. Let (S,ρ) be the space of continuous bounded functions f : (−∞,0]→
R with ρ( f ,g) = ‖ f − g‖= sup

−∞<t≤0
| f (t)− g(t)|.

1. Show that (S,ρ) is a Banach space.
2. The set L = { f ∈ S : ‖ f‖ ≤ 1, | f (u)− f (v)| ≤ |u− v|} is not compact in (S,ρ).

Proof. (of 2.) Consider the sequence of functions defined

fn(t) =

{
0 if t ≤−n
t
n + 1 if− n < t ≤ 0

Then, the sequence converges pointwise to f = 1, but ρ( fn, f ) = 1 for all n ∈ N.
So, there is no subsequence of { fn} converging in the norm ‖ · ‖ (i.e., converging
uniformly) to f .

Example 3.6. Let (S,ρ) be the space of continuous functions f : (−∞,0]→R
n with

ρ( f ,g) =
∞

∑
n=1

2−nρn( f ,g)/{1+ρn( f ,g)}

where
ρn( f ,g) = max

−n≤s≤0
| f (s)− g(s)|

and | · | is the Euclidean norm on R
n

1. Then (S,ρ) is a complete metric space. The distance between all function is
bounded by 1.

2. (S,+, ·) is a vector space over R.
3. (S,ρ) is not a Banach space because ρ does not define a norm, since ρ(x,0)= ‖x‖

does not satisfy ‖αx‖= |α|‖x‖.
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4. Let M and K be given positive constants. Then the set

L = { f ∈ S : ‖ f‖ ≤ M on (−∞,0], | f (u)− f (v)| ≤ K|u− v|}

is compact in (S,ρ).

Proof. (of 4.) Let { fn} be a sequence in L. It is clear that if fn → f uniformly on
compact subsets of (−∞,0], then we have ρ( fn, f ) → 0 as n → ∞. Let’s begin by
considering { fn} on [−1,0]. Then the sequence is uniformly bounded and equicon-
tinuous and so there is a subsequence, say { f 1

n } converging uniformly to some con-
tinuous f on [−1,0]. Moreover the argument of Example 3.2 shows that | f (t)| ≤ M,
and | f (u)− f (v)| ≤ K|u− v|. Next we consider { f 1

n } on [−2,0]. Then the sequence
is uniformly bounded and equicontinuous and so there is a subsequence, say { f 2

n }
converging uniformly, say, to some continuous f on [−2,0]. Continuing this way
we arrive at Fn = f n

n which has a subsequence of { fn} and it converges uniformly
on compact subsets of (−∞,0] to a function f ∈ L. This proves L is compact.

The next result is stated in the form of a theorem that we leave its proof to the reader.

Theorem 3.2.2. Let g : (−∞,0]→ [1,∞) be a continuous strictly decreasing function
with g(0) = 1 and g(r) → ∞ as r → −∞. Let (S, | · |g) be the space of continuous
functions f : (−∞,0]→R

n for which

| f |g := sup
−∞<t≤0

| f (t)|
|g(t)|

exists. Then

1. (S, | · |g) is a Banach space.
2. Let M and K be given positive constants. Then the set

L = { f ∈ S : ‖ f‖ ≤ M on (−∞,0], | f (u)− f (v)| ≤ K|u− v|}

is compact in (S,ρ).

Definition 3.2.10. Let (E,ρ) be a metric space and D : E → E. The operator or
mapping D is a contraction if there exists an α ∈ (0,1) such that

ρ
(

D(x),D(y)
)
≤ αρ(x,y).

Theorem 3.2.3 (Contraction Mapping Principle). Let (E,ρ) be a complete metric
space and D : E → E a contraction operator. Then there exists a unique φ ∈ E with
D(φ) = φ . Moreover, if ψ ∈ E and if {ψn} is defined inductively by ψ1 = D(ψ) and
ψn+1D(ψn), then ψn → φ , the unique fixed point.

Proof. Let y0 ∈ E and define a sequence {yn} in E by y1 = Dy0, y2 = Dy1 =
D(Dy0) = D2y0, . . . ,yn = Dyn−1 = Dny0. Next we show that {yn} is a Cauchy se-
quence. To see this, if m > n, then



102 3 Fixed Point Theory in Stability and Boundedness

ρ(yn,ym) = ρ(Dny0,D
my0)

≤ αρ(Dn−1y0,D
m−1y0)

...

≤ αnρ(y0,ym−1)

≤ αn{ρ(y0,y1)+ρ(y1,y2)+ . . .+ρ(ym−n−1,ym−n)
}

≤ αn{ρ(y0,y1)+αρ(y0,y1)+ . . .+αm−n−1ρ(y0,y1)
}

≤ αnρ(y0,y1)
{

1+α+ . . .+αm−n−1}

≤ αnρ(y0,y1)
1

1−α
.

Thus, since α ∈ (0,1), we have that

ρ(yn,ym)→ 0, as, n → ∞.

This shows the sequence {yn} is Cauchy. Since (E,ρ) is a complete metric space,
{yn} has a limit, say y in E . Since the mapping D is continuous we have that

D(x) = D( lim
n→∞

yn) = lim
n→∞

D(yn) = lim
n→∞

yn+1 = y,

and y is a fixed point. Left to show y is unique. Let x,y ∈ E such that D(x) = x and
D(y) = y. Then

0 ≤ ρ(x,y) = ρ
(
D(x),D(y)

)≤ αρ(x,y),

which implies that
0 ≤ (1−α)ρ(x,y)≤ 0.

Since 1−α 	= 0, we must have ρ(x,y) = 0 and hence x = y. This completes the
proof.

Another form of the contraction mapping principle.

Theorem 3.2.4 (Contraction Mapping Principle, Banach Fixed Point Theo-
rem). Let (E,ρ) be a complete metric space and P : E → E such that Pm is a
contraction for some fixed positive integer m. Then there is a unique x ∈ E with
P(x) = x.

3.3 Highly Nonlinear Delay Equations

We limit our study to the highly nonlinear delay difference equation, typified by

x(t + 1) = a(t)g(x(t − r)) (3.3.1)
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where a : Z+ →R and r is a positive integer. More conditions on g are forthcoming.
Results of this section can be found in [140]. In the paper of Raffoul [136], the
author considered the linear difference equation

�x(t) =−a(t)x(t − r)

and used fixed point theory and obtained asymptotic and periodicity results using
fixed point theory. It is worth mentioning here that (3.3.1) has fundamental differ-
ence from the above-mentioned equation due to the nonlinearity that the function g
presents. Moreover, when inverting (3.3.1) in order to construct a mapping that is
suitable for fixed point theory, one will have to introduce a linear term which results
in the addition term of x− g(x). Also, the results of this section offer the use of
nonconventional metric in order to avoid that the contraction constant not to depend
on the Lipschitz constant K that g will be required to satisfy.
First we rewrite (3.3.1) and have it ready for inversion so that fixed point theory can
be used. Rewrite (3.3.1) as

x(t + 1) = a(t + r)g(x(t))−�t

t−1

∑
s=t−r

a(s+ r)g(x(s)),

where �t represents the difference with respect to t. We must create a linear tern in
x in order to be able to invert. Thus, we add and subtract a(t + r)x(t) and get,

x(t +1) = a(t + r)x(t)−a(t+ r)[x(t)−g(x(t))]−�t

t−1

∑
s=t−r

a(s+ r)g(x(s)). (3.3.2)

For each t0 ≥ 0, equation (3.3.2) requires initial function ψ : [t0 − r, t0]→ R in order
to specify a solution x(t, t0,ψ). The computation is the same for any t0 ≥ 0 and so
we take t0 = 0. Thus, we say x(t) := x(t,0,ψ) is a solution of (3.3.2) if x(t) = ψ(t)
on [−r,0] and x(t) satisfies (3.3.2) for t ≥ 0. We begin with the following lemma
which we omit its proof.

Lemma 3.2. Suppose that a(t + r) 	= 0 for all t ∈ Z
+. Then x(t) is a solution of

equation (3.3.2) if and only if

x(t) = ψ(0)
t−1

∏
s=0

a(s+ r)−
t−1

∑
s=t−r

a(s+ r)g(x(s))+
t−1

∏
u=0

a(u+ r)
−1

∑
s=−r

a(s+ r)g(ψ(s)

+
t−1

∑
s=0

(
a(s+ r)

t−1

∏
k=s+1

a(k+ r)
s−1

∑
u=s−r

a(u+ r)g(x(u))
)

−
t−1

∑
s=0

(
t−1

∏
u=s+1

a(u+ r))a(s+ r)[x(s)− g(x(s))], t ≥ 0. (3.3.3)

The proof of lemma 3.2 is easily obtained from the variation of parameters formula
followed with summation by parts. It is assumed that the function g is continuous,
locally Lipschitz with Lipschitz constant K and odd. On the other hand, we assume



104 3 Fixed Point Theory in Stability and Boundedness

that x− g(x) is nondecreasing and g(x) is increasing on an interval [0,L] for some
L > 0. Due to these assumptions, it is obvious that the functions g(x) and x− g(x)
are locally Lipschitz with the same Lipschitz constant K > 0.
Note that if 0 < L1 < L, then the conditions on g hold on [−L1,L1]. Also note that
if φ : [−r,∞)→ R with φ0 = ψ , and if |φ(t)| ≤ L, then for t ≥ 0 we have

|φ(t)− g(φ(t))| ≤ L− g(L),

since x− g(x) is odd and nondecreasing on [0,L]. Here φ0 = ψ(s) for −r ≤ s ≤ 0.
Let

S =
{
φ : [−r,∞)→ R : φ0 = ψ , |φ(t)| ≤ L

}
.

For φ ∈ S, we define P : S → S by

(Pφ)(t) = ψ(t) if − r ≤ t ≤ 0

and

(Pφ)(t) = ψ(0)
t−1

∏
s=0

a(s+r)−
t−1

∑
s=t−r

a(s+r)g(φ(s))+
t−1

∏
u=0

a(u+r)
−1

∑
s=−r

a(s+ r)g(ψ(s)

+
t−1

∑
s=0

(
a(s+ r)

t−1

∏
k=s+1

a(k+ r)
s−1

∑
u=s−r

a(u+ r)g(φ(u))
)

−
t−1

∑
s=0

(
t−1

∏
u=s+1

a(u+ r))a(s+ r)[φ(s)− g(φ(s))], t ≥ 0. (3.3.4)

Let g be odd, increasing on [0,L], satisfy a Lipschitz condition, and let x− g(x) be
nondecreasing on [0,L]. Suppose that if L1 ∈ (0,L], then

|L1 − g(L1)|max
t≥0

t−1

∑
s=0

|(
t−1

∏
u=s+1

a(u+ r))a(s+ r)|+ g(L1)
t−1

∑
s=t−r

|a(s+ r)|

+ g(L1)max
t≥0

t−1

∑
s=0

|(a(s+ r)
t−1

∏
k=s+1

a(k+ r)|
s−1

∑
u=s−r

|a(u+ r)|< L1. (3.3.5)

We note that since g(x) is Lipschitz with Lipschitz constant K and g(0) = 0, then
|g(x)| ≤ K|x|.
Theorem 3.3.1 ([140]). Let g be odd, increasing on [0,L], satisfy a Lipschitz con-
dition, and let x− g(x) be nondecreasing on [0,L]. Suppose that a(t + r) 	= 0 for
all t ∈ Z

+. If (3.3.5) hold, then every solution x(t,0,ψ) of (3.3.2) with small initial
function ψ(t), is bounded provided P is a contraction.

Proof. Let φ ∈ S. Then, by (3.3.5), there exists an α ∈ (0,1) such that for t ≥ 0 then

|(Pφ)(t)| ≤ ||ψ |||
t−1

∏
s=0

a(s+ r)|+ |
t−1

∏
u=0

a(u+ r)|||g(ψ(s)||
−1

∑
s=−r

|a(s+ r)|
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+ |L− g(L)|max
t≥0

t−1

∑
s=0

|(
t−1

∏
u=s+1

a(u+ r))a(s+ r)|+ g(L)
t−1

∑
s=t−r

|a(s+ r)|

+ g(L)max
t≥0

t−1

∑
s=0

|(a(s+ r)
t−1

∏
k=s+1

a(k+ r)|
s−1

∑
u=s−r

|a(u+ r)|

≤ ||ψ ||
t−1

∏
s=0

|a(s+ r)|+ |
t−1

∏
u=0

a(u+ r)| ||g(ψ(s)||
−1

∑
s=−r

|a(s+ r)|+αL

≤
t−1

∏
s=0

|a(s+ r)|[||ψ ||+K||ψ ||]
−1

∑
s=−r

|a(s+ r)|+αL. (3.3.6)

If we choose the initial function ψ small enough so that we have

t−1

∏
s=0

|a(s+ r)|[||ψ ||+K||ψ ||]
−1

∑
s=−r

|a(s+ r)|< (1−α)L,

then this yields
|(Pφ)(t)| ≤ (1−α)L+αL = L.

Thus, P : S → S. This shows that any solution x(t,0,ψ) of (3.3.2) that is in S, is
bounded. Next we show that P defines a contraction map. Using the regular max-
imum norm will require that the contraction constant to depend on the Lipschitz
constant K. Instead, we use the weighted norm | · |K where for φ ∈ S, we have

|φ |K = sup
t≥0

| 1
dK

t−1

∏
s=0

|a(s+ r)φ |, for d > 0.

Proposition 3.2 ([140]). Let g be odd, increasing on [0,L], satisfy a Lipschitz con-
dition, and let x− g(x) be nondecreasing on [0,L]. Suppose that a(t + r) 	= 0 for all
t ∈ Z

+ with |a(t + r)| ≤ 1
2 . Then P is a contraction with contraction constant d > 3.

Proof. Let φ ,ϕ ∈ S. Then for t ≥ 0, we have

|(Pφ)− (Pϕ)|K ≤
t−1

∑
s=t−r

|a(s+ r)||g(φ(s))− g(ϕ(s)|| 1
dK

t−1

∏
u=0

|a(u+ r)|

+
t−1

∑
s=0

|a(s+ r)
t−1

∏
k=s+1

a(k+ r)|
s−1

∑
u=s−r

|a(u+ r)||g(φ(s))− g(ϕ(s))|| 1
dK

t−1

∏
u=0

|a(u+ r)|

+
t−1

∑
s=0

(
t−1

∏
u=s+1

|a(u+ r))||a(s+ r)||φ(s)− g(φ(s))

− (ϕ(s)− g(ϕ(s))|| 1
dK

t−1

∏
u=0

|a(u+ r)|. (3.3.7)

Our aim is to simplify (3.3.7). First we remind the reader that due to the conditions
on g(x) and x−g(x), both functions share the same Lipschitz constant K. Moreover,
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since |a(t + r)| ≤ 1
2 , we have |a(t + r)| ≤ 1−|a(t + r)| and |a(t + r)|2 ≤ 1−|a(t +

r)|2. Next, we consider the first term of (3.3.7)

t−1

∑
s=t−r

|a(s+ r)||g(φ(s))− g(ϕ(s)|| 1
dK

t−1

∏
u=0

|a(u+ r)|

≤ sup
t≥0

K
dK

t−1

∑
s=t−r

|a(s+ r)||φ(s)−ϕ(s)|
s−1

∏
u=0

|a(u+ r)|
t−1

∏
u=s

|a(u+ r)|

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=t−r

|a(s+ r)|
t−1

∏
u=s

|a(u+ r)|

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=t−r

|a(s+ r)|
t−1

∏
u=s+1

|a(u+ r)|

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=t−r

(1−|a(s+ r)|)
t−1

∏
u=s+1

|a(u+ r)|

=
1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=t−r

�s

( t−1

∏
u=s

|a(u+ r)|
)

=
1
d
|φ −ϕ |K sup

t≥0
(1−

t−1

∏
u=t−r

|a(u+ r)|)

≤ 1
d
|φ −ϕ |K .

Next we turn our attention to the second term of (3.3.7).

t−1

∑
s=0

|a(s+ r)
t−1

∏
k=s+1

a(k+ r)|
s−1

∑
u=s−r

|a(u+ r)||g(φ(s))−g(ϕ(s))|| 1
dK

t−1

∏
l=0

|a(l+ r)|

≤ 1
d
|φ−ϕ |K sup

t≥0

t−1

∑
s=0

|a(s+ r)
t−1

∏
k=s+1

a(k+r)|
s−1

∑
u=s−r

|a(u+r)||g(φ(s))−g(ϕ(s))|| 1
dK

t−1

∏
l=u+1

|a(l+r)|

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

|a(s+ r)|
t−1

∏
k=s+1

a(k+ r)|
s−1

∑
u=s−r

(1−|a(u+ r)|)
t−1

∏
l=u+1

|a(l+ r)|

=
1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

|a(s+ r)|
t−1

∏
k=s+1

a(k+ r)|
s−1

∑
u=s−r

�s

( t−1

∏
l=u

|a(l+ r)|

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

|a(s+ r)|
t−1

∏
k=s+1

a(k+ r)|
t−1

∏
l=s

|a(l+ r)|

=
1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

|a(s+ r)|2(
t−1

∏
k=s+1

|a(k+ r)|)2

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

|(1−|a(s+ r)|2)(
t−1

∏
k=s+1

|a(k+ r)|)2

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

|�s(
t−1

∏
k=s

|a(k+ r)|)2

≤ 1
d
|φ −ϕ |K .
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Now we deal with the last term of (3.3.7).

t−1

∑
s=0

(
t−1

∏
u=s+1

|a(u+r))||a(s+r)||φ(s)−g(φ(s))−(ϕ(s)−g(ϕ(s))|| 1
dK

t−1

∏
u=0

|a(u+r)|

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

t−1

∏
u=s+1

|a(u+ r)||a(s+ r)|
t−1

∏
u=s

|a(u+ r)|

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

|a(s+ r)|2(
t−1

∏
u=s+1

|a(u+ r)|)2

≤ 1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

(1−|a(s+ r)|2)(
t−1

∏
u=s+1

|a(u+ r)|)2

=
1
d
|φ −ϕ |K sup

t≥0

t−1

∑
s=0

�s(
t−1

∏
u=s

|a(u+ r)|)2

=
1
d
|φ −ϕ |K(1− (

t−1

∏
u=0

|a(u+ r)|)2)

≤ 1
d
|φ −ϕ |K.

Substituting the above three expressions into (3.3.7) yields

|(Pφ)− (Pϕ)|K ≤ (
1
d
+

1
d
+

1
d
)|φ −ϕ |K,

which makes P a contraction for d > 3. Let (X , | · |) be the Banach space of bounded
sequences φ : [0,∞) → R. Since S is a subset of the Banach space X and S is
closed and bounded so S is complete. Thus, P : S → S has a unique fixed point. This
completes the proof.

We have the following corollary.

Corollary 3.1 ([140]). Let g be odd, increasing on [0,L], satisfy a Lipschitz con-
dition, and let x− g(x) be nondecreasing on [0,L]. Suppose that a(t + r) 	= 0 for
all t ∈ Z

+. If (3.3.5) hold with |a(t + r)| ≤ 1
2 , then the unique solution x(t,0,ψ)

of (3.3.2) with small initial function ψ(t) is bounded and its zero solution is stable.

Proof. Let P be defined by (3.3.4). Then by Theorem 3.3.1, P maps S into S. More-
over, by Proposition 3.2 P is a contraction on S and hence the unique solution
of (3.3.2) is bounded by Theorem 3.3.1. Left to show the zero solution is stable. Let
L be given by (3.3.6) and set 0 < ε < L. Choose δ = ε(1−α)

(1+K)∏t−1
s=0 |a(s+r)|∑−1

s=−r |a(s+r)| .

Then for |ψ |< δ , we have by (3.3.6) that
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|(Pφ)(t)| ≤
t−1

∏
s=0

|a(s+ r)|[||ψ ||+K||ψ ||]
−1

∑
s=−r

|a(s+ r)|+αL

≤ δ (1+K)
t−1

∏
s=0

|a(s+ r)|
−1

∑
s=−r

|a(s+ r)|+αL

≤ δ (1+K)
t−1

∏
s=0

|a(s+ r)|
−1

∑
s=−r

|a(s+ r)|+αε

≤ ε(1−α)+αε = ε.

Hence the zero solution is stable. This completes the proof.

We mention here that the requirement |a(t + s)| ≤ 1/2 was necessitated by the use
of the norm | · |K . However, in proving that P is a contraction we did not have to
involve K in the contraction constant. We have the following application.

Example 3.7 ([140]). Let a(t + r) 	= 0 such that |a(t + r)| ≤ 1
2 . Consider

x(t + 1) =−a(t)x3(t − r). (3.3.8)

In view of (3.3.2) we have

x(t + 1) = a(t + r)x(t)− a(t+ r)[x(t)− x3(t − r)]+�t

t−1

∑
s=t−r

a(s+ r)x3(s).

Let f (x) = x− x3. Then f (x) is increasing on (0, 1√
3
) and has a maximum of 2

3
√

3
at

x = 1√
3
. For any bounded initial sequence ψ on [−r,0] with |ψ(t)| ≤ 1√

3
we set

S =
{
φ : [−r,∞)→ R : φ0 = ψ , |φ(t)| ≤ 1√

3

}
.

For φ ∈ S, we define P : S → S by

(Pφ)(t) = ψ(t) if − r ≤ t ≤ 0,

and

(Pφ)(t) = ψ(0)
t−1

∏
s=0

a(s+ r)+
t−1

∑
s=t−r

a(s+ r)φ3(s)−
t−1

∏
u=0

a(u+ r)
−1

∑
s=−r

a(s+ r)ψ3(s)

−
t−1

∑
s=0

(
a(s+ r)

t−1

∏
k=s+1

a(k+ r)
s−1

∑
u=s−r

a(u+ r)φ3(u)
)

−
t−1

∑
s=0

(
t−1

∏
u=s+1

a(u+ r))a(s+ r)[φ(s)−φ3(s)], t ≥ 0.
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Let ψ be small enough so that

||ψ ||
t−1

∏
s=0

|a(s+ r)|+
√

3
9

t−1

∑
s=t−r

|a(s+ r)|+ ||ψ ||
t−1

∏
u=0

|a(u+ r)|
−1

∑
s=−r

|a(s+ r)|

+

√
3

9

t−1

∑
s=0

(
|a(s+ r)|

t−1

∏
k=s+1

|a(k+ r)|
s−1

∑
u=s−r

|a(u+ r)|
)

+
2

3
√

3

t−1

∑
s=0

(
t−1

∏
u=s+1

|a(u+ r))||a(s+ r)| ≤ 1√
3
.

Then

|(Pφ)(t)| ≤ 1√
3
.

Moreover, it is obvious that the Lipschitz constant k = 1. Let d be a positive constant
such that d > 3. Using

|φ |1 = sup
t≥0

|1
d

t−1

∏
s=0

|a(s+ r)φ |,

we have P is a contraction on S and hence all solutions of (3.3.8) are bounded and
its zero solution is stable.

3.4 Multiple and Functional Delays

In this section, we consider the multiple and functional delays difference equation

�x(n) =−
N

∑
j=1

a j(n)(x(n− τ j(n)), (3.4.1)

where a j : Z+ → R and τ j : Z+ → Z
+ with n− τ(n)→ ∞ as n → ∞. For each n0,

define m j(n0) = inf{s−τ j(s) : s ≥ n0},m(n0) =min{m j(n0) : 1 ≤ j ≤N}. In [87],
Islam and Yankson showed that the zero solution of the equation

x(n+ 1) = b(n)x(n)+ a(n)x(n− τ(n))

is asymptotically stable with one of the assumptions being that

n−1

∏
s=0

b(s)→ 0 as n → ∞. (3.4.2)
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However, as pointed out in [136], condition (3.4.2) cannot hold for (3.4.1) since
b(n) = 1, for all n ∈ Z. The results we obtain in this section overcome the require-
ment of (3.4.2). Let D(n0) denote the set of bounded sequences ψ : [m(n0),n0]→R

with the maximum norm || · ||. Also, let (B, || · ||) be the Banach space of bounded se-
quences ϕ : [m(n0),∞)→R with the maximum norm. Define the inverse of n−τi(n)
by gi(n) if it exists and the set

Q(n) =
N

∑
j=1

b(g j(n)),

where

N

∑
j=1

b(g j(n)) = 1−
N

∑
j=1

a(g j(n)).

For each (n0,ψ)∈ Z
+×D(n0), a solution of (3.4.1) through (n0,ψ) is a function x :

[m(n0),n0+α]→R for some positive constant α > 0 such that x(n) satisfies (3.4.1)
on [n0,n0 +α] and x(n) = ψ(n) for n ∈ [m(n0),n0]. We denote such a solution by
x(n) = x(n,n0,ψ). For a fixed n0, we define

||ψ ||= max{|ψ(n)| : m(n0)≤ n ≤ n0}.

We begin by rewriting (3.4.1) as

�x(n) =−
N

∑
j=1

a j(g j(n))x(n)+�n

N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s), (3.4.3)

where �n represents that the difference is with respect to n. But (3.4.3) implies that

x(n+ 1)− x(n) = −
N

∑
j=1

a j(g j(n))x(n)+�n

N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s)

x(n+ 1) =
(

1−
N

∑
j=1

a j(g j(n))
)

x(n)+�n

N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s),

which is equivalent to

x(n+ 1) =
N

∑
j=1

b j(g j(n))x(n)+�n

N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s). (3.4.4)

Suppose that Q(n) 	= 0 for all n ∈ Z
+ and the inverse function g j(n) of n− τ j(n)

exists. Then x(n) is a solution of (3.4.1) if and only if
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x(n) =
(

x(n0)−
N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))x(s)
) n−1

∏
s=n0

Q(s)

+
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s)

−
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))x(u)
)
, n ≥ n0.

To see this we have by the variation of parameters formula

x(n) = x(n0)
n−1

∏
s=n0

Q(s)

+
n−1

∑
k=0

( n−1

∏
s=k

Q(s)�k

N

∑
j=1

k−1

∑
s=k−τ j(k)

a j(g j(s))x(s)
)
. (3.4.5)

Using the summation by parts formula we obtain

n−1

∑
k=0

( n−1

∏
s=k

Q(s)�k

N

∑
j=1

k−1

∑
s=k−τ j(k)

a j(g j(s))x(s)
)

=
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))x(s)

−
n−1

∏
s=n0

Q(s)
N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))x(s)

−
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(k)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))x(u)
)
. (3.4.6)

Substituting (3.4.6) into (3.4.5) gives the desired result. We have the following the-
orem, which is due to Yankosn [166].

Theorem 3.4.1 ([166]). Suppose that the inverse function g j(n) of n− τ j(n) exists,
and assume there exists a constant α ∈ (0,1) such that

N

∑
j=1

n−1

∑
s=n−τ j(n)

|a j(g j(s))|

+
n−1

∑
s=n0

(
|[1−Q(s)]|

∣
∣
∣

n−1

∏
k=s+1

Q(k)
∣
∣
∣

N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)
≤ α. (3.4.7)
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Moreover, assume that there exists a positive constant M such that

∣
∣
∣

n−1

∏
s=n0

Q(s)
∣
∣
∣≤ M.

Then the zero solution of (3.4.1) is stable.

Proof. Let ε > 0 be given. Choose δ > 0 such that

(M+Mα)δ +αε ≤ ε.

Let ψ ∈ D(n0) such that | ψ(n) |≤ δ . Define S = {ϕ ∈ B : ϕ(n) = ψ(n) if n ∈
[m(n0),n0],‖ ϕ ‖≤ ε}. Then (S,‖ · ‖) is a complete metric space, where ‖ · ‖ is the
maximum norm.
Define the mapping P : S → S by

(Pϕ)(n) = ψ(n) for n ∈ [m(n0),n0],

and

(Pϕ)(n) =
(
ψ(n0)−

N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))ψ(s)
) n−1

∏
s=n0

Q(s)

+
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))ϕ(s)

−
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))ϕ(u)
)
.

(3.4.8)

We first show that P maps from S to S.

| (Pϕ)(n) | ≤ Mδ +Mαδ +
{ N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))

+
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(k)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))
}
‖ ϕ ‖

≤ (M +Mα)δ +αε
≤ ε.

Thus P maps from S into itself. We next show that Pϕ is continuous.
Let ϕ ,φ ∈ S. Given any ε > 0, choose δ = ε

α such that ||ϕ−φ ||< δ . Then,



3.4 Multiple and Functional Delays 113

||(Pϕ)− (Pφ)|| ≤
N

∑
j=1

n−1

∑
s=n−τ j(n)

|a j(g j(s))|||ϕ−φ ||

−
n−1

∑
s=n0

(
[1−Q(s)]

∣
∣
∣

n−1

∏
k=s+1

Q(s)
∣
∣
∣

N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)

× ||ϕ−φ ||
≤ α||ϕ−φ ||
≤ ε.

Thus showing that Pϕ is continuous. Finally we show that P is a contraction.

Let ϕ ,η ∈ S. Then

|(Pϕ)(n)− (Pη)(n)|

=
∣
∣∣
(
ψ(n0)−

N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))ψ(s)
) n−1

∏
s=n0

Q(s)

+
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))ϕ(s)

−
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))ϕ(u)
)
|

−
(
ψ(n0)−

N

∑
j=1

n0−1

∑
s=n0−τ j(n0)

a j(g j(s))ψ(s)
) n−1

∏
s=n0

Q(s)

−
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))η(s)

+
n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))η(u)
)∣∣
∣

≤
N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))‖ϕ−η‖

+
n−1

∑
s=n0

(
|[1−Q(s)]|

∣∣
∣

n−1

∏
k=s+1

Q(s)
∣∣
∣

N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)
‖ϕ−η‖

≤
{ N

∑
j=1

n−1

∑
s=n−τ j(n)

a j(g j(s))

+
n−1

∑
s=n0

(
|[1−Q(s)]|

∣
∣
∣

n−1

∏
k=s+1

Q(s)
∣
∣
∣

N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)}

‖ϕ−η‖

≤ α‖ϕ−η‖.
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This shows that P is a contraction. Thus, by the contraction mapping principle, P
has a unique fixed point in S which solves (3.4.3) and for any ϕ ∈ S, ‖Pϕ‖≤ ε. This
proves that the zero solution of (3.4.3) is stable.

In the next theorem we address the asymptotic stability of the zero solution.

Theorem 3.4.2 ([166]). Assume that the hypotheses of Theorem 3.4.1 hold. Also
assume that

n−1

∏
k=n0

Q(k)→ 0 as n → ∞. (3.4.9)

Then the zero solution of (3.4.3) is asymptotically stable.

Proof. We have already proved that the zero solution of (3.4.3) is stable. Let ψ ∈
D(n0) such that |ψ(n)| ≤ δ and define

S∗ =
{
ϕ ∈ B | ϕ(n) = ψ(n) if n ∈ [m(n0),n0], ||ϕ || ≤ ε and

ϕ(n)→ 0, as n → ∞
}
.

Define P : S∗ → S∗ by (3.4.8). From the proof of Theorem 3.4.1, the map P is a
contraction and for every ϕ ∈ S∗, ||Pϕ || ≤ ε.
Next we show that (Pϕ)(n) → 0 as n → ∞. The first term on the right-hand side
of (3.4.8) goes to zero because of condition (3.4.9). It is clear from (3.4.7) and the
fact that ϕ(n)→ 0 as n → ∞ that

N

∑
j=1

n−1

∑
s=n−τ j(n)

∣
∣
∣a j(g j(s))

∣
∣
∣|ϕ(s)| → 0 as n → ∞.

Now we show that the last term on the right-hand side of (3.4.8) goes to zero as
n → ∞. Since ϕ(n)→ 0 and n− τ j(n)→ ∞ as n → ∞, for each ε1 > 0, there exists
an N1 > n0 such that s ≥ N1 implies |ϕ(s− τ j(s))| < ε1 for j = 1,2,3, ...,N. Thus
for n ≥ N1, the last term I3 in (3.4.8) satisfies

|I3| =
∣
∣
∣

n−1

∑
s=n0

(
[1−Q(s)]

n−1

∏
k=s+1

Q(s)
N

∑
j=1

s−1

∑
u=s−τ j(s)

a j(g j(u))ϕ(u)
)∣∣
∣

≤
N1−1

∑
s=n0

(
|[1−Q(s)]|

∣
∣∣

n−1

∏
k=s+1

Q(s)
∣
∣∣

N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))||ϕ(u)|
)

+
n

∑
s=N1

(
|[1−Q(s)]|

∣
∣
∣

n−1

∏
k=s+1

Q(s)
∣
∣
∣

N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))||ϕ(u)|
)

≤ max
σ≥m(n0)

|ϕ(σ)|
N1−1

∑
s=n0

(
|[1−Q(s)]|

∣
∣
∣

n−1

∏
k=s+1

Q(s)
∣
∣
∣

N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|

+ ε1

n

∑
s=N1

(
|[1−Q(s)]|

∣
∣∣

n−1

∏
k=s+1

Q(s)
∣
∣∣

N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|
)
.
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By (3.4.9), there exists N2 > N1 such that n ≥ N2 implies

max
σ≥m(n0)

|ϕ(σ)|
N1−1

∑
s=n0

(
|[1−Q(s)]|

∣∣
∣

n−1

∏
k=s+1

Q(s)
∣∣
∣

N

∑
j=1

s−1

∑
u=s−τ j(s)

|a j(g j(u))|< ε1.

Applying (3.4.7) gives |I3| ≤ ε1 + ε1α < 2ε1. Thus, I3 → 0 as n → ∞. Hence
(Pϕ)(n)→ 0 as n → ∞, and so Pϕ ∈ S∗.
By the contraction mapping principle, P has a unique fixed point that solves (3.4.3)
and goes to zero as n goes to infinity. Therefore the zero solution of (3.4.3) is asymp-
totically stable.

3.5 Neutral Volterra Equations

The results of this section pertain to asymptotic stability of the zero solution of the
neutral type Volterra difference equation

x(n+ 1) = a(n)x(n)+ c(n)� x(n− g(n))+
n−1

∑
s=n−g(n)

k(n,s)h(x(s)) (3.5.1)

where a,c : Z→ R, k : Z×Z → R, h : Z → R, and g : Z → Z
+. Throughout this

section we assume that a(n) and c(n) are bounded whereas 0 ≤ g(n)≤ g0 for some
integer g0. We also assume that h(0) = 0 and

|h(x)− h(z)| ≤ L|x− z|.

For any integer n0 ≥ 0, we define Z0 to be the set of integers in [−g0,n0]. Let ψ(n) :
Z0 → R be an initial discrete bounded function.

Definition 3.5.1. The zero solution of (3.5.1) is Lyapunov stable if for any ε > 0
and any integer n0 ≥ 0 there exists a δ > 0 such that |ψ(n)| ≤ δ on Z0 imply
|x(n,n0,ψ)| ≤ ε for n ≥ n0.

Definition 3.5.2. The zero solution of (3.5.1) is asymptotically stable if it is Lya-
punov stable and if for any integer n0 ≥ 0 there exists r(n0)> 0 such that |ψ(n)| ≤
r(n0) on Z0 imply |x(n,n0,ψ)| → 0 as n → ∞.

Suppose that a(n) 	= 0 for all n ∈ Z. Then x(n) is a solution of the equation (3.5.1)
if and only if

x(n) = [x(n0)− c(n0 − 1)x(n0 − g(n0))]
n−1

∏
s=n0

a(s)+ c(n− 1)x(n− g(n))

+
n−1

∑
r=n0

[−x(r− g(r))Φ(r)+
r−1

∑
u=r−g(r)

k(r,u)h(x(u))]
n−1

∏
s=r+1

a(s),n ≥ n0
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where Φ(r) = c(r)− c(r− 1)a(r).
To see this, we first note that (3.5.1) is equivalent to

[�x(n)
n−1

∏
s=n0

a−1(s)] =

[

c(n)� x(n− g(n))+
n−1

∑
u=n−g(n)

k(n,u)h(x(u))

]
n

∏
s=n0

a−1(s).

Summing the above equation from n0 to n− 1 gives

n−1

∑
r=n0

[�x(r)
r−1

∏
s=n0

a−1(s)] =
r−1

∑
r=n0

[c(r)�x(r−g(r))+
r−1

∑
u=r−g(r)

k(r,u)h(x(u))]
r

∏
s=n0

a−1(s).

Or,

x(r)
r−1

∏
s=n0

a−1(s) |nn0
=

n−1

∑
r=n0

[
r−1

∑
r=n0

k(r,u)h(x(u))+ c(r)� x(r− g(r))]
r

∏
s=n0

a−1(s).

Thus,

x(n) = x(n0)
n−1

∏
s=n0

a(s)+
n−1

∑
r=n0

[
r−1

∑
r=n0

k(r,u)h(x(u))+c(r)�x(r−g(r))]
r

∏
s=n0

a−1(s)
n−1

∏
s=n0

a(s).

Performing a summation by parts yields,

n−1

∑
r=n0

[c(r)� x(r− g(r))
n−1

∏
s=r+1

a(s)] = [c(r− 1)x(r− g(r))
n−1

∏
s=r

a(s) |nn0

−
n−1

∑
r=n0

x(r− g(r))� [c(r− 1)
n−1

∏
s=r

a(s)]

= c(n− 1)x(n− g(n))
n−1

∏
s=n

a(s)− c(n0 − 1)x(n0 − g(n0))
n−1

∏
s=n0

a(s)

−
n−1

∑
r=n0

x(r− g(r))� [c(r− 1)
n−1

∏
s=r

a(s)].

Also,

n−1

∑
r=n0

[c(r)�x(r−g(r))
n−1

∏
s=r+1

a(s)] = c(n−1)x(n−g(n))−c(n0 −1)x(n0 −g(n0))
n−1

∏
s=n0

a(s)

−
n−1

∑
r=n0

x(r−g(r))� [c(r−1)
n−1

∏
s=r

a(s).
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A substitution into the above expression gives,

x(n) = x(n0)
n−1

∏
s=n0

a(s)+
n−1

∑
r=n0

[
r−1

∑
u=r−g(r)

k(r,u)h(x(u))]
n−1

∏
s=r+1

a(s)+ c(n− 1)x(n− g(n))

− c(n0 − 1)x(n0 − g(n0))
n−1

∏
s=n0

a(s)−
n−1

∑
r=n0

x(r− g(r))� [c(r− 1)
n−1

∏
s=r

a(s)]

= [xn0 − c(n0 − 1)x(n0 − g(n0)]
n−1

∏
s=r+1

a(s)+ c(n− 1)x(n− g(n))

+
n−1

∑
r=n0

(−x(r− g(r))� [c(r− 1)
n−1

∏
s=r

a(s)
r−1

∑
u=r−g(r)

k(r,u)h(x(u))]
n−1

∏
s=r+1

a(s).

Combining all expressions, we arrive at

x(n) = [xn0 − c(n0 − 1)x(n0 − g(n0)]
n−1

∏
s=r+1

a(s)+ c(n− 1)x(n− g(n))

+
n−1

∑
r=n0

[−x(r− g(r))Φ(r)+
r−1

∑
u=r−g(r)

k(r,u)h(x(u))]
n−1

∏
s=r+1

a(s)

= [xn0 − c(n0 − 1)x(n0 − g(n0)]
n−1

∏
s=r+1

a(s)+ c(n− 1)x(n− g(n))

+
n−1

∑
r=n0

(−x(r− g(r))Φ(r)+
r−1

∑
u=r−g(r)

k(r,u)h(x(u))]
n−1

∏
s=r+1

a(s), n ≥ n0.

This completes the process.
Define

S = {ϕ : Z→ R | ‖ϕ‖→ 0 as n → ∞},
where

‖ϕ‖= max{|ϕ(n)|, n ≥ n0}.
Then (S,‖ · ‖) is a Banach space. Let ψ : (−∞,n0]→ R be a given initial bounded
sequence. Define mapping H : S → S by

(Hϕ)(n) = ψ(n) for n ≤ n0,

and

(Hϕ)(n) = [ψ(n0)− c(n0 − 1)ψ(n0 − g(n0))]
n−1

∏
s=n0

a(s)+ c(n− 1)ϕ(n− g(n))

+
n−1

∑
r=n0

(−ϕ(r− g(r))Φ(r)+
r−1

∑
u=r−g(r)

k(r,u)h(ϕ(u))]
n−1

∏
s=r+1

a(s),n ≥ n0.

(3.5.2)
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It should cause no confusion to write

‖ψ‖= max{|ψ(n)|, n ≤ n0}.

We state Krasnoselskii’s fixed point theorem which will be used to prove the zero
solution of (3.5.1) is asymptotically stable. We emphasize that it is the only appro-
priate theorem to use for such equation since the inversion of a neutral equation
results in two mappings.

Theorem 3.5.1 (Krasnoselskii [97]). Let M be a closed convex nonempty subset of
a Banach space (B, || · ||). Suppose that C and B map M into B such that

[(iii)]
(i) C is continuous and CM is contained in a compact set,

(ii) B is a contraction mapping.

(iii) x,y ∈M implies Cx+By ∈M.

Then there exists z ∈M with z =Cz+Bz.

We are now ready to prove our main results. According to Theorem 3.5.1 we need
to construct two mappings, one is a contraction and the other is compact. Hence we
write the mapping H that is given by (3.5.2) as

(Hϕ)(n) = (Qϕ)(n)+ (Aϕ)(n),

where A,Q : S → S are given by

(Qϕ)(n) = [ψ(n0)− c(n0 − 1)ψ(n0 − g(n0))]
n−1

∏
s=n0

a(s)+ c(n− 1)ϕ(n− g(n))

(3.5.3)
and

(Aϕ)(n) =
n−1

∑
r=n0

[−ϕ(r− g(r))Ψ(r)+
r−1

∑
u=r−g(r)

k(r,u)h(ϕ(u))]
n−1

∏
s=r+1

a(s). (3.5.4)

Theorem 3.5.2. Assume the Lipschitz condition on h. Suppose that

n−1

∏
s=n0

a(s)→ 0 as n → ∞, (3.5.5)

n− g(n)→ ∞ as n → ∞, (3.5.6)

and there exist α ∈ (0,1) such that,

|c(n− 1)|+
n−1

∑
r=n0

[

|Φ(r)|+L
r−1

∑
u=r−g(r)

k(r,u)

]∣∣
∣∣
∣

n−1

∏
s=r+1

a(s)

∣
∣
∣∣
∣
≤ α,n ≥ n0. (3.5.7)

Then the zero solution of (3.5.1) is asymptotically stable.
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Proof. First we show the mapping H defined by (3.5.2) → 0 as n → ∞. The first
term on the right of (3.5.2) goes to zero because of condition (3.5.5). The second
term on the right goes to zero because of condition (3.5.6) and the fact that ϕ ∈ S.
Left to show that the last term

n−1

∑
r=n0

[

(−Φ(r)ϕ(r− g(r))+
r−1

∑
u=r−g(r)

k(r,u)h(ϕ(u))

]
n−1

∏
s=r+1

a(s)

on the right of (3.5.2) goes to zero as n → ∞. Let m > 0 such that for ϕ ∈ S, |ϕ(n−
g(n))|< σ for σ > 0. Also, since ϕ(n−g(n))→ 0 as n−g(n)→ ∞, there exists an
n2 > m such that for n > n2, |ϕ(n−g(n))|< ε2 for ε2 > 0. Due to condition (3.5.5)
there exists an n3 > n2 such that for n > n3 implies that

∣
∣
∣
∣
∣

n−1

∏
s=n2

a(s)

∣
∣
∣
∣
∣
<

ε2

ασ
.

Thus for n > n3, we have
∣∣
∣
∣
∣

n−1

∑
r=n0

[(−ϕ(r− g(r))Φ(r)+
r−1

∑
u=r−g(r)

k(r,u)h(ϕ(u))]
n−1

∏
s=r+1

a(s)

∣∣
∣
∣
∣

≤
n−1

∑
r=n0

∣
∣∣
∣
∣
[(−ϕ(r− g(r))Φ(r)+

r−1

∑
u=r−g(r)

k(r,u)h(ϕ(u))]
n−1

∏
s=r+1

a(s)

∣
∣∣
∣
∣

≤
n2−1

∑
r=n0

∣
∣
∣
∣∣
[(ϕ(r− g(r))Φ(r)+L

r−1

∑
u=r−g(r)

k(r,u)ϕ(u)]
n−1

∏
s=r+1

a(s)

∣
∣
∣
∣∣

+
n2−1

∑
r=n0

∣
∣
∣
∣
∣
[(ϕ(r− g(r))Φ(r)+L

r−1

∑
u=r−g(r)

k(r,u)h(ϕ(u))]
n−1

∏
s=r+1

a(s)

∣
∣
∣
∣
∣

≤ σ

[
n2−1

∑
r=n0

|Φ(r)|+L
r−1

∑
u=r−g(r)

k(r,u)

]∣∣∣
∣
∣

n−1

∏
s=r+1

a(s)

∣
∣∣
∣
∣
+ ε2α

≤ σ

[
n2−1

∑
r=n0

|Φ(r)|+L
r−1

∑
u=r−g(r)

k(r,u)

]∣∣
∣∣
∣

n2−1

∏
s=r+1

a(s)
n−1

∏
s=n2

a(s)

∣
∣
∣∣
∣
+ ε2α

≤ σα

∣
∣
∣
∣
∣

n−1

∏
s=n2

a(s)

∣
∣
∣
∣
∣
+ ε2α ≤ ε2 + ε2α.

Hence, (Qϕ)(n)+(Aϕ)(n) : S → S. Next we show that Q is a contraction. Let Q be
given by (3.5.3). Then ϕ ,ζ ∈ S, we have from (3.5.7) that

‖(Qϕ)− (Qζ )‖ ≤ |c(n− 1)|‖ϕ− ζ‖
≤ η‖ϕ− ζ‖, for some η ∈ (0,1).
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Now we are ready to prove the map A is compact. We note that the proof that is
given in [167] for the compactness of A is not correct since our map is defined on
an unbounded interval which rules out the use of Ascoli-Arzelà’s theorem. First we
show A is continuous. Let {ϕ l} be a sequence in S such that

lim
l→∞

||ϕ l −ϕ ||= 0.

Since S is closed, we have ϕ ∈ S. Then by the definition of A

||A(ϕ l)−A(ϕ)||= max
n∈Z

|A(ϕ l)−A(ϕ)|.

Thus, for ϕ ∈ S, we have by (3.5.4) that

|(Aϕ l)(n)− (Aϕ)(n)| ≤
n−1

∑
r=n0

|Φ(r)|
∣
∣
∣ϕ l(r−g(r))−ϕ(r−g(r))

∣
∣
∣

∣
∣
∣
∣∣

n−1

∏
s=r+1

a(s)

∣
∣
∣
∣∣

+
n−1

∑
r=n0

∣
∣∣
∣
∣

r−1

∑
u=r−g(r)

k(r,u)h(ϕ l (u))−
r−1

∑
u=r−g(r)

k(r,u)h(ϕ(u))

∣
∣∣
∣
∣

∣
∣∣
∣
∣

n−1

∏
s=r+1

a(s)

∣
∣∣
∣
∣

=
n−1

∑
r=n0

|Φ(r)|
∣
∣
∣ϕ l(r−g(r))−ϕ(r−g(r))

∣
∣
∣

∣
∣
∣
∣
∣

n−1

∏
s=r+1

a(s)

∣
∣
∣
∣
∣

+
n−1

∑
r=n0

r−1

∑
u=r−g(r)

|k(r,u)||(h(ϕ l(u))−h(ϕ(u)
)||

n−1

∏
s=r+1

a(s)|.

The continuity of ϕ and h along with Lebesgue dominated convergence theorem
imply that

lim
l→∞

max |A(ϕ l)(n)−A(ϕ)(n)|= 0, n ∈ Z.

This shows A is continuous. Finally, we have to show that AS is precompact. Let ϕ l

be a sequence in S. Then for each n ∈ Z, ϕ l is a bounded sequence of real numbers.
This shows that {ϕ l} has a convergent subsequence. By the diagonal process, we can
construct a convergent subsequence {ϕ lk} of {ϕ l} in S. Since A is continuous, we
know that {Aϕ l} has a convergent subsequence in AS. This means AS is precompact.
This completes the proof for compactness. Left to show the zero solution is stable.

Due to condition (3.5.5) there exists a positive constant ρ such that
∣
∣

n−1

∏
s=n0

a(s)
∣
∣≤ ρ .

Let ε > 0 be given. Choose δ > 0 such that

|1− c(n0− 1)|δρ +αε < ε.

Let ψ(n) be any given initial function such that |ψ(n)|< δ .



3.5 Neutral Volterra Equations 121

Define M= {ϕ ∈ S : ‖ϕ‖< ε}. Let ϕ ,ζ ∈M, then

‖(Qζ )− (Aϕ)‖ ≤
∣∣
∣∣∣
[ψ(n0)− c(n0 −1)ψ(n0 −g(n0))]

n−1

∏
s=n0

a(s)

∣∣
∣∣∣
+ |c(n−1)ζ (n−g(n))|

+
n−1

∑
r=n0)

∣∣∣
∣∣
ϕ(r−g(r))Φ(r)+

n−1

∑
r=n0

k(r,u)h(ϕ(u))
n−1

∏
s=r+1

a(s)

∣∣∣
∣∣

≤ |1− c(n0 −1)|δρ+ |c(n−1)|+
n−1

∑
r=n0

∣
∣∣∣
∣
Φ(r)+L

r−1

∑
u=r−g(r)

k(r,u)

∣
∣∣∣
∣

∣
∣∣∣
∣

n−1

∏
s=r+1

a(s)

∣
∣∣∣
∣
ε

≤ |1− c(n0 −1)|δρ+

{

|c(n−1)|+
n−1

∑
r=n0

∣
∣∣∣∣
Φ(r)+L

r−1

∑
u=r−g(r)

k(r,u)

∣
∣∣∣∣

∣
∣∣∣∣

n−1

∏
s=r+1

a(s)

∣
∣∣∣∣

}

ε

≤ |1− c(n0 −1)|δρ+αε
≤ ε .

It follows from the above work that all the conditions of the Krasnoselskii’s fixed
point theorem are satisfied on M. Thus there exists a fixed point z in M such that
z = Az+Qz. This completes the proof.

We end this section with the following example.

Example 3.8 ([167]). Consider the difference equation

x(n+ 1) =
1

1+ n
x(n)+

2n+1

16(n+ 1)!
� x(n− 2)+

n−1

∑
s=n−2

2n

8(1− n)!(s+ 2)
x(s),n ≥ 0.

(3.5.8)
In this example we take n0 = 0. We observe that

n−1

∏
s=0

1
1+ s

=
1
n!

→ 0 as n → ∞,

and hence condition (3.5.5) is satisfied. Condition (3.5.6) also satisfied since

n− 2 → ∞ as n → ∞.

Next we verify condition (3.5.7).

∣∣
∣
∣

2n

16n!

∣∣
∣
∣+

n−1

∑
r=0

[
2r+1

16(r+ 1)!
+

2r

16r!(r+ 1)!

] n−1

∏
s=r+1

1
1+ s

+
n−1

∑
r=0

r−1

∑
u=r−2

2r

8(1− r)!(u+ 2)

n−1

∏
s=r+1

1
1+ s

=

∣
∣
∣
∣

2n

16n!

∣
∣
∣
∣+

1
8n!

n−1

∑
r=0

2r− 1
16n!

n−1

∑
r=0

2r+
n−1

∑
r=0

2r

8n!
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≤
∣
∣∣
∣

2n

16n!

∣
∣∣
∣+

1
8n!

(2n − 1)+
1

8n!
(2n − 1)

≤
∣
∣
∣
∣

2n

16n!

∣
∣
∣
∣+

1
8n!

2n +
1

8n!
2n

≤ 1
8
+

1
4
+

1
4

=
5
8
< 1.

Hence condition (3.5.7) is satisfied. All the conditions of Theorem 3.5.2 are satisfied
and the zero solution of (3.5.1) is asymptotically stable.

3.6 Almost-Linear Volterra Equations

We consider the scalar Volterra difference equation

�x(n) = a(n)h(x(n))+
n−1

∑
k=0

c(n,k)g(x(k)), x(0) = x0, n ≥ 0. (3.6.1)

We assume that the functions h and g are continuous and that there exist positive
constants H,H∗,G, and G∗ such that

| h(x)−Hx |≤ H∗, (3.6.2)

and

| g(x)−Gx |≤ G∗. (3.6.3)

Equation (3.6.1) will be called Almost-Linear if (3.6.2) and (3.6.3) hold. In [53]
Burton introduced this concept of Almost-Linear equations for the continuous case
and studied certain important properties of the resolvent of a linear Volterra equa-
tion. The work of this section is found in [150]. Our objective here is to apply the
concept of Almost-Linear equations to Volterra difference equations and prove that
the solutions of these Volterra difference equations are also bounded if they sat-
isfy (3.6.2) and (3.6.3). Due to (3.6.2) and (3.6.3) contraction mapping principle
cannot be used since our mapping cannot be made into a contraction. Therefore, we
resort to the use of Krasnoselskii’s fixed point theorem. At the end of the section we
will construct a suitable Lyapunov functional and refer to Chapter 2 to deduce that
all solutions of (3.6.1) are bounded. It turns out that either method has advantages
and disadvantages.
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We begin with the following lemma which is essential to the construction of our
mappings. Consider the general difference equation

�x(n)−Ha(n)x(n) = f (n), x(0) = x0, n ≥ 0. (3.6.4)

Lemma 3.3. Suppose 1+Ha(n) 	= 0 for all n ∈ [0,∞)∩Z. Then x(n) is a solution
of equation (3.6.4) if and only if

x(n) = x(0)
n−1

∏
s=0

(1+Ha(s))+
n−1

∑
u=0

f (u)
n−1

∏
s=u+1

(1+Ha(s)). (3.6.5)

Proof. First we note that (3.6.4) is equivalent to

�
[n−1

∏
s=0

(1+Ha(s))−1x(n)
]
= f (n)

n

∏
s=0

(1+Ha(s))−1 (3.6.6)

Summing equation (3.6.6) from 0 to n− 1 and dividing both sides by

n−1

∏
s=0

(1+Ha(s))−1

gives (3.6.5).

Lemma 3.4. Suppose 1+Ha(n) 	= 0 for all n ∈ [0,∞)∩Z. Then x(n) is a solution
of equation (3.6.1) if and only if

x(n) = x(0)
n−1

∏
s=0

(1+Ha(s))+
n−1

∑
u=0

[
a(u)

(
−Hx(u)+ h(x(u))

)] n−1

∏
s=u+1

(1+Ha(s))

+
n−1

∑
u=0

u−1

∑
k=0

c(u,k)
[
g(x(k))−Gx(k)

] n−1

∏
s=u+1

(1+Ha(s))

+
n−1

∑
u=0

u−1

∑
k=0

c(u,k)Gx(k)
n−1

∏
s=u+1

(1+Ha(s)). (3.6.7)

Proof. Rewrite equation (3.6.1) as

�x(n)−Ha(n)x(n) = −Ha(n)x(n)+ a(n)h(x(n))

+
n−1

∑
k=0

c(n,k)
[
g(x(k))−Gx(k)

]
+

n−1

∑
k=0

c(n,k)Gx(k).
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If we let

f (n) = −Ha(n)x(n)+ a(n)h(x(n))+
n−1

∑
k=0

c(n,k)
[
g(x(k))−Gx(k)

]

+
n−1

∑
k=0

c(n,k)Gx(k),

then the results follow from Lemma 3.3.

We rely on the following theorem for the relative compactness criterion since the
Ascolli-Arzelà’s theorem cannot be utilized here due to the unbounded domain.

Theorem 3.6.1 ([7]). Let M be the space of all bounded continuous (vector-valued)
functions on [0,∞) and S ⊂ M. Then S is relatively compact in M if the following
conditions hold:

(i) S is bounded in M;
(ii) the functions in S are equicontinuous on any compact interval of [0,∞);

(iii) the functions in S are equiconvergent, that is, given ε > 0, there exists a T =
T (ε)> 0 such that ‖ φ(t)−φ(∞) ‖Rn< ε, for all t > T and all φ ∈ S.

We assume that

lim
n→∞

a(n) = 0, (3.6.8)

and for some positive constant L,

0 ≤
u−1

∑
k=0

|c(u,k)| ≤ L|a(u)| for all u ∈ [0,∞)∩Z, (3.6.9)

and

H|a(n)| ≤ 1− ∣∣1+Ha(n)
∣∣ for all n ∈ [0,∞)∩Z. (3.6.10)

Moreover, we assume

n−1

∑
u=0

∣
∣
∣

n−1

∏
s=u+1

(1+Ha(s))
∣
∣
∣

u−1

∑
k=0

G|c(u,k)| ≤ α < 1, (3.6.11)

and

n−1

∑
u=0

∣
∣
∣

n−1

∏
s=u+1

(1+Ha(s))
∣
∣
∣
[
|a(u)|H∗+

u−1

∑
k=0

G∗|c(u,k)|
]
≤ β <∞. (3.6.12)

Finally, choose a constant ρ > 0 such that

|x0|
∣
∣
∣

n−1

∏
s=0

(1+Ha(s))
∣
∣
∣+αρ+β ≤ ρ (3.6.13)
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for all n ≥ 0. Let S be the Banach space of bounded sequences with the maximum
norm. Let

M = {ψ ∈ S, ψ(0) = x0 : ||ψ || ≤ ρ}. (3.6.14)

Then M is a closed convex subset of S.
Define mappings A : M → S and B : M → M as follows.

(A φ)(n) =
n−1

∑
u=0

[
a(u)

(
−Hφ(u)+ h(φ(u))

)] n−1

∏
s=u+1

(1+Ha(s)) (3.6.15)

+
n−1

∑
u=0

u−1

∑
k=0

c(u,k)
[
g(φ(k))−Gφ(k)

] n−1

∏
s=u+1

(1+Ha(s)),

and

(Bφ)(n) = x(0)
n−1

∏
s=0

(1+Ha(s))

+
n−1

∑
u=0

u−1

∑
k=0

c(u,k)Gφ(k)
n−1

∏
s=u+1

(1+Ha(s)). (3.6.16)

We have the following lemma.

Lemma 3.5. Suppose (3.6.11) and (3.6.13) hold. The map B is a contraction from
M into M.

Proof. Let φ ∈ M. It follows from (3.6.11) and (3.6.13) that

|(Bφ)(n)| ≤ |x0|
∣∣
∣

n−1

∏
s=0

(1+Ha(s))
∣∣
∣+αρ ≤ ρ . (3.6.17)

Also, for φ ,ψ ∈ M, we obtain

|(Bφ)(n)− (Bψ)(n)| ≤
n−1

∑
u=0

∣
∣
∣

n−1

∏
s=u+1

(1+Ha(s))
∣
∣
∣

u−1

∑
k=0

G|c(u,k)|||φ −ψ ||

≤ α||φ −ψ ||.

Therefore proving that B is a contraction from M into M.

Lemma 3.6. The mapping A is a continuous mapping on M.

Proof. Let {φn} be any sequence of functions in M with ‖ φn −φ ‖→ 0 as n → ∞.
Then one can easily verify that

‖A φn −A φ ‖→ 0 as n → ∞.

Lemma 3.7. Suppose (3.6.2), (3.6.3), (3.6.8), (3.6.9), and (3.6.10) hold. ThenA (M)
is relatively compact.
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Proof. We use Theorem 3.6.1 to prove the relative compactness of A (M) by show-
ing that all three conditions of Theorem 3.6.1 hold. Thus to see that A (M) is uni-
formly bounded, we use conditions (3.6.2), (3.6.3), (3.6.9), and (3.6.10) to obtain

|(A φ)(n)| ≤ H∗+LG∗

H

n−1

∑
u=0

H|a(u)|
∣
∣
∣

n−1

∏
s=u+1

(1+Ha(s))
∣
∣
∣

≤ H∗+LG∗

H

n−1

∑
u=0

(
1− ∣∣1+Ha(u)

∣∣)
∣
∣∣

n−1

∏
s=u+1

(1+Ha(s))
∣
∣∣

=
H∗+LG∗

H

n−1

∑
u=0

�u

[n−1

∏
s=u

|(1+Ha(s))|
]

≤ H∗+LG∗

H

[
1−

n−1

∏
s=0

|(1+Ha(s))|
]

:= σ for all n ∈ [0,∞)∩Z.

This shows that A (M) is uniformly bounded.
To show equicontinuity of A (M), without loss of generality, we let n1 > n2 for
n1,n2 ∈ [0,∞)∩Z and use the notations

F(φ(u)) = a(u)[Hφ(u)− h(φ(u))],

and

J(φ(u)) =
u−1

∑
k=0

c(u,k)
[
g(φ(k))−Gφ(k)

]
.

Then, we may write

(A φ)(n) =
n−1

∑
u=0

n−1

∏
s=u+1

(1+Ha(s))
[
F(φ(u))+ J(φ(u))

]
. (3.6.18)

Hence we have

|(A φ)(n1)− (A φ)(n2)| =
∣
∣∣

n1−1

∑
u=0

n1−1

∏
s=u+1

(1+Ha(s))
[
F(φ(u))+ J(φ(u))

]

−
n2−1

∑
u=0

n2−1

∏
s=u+1

(1+Ha(s))
[
F(φ(u))+ J(φ(u))

]∣∣
∣

=
∣
∣∣

n2−1

∑
u=0

[ n1−1

∏
s=u+1

(1+Ha(s))

−
n2−1

∏
s=u+1

(1+Ha(s))
][

F(φ(u))+ J(φ(u))
]∣∣
∣

+
∣
∣
∣

n1−1

∑
u=n2

n1−1

∏
s=u+1

(1+Ha(s))
[
F(φ(u))+ J(φ(u))

]∣∣
∣
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=
n2−1

∑
u=0

∣
∣
∣

n2−1

∏
s=u+1

(1+Ha(s))

−
n1−1

∏
s=u+1

(1+Ha(s))
∣
∣
∣
∣
∣
∣F(φ(u))+ J(φ(u))

∣
∣
∣

+
n1−1

∑
u=n2

n1−1

∏
s=u+1

|(1+Ha(s))|
∣
∣
∣F(φ(u))+ J(φ(u))

∣
∣
∣

≤ σ
n2−1

∑
u=0

H|a(u)|
∣
∣
∣

n2−1

∏
s=u+1

|(1+Ha(s))|−
n1−1

∏
s=u+1

|(1+Ha(s))|
∣
∣
∣

+ σ
n1−1

∑
u=n2

H|a(u)|
n1−1

∏
s=u+1

|(1+Ha(s))|

≤ σ
n2−1

∑
u=0

[1−|1+Ha(u)|]
∣∣
∣

n2−1

∏
s=u+1

|(1+Ha(s))|−
n1−1

∏
s=u+1

|(1+Ha(s))|
∣∣
∣

+ σ
n1−1

∑
u=n2

[1−|1+Ha(u)|]
∣
∣∣

n1−1

∏
s=u+1

|(1+Ha(s))|
∣
∣∣

≤ σ
n2−1

∑
u=0

∣
∣∣�u

[ n2−1

∏
s=u

|(1+Ha(s))|−
n1−1

∏
s=u

|(1+Ha(s))|
]∣∣∣

+ σ
n1−1

∑
u=n2

�u

[ n1−1

∏
s=u

|(1+Ha(s))|
]

≤ σ
[
2− 2

n1−1

∏
s=n2

|(1+Ha(s))|−
n2−1

∏
s=0

|(1+Ha(s))|

+
n1−1

∏
s=0

|(1+Ha(s))|
]
→ 0 as n2 → n1.

This shows that A is equicontinuous.
To see that A is equiconvergent, we let

lim
n→∞

n−1

∑
u=0

n−1

∏
s=u

(1+Ha(s))
[
F(φ(u))+ J(φ(u))

]
=

∞

∑
u=0

∞

∏
s=u

(1+Ha(s))
[
F(φ(u))+ J(φ(u))

]
.
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Then we have

|(A φ)(∞)− (A φ)(n)| =
∣
∣∣

∞

∑
u=0

∞

∏
s=u+1

(1+Ha(s))
[
F(φ(u))+ J(φ(u))

]

−
n−1

∑
u=0

n−1

∏
s=u+1

(1+Ha(s))
[
F(φ(u))+ J(φ(u))

]∣∣
∣

=
∣
∣
∣

n−1

∑
u=0

[ ∞

∏
s=u+1

(1+Ha(s))

−
n−1

∏
s=u+1

(1+Ha(s))
][

F(φ(u))+ J(φ(u))
]∣∣
∣

+
∣
∣∣

∞

∑
u=n

∞

∏
s=u+1

(1+Ha(s))
[
F(φ(u))+ J(φ(u))

]∣∣∣

=
n−1

∑
u=0

∣∣
∣

n−1

∏
s=u+1

(1+Ha(s))

−
∞

∏
s=u+1

(1+Ha(s))
∣∣
∣
∣∣
∣F(φ(u))+ J(φ(u))

∣∣
∣

+ σ
∞

∑
u=n

�u

[ ∞

∏
s=u

|(1+Ha(s))|
]

≤ σ
n−1

∑
u=0

∣
∣∣�u

[n−1

∏
s=u

|(1+Ha(s))|−
∞

∏
s=u

|(1+Ha(s))|
]∣∣∣

+ σ [1−
∞

∏
s=n

|(1+Ha(s))|]

≤ σ
[
2− 2

∞

∏
s=n

|(1+Ha(s))|−
n−1

∏
s=0

|(1+Ha(s))|

+
∞

∏
s=0

|(1+Ha(s))|
]
→ 0 as n → ∞,

where we used (3.6.8) which yields limn→∞∏∞
s=n(1+Ha(s)) = 1.

Theorem 3.6.2. Assume (3.6.2), (3.6.3), and (3.6.8)–(3.6.13) hold. Then (3.6.1) has
a bounded solution.

Proof. For φ ,ψ ∈ M, we obtain

|(A φ)(n)+ (Bψ)(n)| ≤ |x0|
∣
∣∣

n−1

∏
s=0

(1+Ha(s))
∣
∣∣+αρ+β ≤ ρ .
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Thus, A φ+Bψ ∈M. Moreover, Lemmas 3.5–3.7 satisfy the requirements of Kras-
noselskii’s fixed point theorem and hence there exists a function x(n) ∈ M such that

x(n) =A x(n)+Bx(n).

This proves that (3.6.1) has a bounded solution x(n).

3.6.1 Application to Nonlinear Volterra Difference Equations

Consider the Volterra difference equation

�x(n) =− 1
2n h(x(n))+

n−1

∑
k=0

4k

4(2n)n!
g(x(k)), x(0) = x0, n ≥ 0, (3.6.19)

where the functions h and g satisfy conditions (3.6.2) and (3.6.3), respectively. Let
H,G,H∗, and G∗ be positive constants with G < 1 and H = 1. We choose ρ > 0
such that for any initial point x0, the inequality

|x0|
∣
∣
∣

n−1

∏
s=0

(1− 2−s)
∣
∣
∣+Gρ+(H∗+G∗)≤ ρ

holds. Then (3.6.19) has a bounded solution x(n) satisfying ||x|| ≤ ρ .
We let a(n) =− 1

2n and c(n,k) = 4k

4(2n)n! .

Thus,

n−1

∑
u=0

|c(n,u)| =
n−1

∑
u=0

4u

4(2n)n!

≤ 1
4(2n)n!

(
4n − 1

)

≤ 1
2n .

This shows that condition (3.6.9) is satisfied with L = 1. Condition (3.6.8) can be
easily verified. Moreover,

H|a(n)|= 2−n = 1− (1− 2−n)≤ 1−|1+Ha(n)|,

thus showing that condition (3.6.10) is satisfied. Next, we verify (3.6.11) as follows.

n−1

∑
u=0

|
n−1

∏
s=u+1

(1− 2−s)|G
u−1

∑
k=0

4k

4(2n)n!

≤ G
n−1

∑
u=0

1
2u = G(1− 1

2n )

≤ G < 1.
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Finally, we verify (3.6.12).

n−1

∑
u=0

∣
∣∣

n−1

∏
s=u+1

(1− 2−s)
∣
∣∣
[
2−uH∗+

u−1

∑
k=0

G∗ 4k

4(2n)n!

]

≤
n−1

∑
u=0

[
2−uH∗+G∗ 1

2u

]

= (H∗+G∗)
n−1

∑
u=0

1
2u

≤ (H∗+G∗)(1− 1
2n )< (H∗+G∗).

Thus, by Theorem 3.6.2, Equation (3.6.19) has a bounded solution.

3.7 Lyapunov Functionals or Fixed Points

In this section, we construct a Lyapunov functional and then refer to Theorem 2.1.1
to deduce boundedness on all solutions of (3.6.1). Then we will compare the results
via an example with Theorem 3.6.2. First we rewrite (3.6.1) as

x(n+ 1) = b(n)h(x(n))+
n−1

∑
s=0

C(n,s)g(x(s)), x(0) = x0, n ≥ 0, (3.7.1)

where b(n) = 1− a(n). Before we state the next theorem we note that as a conse-
quence of (3.6.2) and (3.6.3) we have, respectively, that

| h(x) |≤ H | x |+H∗, (3.7.2)

and

|g(x)| ≤ G | x |+G∗. (3.7.3)

Theorem 3.7.1. Suppose (3.7.2) and (3.7.3) hold and for some α ∈ (0,1), we have
that

H|b(n)|+G
∞

∑
j=n+1

|C( j,n)|− 1 ≤−α. (3.7.4)

Also, assume that
n

∑
s=0

∞

∑
j=n

|C( j,s)| < ∞ (3.7.5)

and
�s|C( j,s)| ≥ 0 (3.7.6)

then solutions of (3.7.1) are bounded.
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Proof. Define

V (n,x(·)) = |x(n)|+
n−1

∑
s=0

∞

∑
j=n

|C( j,s)||g(x(s))|. (3.7.7)

Then along solutions of (3.7.1), we have

�V (n,x(·)) = |x(n+ 1)|− |x(n)|+
n

∑
s=0

∞

∑
j=n+1

|C( j,s)||g(x(s))|

−
n−1

∑
s=0

∞

∑
j=n

|C( j,s)||g(x(s))|

=
∣
∣b(n)h(x(n))+

n−1

∑
s=0

C(n,s)g(x(s))
∣
∣

−|x(n)|+
n

∑
s=0

∞

∑
j=n+1

|C( j,s)||g(x(s))|

−
n−1

∑
s=0

∞

∑
j=n

|C( j,s)||g(x(s))|

≤
[
H|b(n)|+G

∞

∑
j=n+1

|C( j,n)|− 1
]
|x(n)|+M

≤ −α|x(n)|+M,

where M = H∗|b(n)|+G∗
∞

∑
j=n+1

|C( j,n)|.

Let ϕ(n,s) =
∞

∑
j=n

|C( j,s)|. Then, all the conditions of Theorem 2.1.1 are satisfied

which implies that all solutions of (3.7.1) are bounded.
We note that Theorem 2.1.1 gives conditions under which all solutions of (3.7.1) are
bounded, unlike Theorem 3.6.2 from which one can only conclude the existence of
a bounded solution.

Next, we use the results of Section 3.6.1 to compare the conditions of Theorem 2.1.1
to those of Theorem 3.6.2. Let a(n),G, and H be given as in Theorem 3.7.1 and
consider condition (3.7.4) for n ≥ 0. Then,
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H|b(n)|+G
∞

∑
j=n+1

|C( j,n)|− 1 = |1− 1
2n |− 1+

∞

∑
j=n+1

4n

4(2 j) j!

= − 1
2n + 4n−1[

∞

∑
n=0

1
(2n)n!

−
n

∑
j=0

1
(2 j) j!

]

= − 1
2n + 4n−1[√e−

n

∑
j=0

1
(2 j) j!

]
. (3.7.8)

Next we perform the following calculations by using n! > 2n for n ≥ 4.

−
n

∑
j=0

1
(2 j) j!

= −3
2
− 1

8
− 1

48
−

n

∑
j=4

1
(2 j) j!

≥ −3
2
− 1

8
− 1

48
−

n

∑
j=4

1
(4 j)

= −3
2
− 1

8
− 1

48
+

1
4
+

1
42 +

1
43 −

n

∑
j=1

1
(4 j)

= −78
48

+
21
43 − 1

4

(1− (1/4)n

1− 1/4

)
. (3.7.9)

Thus, substitution of (3.7.9) into (3.7.8) yields,

H|b(n)|+G
∞

∑
j=n+1

|C( j,n)|− 1 ≥ − 1
2n + 4n−1[√e− 78

48
+

21
43 − 1

4

(1− (1/4)n

1− 1/4

)]

> 0, for n = 3.

This shows that condition (3.7.4) does not hold for all n ≥ 0. Hence, Theorem 2.1.1
gives no information regarding the solutions and yet Theorem 3.6.2 implies the ex-
istence of at least one bounded solution.

3.8 Delay Functional Difference Equations

We consider a functional infinite delay difference equation and use fixed point the-
ory to obtain necessary and sufficient conditions for the asymptotic stability of its
zero solution. We will apply the results to nonlinear Volterra difference equations.
Let R = (−∞,∞), Z+ = [0,∞) and Z

− = (−∞,0], respectively. We concentrate on
the delay functional difference equation

x(t + 1) = a(t)x(t)+ g(t,xt), (3.8.1)
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where a : Z+ → R, and g : Z+×C , is continuous with C being the Banach space
of bounded functions φ : Z− → R with the maximum norm || · ||. If xt ∈ C , then
xt(s) = x(t + s) for s ∈ Z

−.
We will use fixed point theory to obtain necessary and sufficient conditions for the
asymptotic stability of the zero solution of (3.8.1). Throughout this section we as-
sume g(t,0) = 0 so that x = 0 is a solution of (3.8.1). For every positive β > 0, we
define the set

C (β ) = {φ ∈ C : ||φ || ≤ β}.
Given a function ψ : Z→ Z, we define ||ψ ||[s,t] = max{|ψ(u)| : s ≤ u ≤ t}. More-
over, for D > 0 a sequence x : (−∞,D]→ R is called a solution of (3.8.1) through
(t0,φ) ∈ Z

+×C if xt0 = φ and x satisfies (3.8.1) on [t0,D]. Due to the importance
of the next result, we summarize it in the following lemma.

Lemma 3.8. Suppose that a(t) 	= 0 for all t ∈ Z
+. Then x(t) is a solution of equa-

tion (3.8.1) if and only if

x(t) = φ(t0)
t−1

∏
s=t0

a(s)+
t−1

∑
s=t0

t−1

∏
u=s+1

a(u) g(s,xs) for t ≥ t0. (3.8.2)

The proof of lemma 3.8 follows easily from the variation of parameters formula
given in Chapter 1, and hence we omit.
In the preparation for our next theorem we let L > 0 be a constant, δ0 ≥ 0 and t0 ≥ 0.
Let φ ∈ C (δ0) be fixed and set

S =
{

x : Z→ R : xt0 = φ , xt ∈ C (L) for t ≥ t0,x(t)→ 0, as t → ∞
}
.

Then, S is a complete metric space with metric

ρ(x,y) = max
t≥t0

|x(t)− y(t)|.

Define the mapping P : S → S by
(
Px)(t) = φ(t) if t ≤ t0

and

(
Px
)
(t) = φ(t0)

t−1

∏
s=t0

a(s)+
t−1

∑
s=t0

t−1

∏
u=s+1

a(u) g(s,xs) for t ≥ t0.

It is clear that for ϕ ∈ S, Pϕ is continuous.
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Theorem 3.8.1 ([146]). Assume the existence of positive constants α,L, and a se-
quence b : Z+ → [0,∞) such that the following conditions hold:

(i) a(t) 	= 0 for all t ∈ Z
+.

(ii)
t−1

∑
s=0

∣
∣∣

t−1

∏
u=s+1

a(u)
∣
∣∣b(s)≤ α < 1 for all t ∈ Z

+.

(iii) |g(t,φ)− g(t,ψ)| ≤ b(t)||φ −ψ || for all φ ,ψ ∈ C (L).

(iv) For each ε > 0 and t1 ≥ 0, there exists a t2 > t1 such that for t > t2,xt ∈ C (L)
imply

|g(t,xt)| ≤ b(t)
(
ε+ ||x||[t1,t−1]

)
.

Then the zero solution of (3.8.1) is asymptotically stable if and only if

(v) |
t−1

∏
s=0

a(s)| → 0 as t → ∞.

Proof. Suppose (v) hold and let K = max
t≥t0

|
t−1

∏
s=t0

a(s)|. Then K > 0 due to (i). Choose

δ0 > 0 such that δ0K +αL ≤ L. Then for x(t) ∈ S and for fixed φ ∈ C (δ0) we have

|(Px
)
(t)| ≤ |φ(t0)| |

t−1

∏
s=t0

a(s)|+
t−1

∑
s=t0

|
t−1

∏
u=s+1

a(u)|b(s)||xs||

≤ δ0K +αL ≤ L, for t ≥ t0.

Hence,
(
Px
) ∈ C (L). Next we show that

(
Px
)
(t) → 0 as t → ∞. Let x ∈ S. As a

consequence of x(t) → 0 as t → ∞, there exists t1 > t0 such that |x(t)| < ε for all
t ≥ t1. Moreover, since |x(t)| ≤ L, for all t ∈ Z, by (iv) there is a t2 > t1 such that for
t > t2 we have

|g(t,xt)| ≤ b(t)
(
ε+ ||x||[t1,t−1]

)
.

Thus, for t ≥ t2, we have

∣∣
t−1

∑
s=t0

t−1

∏
u=s+1

a(u) g(s,xs)
∣∣ ≤

t2−1

∑
s=t0

|
t−1

∏
u=s+1

a(u)| |g(s,xs)|

+
t−1

∑
s=t2

|
t−1

∏
u=s+1

a(u)| |g(s,xs)|

≤
t2−1

∑
s=t0

|
t−1

∏
u=s+1

a(u)| ||xs||

+
t−1

∑
s=t2

|
t−1

∏
u=s+1

a(u)| b(s)
(
ε+ ||x||[t1,s−1]

)
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≤
t2−1

∑
s=t0

|
t2−1

∏
u=s+1

a(u)||
t−1

∏
u=t2

a(u)| ||xs||+ 2αε

≤ αL|
t−1

∏
u=t2

a(u)|+ 2αε.

By (v), there exists t3 > t2 such that

δ0|
t−1

∏
u=s+1

a(u)|+L|
t−1

∏
u=t2

a(u)|< ε.

Thus, for t ≥ t3, we have

|(Px
)
(t)| ≤ δ0|

t−1

∏
u=s+1

a(u)|+αL|
t−1

∏
u=t2

a(u)|+ 2αε < 3ε.

Hence,
(
Px
)
(t)→ 0 as t → ∞. Left to show that

(
Pϕ
)
(t) is a contraction under the

maximum norm. Let ζ ,η ∈ S. Then

∣
∣∣(Pζ )(t)− (Pη)(t)

∣
∣∣ ≤

t−1

∑
s=t0

|
t−1

∏
u=s+1

a(u)| |g(s,ζs)− g(s,ηs)|

≤
t−1

∑
s=t0

|
t−1

∏
u=s+1

a(u)|b(s) |ζs −ηs|

≤ αρ(ζ ,η).

Or,
ρ(Pζ ,Pη)≤ αρ(ζ ,η).

Thus, by the contraction mapping principle P has a unique fixed point in S which
solves (3.8.1) with φ ∈ C (δ0) and x(t) = x(t, t0,φ)→ 0 as t → ∞. We are left with
showing that the zero solution of (3.8.1) is stable. Let ε > 0,ε < L be given and
chose 0 < δ < ε so that δK +αε < ε. By the choice of δ we have |x(t0)| < ε.
Let t∗ ≥ t0 + 1 be such that |x(t∗)| ≥ ε and |x(s)| < ε for t0 ≤ s ≤ t∗ − 1. If x(t) =
x(t, t0,φ) is a solution for (3.8.1) with ||φ ||< δ , then

|x(t∗)| ≤ δ |
t∗−1

∏
s=t0

a(s)|+
t∗−1

∑
s=t0

|
t∗−1

∏
u=s+1

a(u)|b(s)||xs||

≤ δK +αε < ε,

which contradict the definition of t∗. Thus |x(t)|< ε for all t ≥ t0 and hence the zero
solution of (3.8.1) is asymptotically stable.
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Conversely, suppose (v) does not hold. Then by (i) there exists a sequence {tn} such
that for positive constant q,

(
|
tn−1

∏
u=0

a(u)|
)−1

= q, for n = 1,2,3, · · · .

Now by (ii) we have that

tn−1

∑
s=0

|
tn−1

∏
u=s+1

a(u)|b(s)≤ α,

from which we get that

(
|
tn−1

∏
u=0

a(u)|
)−1 tn−1

∑
s=0

|
tn−1

∏
u=s+1

a(u)|b(s)≤ α
(
|
tn−1

∏
u=0

a(u)|
)−1

.

This simplifies to
tn−1

∑
s=0

(
|

s

∏
u=0

a(u)|
)−1

b(s)≤ αq.

Thus the sequence {
tn−1

∑
s=0

(
|

s

∏
u=0

a(u)|
)−1

b(s)} is bounded and hence there is a conver-

gent subsequence. Thus, for the sake of keeping a simple notation we may assume

lim
n→∞

tn−1

∑
s=0

(
|

s

∏
u=0

a(u)|
)−1

b(s) = ω

for some positive constant ω . Next we may choose a positive integer ñ large enough
so that

tn−1

∑
s=tñ

(
|

s

∏
u=0

a(u)|
)−1

b(s)<
1−α
2K2

for all n ≥ ñ.
Consider the solution x(t, tñ,φ) with φ(s) = δ0 for s ≤ ñ. Then, |x(t)| ≤ L for all
n ≥ ñ and

|x(t)| ≤ δ0 |
t−1

∏
s=tñ

a(s)|+
t−1

∑
s=tñ

|
t−1

∏
u=s+1

a(u)|b(s)||xs||

≤ δ0K +α||xt ||.

This implies

|x(t)| ≤ δ0K
1−α

, for all t ≥ tñ.
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On the other hand, for n ≥ ñ, we also have

|x(t)| ≥ δ0 |
tn−1

∏
s=tñ

a(s)|−
t−1

∑
s=tñ

|
tn−1

∏
u=s+1

a(u)|b(s)||xs||

≥ δ0 |
tn−1

∏
s=tñ

a(s)|− δ0K
1−α

|
tn−1

∏
u=0

a(u)|
t−1

∑
s=tñ

|
( s

∏
u=0

a(u)|
)−1

b(s)

= δ0 |
tn−1

∏
s=tñ

a(s)|− δ0K
1−α

|
tñ−1

∏
u=0

a(s)|
tn−1

∏
u=tñ

a(s)|
t−1

∑
s=tñ

|
( s

∏
u=0

a(u)|
)−1

b(s)

≥ |
tn−1

∏
s=tñ

a(s)|
(
δ0 − δ0K

1−α
K

t−1

∑
s=tñ

(
|

s

∏
u=0

a(u)|
)−1

b(s)
)

≥ |
tn−1

∏
s=tñ

a(s)|(δ0 − δ0K
1−α

K
1−α
2K2 ) =

δ0

2
|
tn−1

∏
s=tñ

a(s)|

=
δ0

2
|
tn−1

∏
u=0

a(s)|
(
|
tñ−1

∏
u=0

a(s)|
)−1 → δ0

2
q/q 	= 0 as n → ∞.

Hence, condition (v) is necessary. This completes the proof.

Now we apply the results of Theorem 3.8.1 to the nonlinear Volterra infinite delay
equation

x(t + 1) = a(t)x(t)+
t−1

∑
s=−∞

G(t,s,x(s)) (3.8.3)

where a : Z+ →R and G : Ω×R→R,Ω = {(t,s)∈Z
2 : t ≥ s} and G is continuous

in x. The next theorem gives necessary and sufficient conditions for the stability of
the zero solution of (3.8.3).

Theorem 3.8.2. Assume the existence of positive constants α,L, and a sequence
p : Ω → R

+ such that the following conditions hold:

(I) a(t) 	= 0 for all t ∈ Z
+,

(II) max
t∈Z+

t−1

∑
s=0

|
t−1

∏
u=s+1

a(u)|
s−1

∑
τ=0

p(s,τ)≤ α < 1 for all t ∈ Z
+,

(III) If |x|, |y| ≤ L, then

|G(t,s,x)−G(t,s,y)| ≤ p(t,s)|x− y|

and G(t,s,0) = 0 for all (t,s) ∈Ω ,

(IV) For each ε > 0 and t1 ≥ 0, there exists a t2 > t1 such that for t ≥ t2, implies
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t1−1

∑
s=−∞

p(t,s)≤ ε
t−1

∑
s=−∞

p(t,s).

Then the zero solution of (3.8.3) is asymptotically stable if and only if

(V) |
t−1

∏
s=0

a(s)| → 0 as t → ∞.

Proof. We only need to verify that (iii) and (iv) of Theorem 3.8.1 hold. First we
remark that due to condition (III) we have that |G(t,s,x)| ≤ p(t,s)L. Equation (3.8.3)
can be put in the form of Equation (3.8.1) by letting

g(t,φ) =
−1

∑
s=−∞

G(t, t + s,φ(s)).

To verify (iii) we let b(t) =
t−1

∑
s=−∞

p(t,s) and then for any functions φ ,ϕ ∈ C (L), we

have

|g(t,φ)− g(t,ϕ)| ≤
∣
∣
∣

−1

∑
s=−∞

G(t, t + s,φ(s))−
−1

∑
s=−∞

G(t, t + s,ϕ(s))
∣
∣
∣

≤
−1

∑
s=−∞

p(t, t + s) ||φ −ϕ ||

= b(t)||φ −ϕ ||.

Next we verify (iv). Let ε > 0 and t1 ≥ 0 be given. By (IV) there exists a t2 > t1 such
that

L
t1−1

∑
s=−∞

p(t,s)< ε
t−1

∑
s=−∞

p(t,s) for all t > t2.

Let xt ∈ C (L) and for t > t2 we have

|g(t,xt)| ≤
t1−1

∑
s=−∞

|G(t,s,x(s))|+
t−1

∑
s=t1

|G(t,s,x(s))|

≤
t1−1

∑
s=−∞

Lp(t,s)+
t−1

∑
s=t1

p(t,s)|x(s)|

≤ ε
t−1

∑
s=−∞

p(t,s)+
t−1

∑
s=t1

p(t,s)||x||[t1,t−1]

≤ b(t)
(
ε+ ||x||[t1,t−1]

)
.

This implies that (iv) is satisfied, and hence by Theorem 3.8.1, the zero solution
of (3.8.3) is asymptotically stable if and only if (V) holds.
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We end the paper with the following example.

Example 3.9. Consider the difference equation

x(t + 1) =
1
2t x(t)+

t−1

∑
s=−∞

2s−tx(s),n ≥ 0. (3.8.4)

In this example we take t0 = 0. We make sure all conditions of Theorem 3.8.2 are
satisfied. We observe that a(t) = 1

2t , and G(t,s,x) = 2s−tx(s). Thus,

t−1

∏
s=0

1
2s → 0 as t → ∞,

and hence condition(V) is satisfied. It is clear that p(t,s) = 2s−t . Next we make sure
condition (II) is satisfied.

max
t∈Z+

t−1

∑
s=0

∣∣
t−1

∏
u=s+1

a(u)
∣∣

s−1

∑
τ=0

p(s,τ)

= max
t∈Z+

t−1

∑
s=0

∣
∣

t−1

∏
u=s+1

2−u
∣
∣

s−1

∑
τ=0

2s−τ

≤ max
t∈Z+

t−1

∑
s=0

∣
∣

t−1

∏
u=s+1

2−u(1− 2−s)

≤ max
t∈Z+

t−1

∑
s=0

21−t(1− 2−s)

≤ 21−t [−21−t + 2+
41−t

3
− 4/3]

≤ 2/3, for all t ∈ Z
+.

Hence (II) is satisfied. Left to show (IV) is satisfied. Let t1 ≥ 0 be given. Then

t1−1

∑
s=−∞

p(t,s) =
t1−1

∑
s=−∞

2−t+s

= 2−t [2t1 − 2−∞]

≤ 2t−t2

= 2−t2
t−1

∑
s=−∞

2−t+s

≤ ε
t−1

∑
s=−∞

p(t,s), t ≥ t2 ≥ t1.

Thus all the conditions of Theorem 3.8.2 are satisfied and the zero solution of (3.8.4)
is asymptotically stable.
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3.9 Volterra Summation Equations

We shift our focus to different types of Volterra difference equations, which we
call Volterra summation equations. Volterra integral equations were first studied by
Miller [123], in which he proposed the extension of the use of Lyapunov functionals
in Volterra integro-differential equations to integral equations. Years later, Burton
took upon himself such a tedious task and successfully used Lyapunov functionals
in the qualitative analysis of Integral equations. For such a reference we mention
the papers [28, 29, 30]. Since then, the study of integral equations has been fully
developed, unlike its counterpart, Volterra summation equations. All the results of
this section are new and not published anywhere else. Volterra summation equations
play major role in the qualitative analysis of neutral difference equations. To see this
we consider the neutral difference equation

�(D(n,xn)
)
= f (n,xn), n ∈ Z

+. (3.9.1)

If
D(n,0) = f (n,0) = 0,

then one would have to ask that the zero solution of D(n,0) = 0 be stable in order
for the zero solution of (3.9.1) to be stable. On the other hand, if we are interested
in studying boundedness of solutions of (3.9.1), one would have to require that the
solutions of

D(n,xn) = h(n),

be bounded for a suitable function h(n) with suitable conditions. Equation (3.9.1) is
typified by neutral equations of the form

�
(

x(n)+
n−1

∑
s=n−h

b(s+ h)x(s)
)
= f (n,xn). (3.9.2)

Equation (3.9.2) will be studied in detail in Chapter 6. For more on neutral difference
equations, we refer to [183]. Most of this section’s materials can be found in [142].
We consider the vector Volterra summation equation

x(t) = a(t)−
t−1

∑
s=0

C(t,s)x(s), t ∈ Z
+ (3.9.3)

where x and a are k-vectors, k ≥ 1, while C is an k×k matrix. To clear any confusion,
we note that the summation term in (3.9.3) could have been started at any initial time
t0 ≥ 0. We will use the resolvent equation that was established on time scales in [2],
combined with Lyapunov functionals and fixed point theory to obtain boundedness
of solutions and their asymptotic behaviors. One of the major difficulties when using
a suitable Lyapunov functional on Volterra summation equation is relating the solu-
tion back to that Lyapunov functional. For x ∈R, |x| denotes the Euclidean norm of
x. For any k× k matrix A, define the norm of A by |A|= sup{|Ax| : |x| ≤ 1}. Let X
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denote the set of functions φ : [0,n]→ R and ‖φ‖ = max{|φ(s)| : 0 ≤ s ≤ n}. We
have the following theorem regarding the existence of solutions of (3.9.3).

Theorem 3.9.1. Assume the existence of two positive constants K and α ∈ (0,1)
such that

|a(t)| ≤ K, and max
t≥0

t−1

∑
s=0

|C(t,s)| ≤ α, (3.9.4)

then there is a unique bounded solution of (3.9.3).

Proof. Define a mapping D : X → X , by

(Dφ)(t) = a(t)−
t−1

∑
s=t0

C(t,s)φ(s).

It is clear that (X ,‖ ·‖) is a Banach space. Now for φ ∈ X , with ‖φ‖ ≤ q for positive
constant q we have that

‖(Dφ)‖ ≤ K +αq.

Thus D : X → X . Left to show that D defines a contraction mapping on X . Let
φ ,ϕ ∈ X . Then

‖(Dφ)− (Dϕ)‖ ≤ max
t≥0

t−1

∑
s=0

|C(t,s)|‖φ −ϕ‖

≤ α‖φ −ϕ‖.

Hence, D is a contraction, and by the contraction mapping principle it has a unique
solution in X that solves (3.9.3). This completes the proof.

We have the following theorem in which we use a Lyapunov functional to drive
solutions to zero.

Theorem 3.9.2. Assume the existence of two positive constants K1 and α ∈ (0,1)
such that

∞

∑
t=0

|a(t)| ≤ K1, and
∞

∑
u=1

|C(u+ t, t)| ≤ α, (3.9.5)

then every solution x(t) of (3.9.3) satisfies x ∈ l1[0,∞) and x(t)→ 0, as t → ∞.

Proof. Using (3.9.3) we obtain

|x(t)|− |a(t)| ≤
t−1

∑
s=0

|C(t,s)||x(s)|. (3.9.6)

Define the Lyapunov functional V by

V (t) =
t−1

∑
s=0

∞

∑
u=t−s

|C(u+ s,s)||x(s)|.
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Moreover,

�V (t) = |x(t)|
∞

∑
u=1

|C(u+ s,s)|−
t−1

∑
s=0

|C(t,s)||x(s)|.

A substitution of (3.9.6) in the above expression yields

�V (t) ≤ |x(t)|
∞

∑
u=1

|C(u+ s,s)|− |x(t)|+ |a(t)|

= (α− 1)|x(t)|+ |a(t)|.

Summing the above inequality from 0 to t − 1 gives

0 ≤V (t)≤V (0)+ (α− 1)
t−1

∑
s=0

|x(s)|+
t−1

∑
s=0

|a(s)|.

Since V (0) = 0 and α ∈ (0,1) we arrive at

t−1

∑
s=0

|x(s)| ≤ 1
1−α

t−1

∑
s=0

|a(s)|.

Letting t → ∞ we have

∞

∑
t=0

|x(t)| ≤ 1
1−α

∞

∑
t=0

|a(t)| ≤ 1
1−α

K1,

which is automatically implied that x(t)→ 0, as t → ∞. This completes the proof.

We note that the use of Lyapunov functional has an advantage here due to the ab-
sence of a linear term in our original equation (3.9.3) which is necessary for the use
of variation of parameters. The next result is about the existence of a unique periodic
solution for the Volterra summation equation

x(t) = a(t)−
t−1

∑
s=−∞

C(t,s)x(s), t ∈ Z (3.9.7)

where x and a are k-vectors, k ≥ 1, while C is a k× k matrix.

Theorem 3.9.3. Assume the existence of a constant α ∈ (0,1) such that

max
t≥0

t−1

∑
s=−∞

|C(t,s)| ≤ α,

and there is a positive integer T such that

a(t +T ) = a(t) and C(t +T,s+T) =C(t,s),

then there is a unique periodic solution of (3.9.7).
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Proof. Let X be the space of periodic sequences of period T . Then, it is clear that
(X ,‖ · ‖) is a Banach space. Now for φ ∈ X , we define D : X → X by

(Dφ)(t) = a(t)−
t−1

∑
s=−∞

C(t,s)φ(s).

It is clear that D is periodic of period T. That is (Dφ)(t+T ) = (Dφ)(t). Left to show
that D defines a contraction mapping on X . Let φ ,ϕ ∈ X . Then

‖(Dφ)− (Dϕ)‖ ≤ max
t∈Z

t−1

∑
s=−∞

|C(t,s)|‖φ −ϕ‖

≤ α‖φ −ϕ‖.

Hence, D is a contraction and by the contraction mapping principle it has a unique
solution in X that solves (3.9.7). This completes the proof.

In the next theorem we return to (3.9.3) and rewrite it so we can show it has an
asymptotically periodic solution. Thus we rewrite (3.9.3) in the form

x(t) = a(t)−
t−1

∑
s=−∞

C(t,s)x(s)+
−1

∑
s=−∞

C(t,s)x(s). (3.9.8)

Note that the term a(t)−∑t−1
s=−∞C(t,s)x(s) produced a unique periodic solution as

we have seen in Theorem 3.9.3 and this indicates that for any bounded x, the term
∑−1

s=−∞C(t,s)x(s)→ 0, t → ∞. Hence it is intuitive to expect a solution x of (3.9.8)
to be written as x = y+ z where y is periodic and z → 0, as t → ∞. We need to
properly define our spaces. Let

PT = {φ : Z→ R
k | φ(t +T ) = φ(t)}

and
Q = {q : Z+ →R

k | q(t)→ 0, as t → ∞}.
We have the following theorem.

Theorem 3.9.4. Suppose for φ ∈ PT ,

−1

∑
s=−∞

C(t,s)φ(s)→ 0, as t → ∞

and for each z ∈ Q,
t−1

∑
s=0

C(t,s)z(s)→ 0, as t → ∞.
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Assume the existence of a constant α ∈ (0,1) such that

max
t≥0

t−1

∑
s=0

|C(t,s)| ≤ α,

and there is a positive constant integer T such that a(t +T ) = a(t) and C(t +T,s+
T ) =C(t,s). Then (3.9.3) has a solution x(t) = y(t)+ z(t) where φ ∈ PT and z ∈ Q.

Proof. Let X be the space of sequences φ :Z+ →R
k such that φ ∈X implies there is

a y ∈ PT and z ∈ Q with φ = y+ z. We claim that
(
X ,‖ ·‖) is a Banach space, where

‖ · ‖ is the maximum norm. To see this, we let {yn + zn} be a Cauchy sequence in(
X ,‖ · ‖). Given an ε > 0 there is an N such that for n,m ≥ N we have

|yn(t)+ zn(t)− ym(t)− zm(t)|< ε
2
.

Since z ∈ Q we have for each ε > 0 and each z ∈ Q there is an L > 0 such that t ≥ L,
implies that |z(t)| ≤ ε/4. Fix n,m ≥ N and for the ε/4 find L > 0 such that t ≥ L
implies that

|yn(t)− zm(t)|− |zn(t)− ym(t)| ≤ |yn(t)+ zn(t)− ym(t)− zm(t)|< ε
2

so that t ≥ L implies that

|yn(t)− ym(t)| ≤ ε
2
+ |zn(t)|+ |zm(t)|< ε,

for all t since yn,ym ∈ PT . Since this holds for every pair with n ≥ N and m ≥ N, it
follows that {yn} is a Cauchy sequence. The same argument can be repeated for the
sequence {yn}. This completes the proof of the claim.
Let φ = y+ z where y ∈ PT and z ∈ Q. Define the mapping H : X → X by

(Hφ)(t) = a(t)−
t−1

∑
s=0

C(t,s)x(s).

Then H is a contraction mapping by Theorem 3.9.3. Now we observe that

(Hφ)(t) = a(t)−
t−1

∑
s=0

C(t,s)φ(s)

= a(t)−
t−1

∑
s=0

C(t,s)(y(s)+ z(s))

=
[
a(t)−

t−1

∑
s=−∞

C(t,s)y(s)
]

+
[ −1

∑
s=−∞

C(t,s)y(s)−
t−1

∑
s=0

C(t,s)z(s)
]

:= Bφ +Aφ .
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This defines mappings A and B on X . Note that B : X → PT ⊂ X and A : X → Q ⊂
X . Since H defines a contraction mapping, it has a unique fixed point in X that
solves (3.9.3). The proof is complete.

Next we discuss the equation for Volterra summation equation (3.9.3) and use vari-
ation of parameters to obtain variety of different results concerning the solutions.
Adivar and Raffoul [2] were the first to establish the existence of the resolvent of
an equation that is similar to (3.9.3) on time scales. Due to the importance of such
results, we will state them as they were presented in [2] on time scales. We then set
the time scale equal to Z to suit our equation (3.9.3). For a good reference on time
scales we refer the reader to the famous book by Martin Bohner and Al Peterson
[18]. A time scale, denoted T, is a nonempty closed subset of real numbers. The set
T

κ is derived from the time scale T as follows: if T has a left-scattered maximum
M, then T

κ = T−{M}, otherwise T
κ = T. The delta derivative f Δ of a function

f : T→ R, defined at a point t ∈ T
κ by

f Δ (t) := lim
s→t

f (σ(t))− f (s)
σ(t)− s

, where s → t, s ∈ T\{σ(t)} , (3.9.9)

In (3.9.9), σ : T → T is the forward jump operator defined by σ(t) :=
inf{s∈T : s > t}. Hereafter, we denote by μ(t) the step size function μ : T → R

defined by μ(t) := σ(t)− t. A point t ∈ T is said to be right dense (right scattered)
if μ(t) = 0 (μ(t) > 0). A point is said to be left dense if sup{s ∈ T : s < t} = t.
We note that when the time scale is the set on integers, T = Z, then σ(t) = t + 1
and μ(t) = 1. where t0 ∈ T

κ is fixed and the functions a : IT → R, C : IT× IT → R.
Based on the results of [2], we have the following. Given a linear system of integral
equations of the form

x(t) = a(t)−
∫ t

t0
C(t,s)x(s)Δs, t0 ∈ T

κ (3.9.10)

the corresponding resolvent equation associated with C(t,s) is given by

R(t,s) =C(t,s)−
∫ t

σ(s)
R(t,u)C(u,s)Δu. (3.9.11)

If C is scalar valued, then so is R. If C is n× n matrix, then so is R. Moreover, the
solution of (3.9.10) in terms of R is given by the variation of parameters formula

x(t) = a(t)−
∫ t

t0
R(t,u)a(u)Δu. (3.9.12)

It should cause no difficulties to take the initial time t0 = 0. With this in mind, if we
set T= Z, then equations (3.9.10) and (3.9.11) become

x(t) = a(t)−
t−1

∑
s=0

C(t,s)x(s), (3.9.13)
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and

R(t,s) =C(t,s)−
t−1

∑
u=s+1

R(t,u)C(u,s), (3.9.14)

respectively. If C is scalar valued, then so is R. If C is n× n matrix, then so is R.
Moreover, the solution of (3.9.13) in terms of R is given by

x(t) = a(t)−
t−1

∑
s=0

R(t,s)a(s). (3.9.15)

For the remainder of this section we denote the vector space of bounded sequences
φ : Z+ → R

k by BC . The next theorem is an extension of Perron’s Theorem for
integral equation over the reals to an arbitrary time scale. Its proof can be found in
[2]. Only for the next theorem we define B to be the space of bounded continuous
functions on IT = [t0,∞)T endowed with the supremum norm, ||.||B, given by

|| f ||B := sup
t∈IT

| f (t)|.

One can easily see that (B, ||.||B) is a Banach space.

Theorem 3.9.5 ([2]). Let C : IT × IT → R be continuous real valued function on
≤ t0 ≤ s ≤ t < ∞. If

∫ t
t0

R(t,s) f (s)Δs ∈BC for each f ∈BC , then there exists a

positive constant K such that
∫ t

t0
|R(t,s)| Δs < K, for all t ∈ IT.

Just for the record, we restate Theorem 3.9.5 for T= Z

Theorem 3.9.6. Let C :Z+×Z
+ →R be real valued sequence on 0≤ t0 ≤ s≤ t <∞.

If ∑t−1
s=0 R(t,s) f (s) ∈BC for each f ∈BC , then there exists a positive constant K

such that ∑t−1
s=0 |R(t,s)|< K, for all t ∈ Z

+.

Theorem 3.9.7. Suppose R(t,s) satisfies (3.9.14) and that a ∈BC . Then every so-
lution x(t) of (3.9.13) is bounded if and only if

max
t∈Z+

t−1

∑
s=0

|R(t,s)|< ∞ (3.9.16)

holds.

Proof. Suppose (3.9.16) holds. Then, using (3.9.15), it is trivial to show that x(t) is
bounded. If x(t) and a(t) are bounded, then from (3.9.15), we have

t−1

∑
s=0

|R(t,s)||a(s)| ≤ γ

for some positive constant γ and the proof follows from Theorem 3.9.6.

The intuitive idea here is that for C(t,s) well behaved then the solution of (3.9.13)
follows a(t).
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Theorem 3.9.8. Let C be a k × k matrix. Assume the existence of a constant α ∈
(0,1) such that

max
t∈Z+

t−1

∑
s=0

|C(t,s)| ≤ α, (3.9.17)

(i) If a ∈BC so is the solution x of (3.9.13); hence, (3.9.17) holds.

(ii) Suppose, in addition, that for each T > 0 we have
T

∑
s=0

|C(t,s)| → 0 as t →∞. If

a(t)→ 0 as t → ∞, then so does x(t) and
t−1

∑
s=0

R(t,s)a(s).

(iii)
t−1

∑
s=0

|R(t,s)| ≤ α
1−α

.

Proof. The proof of (i) is the same as the proof of Theorem 3.9.1. For the proof of
(ii) we define the set

M = {φ : Z+ →R
k | |φ(t)| → 0, as t → ∞}.

For φ ∈ M, define the mapping Q by

(
Qφ
)
(t) = a(t)−

t−1

∑
s=0

C(t,s)φ(s).

Then
∣
∣(Qφ

)
(t)
∣
∣≤ |a(t)|+

t−1

∑
s=0

|C(t,s)φ(s)|.

We already know that a(t)→ 0 as t → ∞. Given an ε > 0 and φ ∈ M, find T such
that |φ(t)|< ε if t ≥ T and find d with |φ(t)| ≤ d for all t ≥ T. For this fixed T , find

η > T such that t ≥ η implies that
T−1

∑
s=0

|C(t,s)| ≤ ε
d
. Then t ≥ η implies that

t−1

∑
s=0

|C(t,s)| ≤
T−1

∑
s=0

|C(t,s)|
t−1

∑
s=T

|C(t,s)|

≤ (dε)/d+αε < 2ε.

Thus, Q : M → M and the fixed point satisfies x(t)→ 0, as t → ∞, for every vector
sequence a ∈ M. Using (3.9.15) we have

t−1

∑
s=0

R(t,s)a(s) = a(t)− x(t)→ 0, as t → ∞.

This completes the proof of (ii). Using (3.9.14) and (3.9.17) we have by changing
of order of summations
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t−1

∑
s=0

|R(t,s)| ≤
t−1

∑
s=0

|C(t,s)|+
t−1

∑
s=0

t−1

∑
u=s+1

|R(t,u)||C(u,s)|

=
t−1

∑
s=0

|C(t,s)|+
t−1

∑
u=0

|R(t,u)|
u−1

∑
s=0

|C(u,s)|

≤ α+α
t−1

∑
u=0

|R(t,u)|.

Therefore,

(1−α)
t−1

∑
s=0

|R(t,s)| ≤ α.

That is,

max
t∈Z+

t−1

∑
s=0

|R(t,s)| ≤ α
1−α

.

Example 3.10. Suppose there is a sequence r : Z+ → (0,1], with r(t) ↓ 0 with

max
t∈Z+

t−1

∑
s=0

|C(t,s)|(r(s)/r(t)) ≤ α, α ∈ (0,1) (3.9.18)

and
|a(t)| ≤ kr(t) (3.9.19)

for some positive constant k. Then the unique solution x(t) of (3.9.13) is bounded

and goes to zero as t approaches infinity. Moreover,
t−1

∑
s=0

R(t,s)a(s)→ 0, as t → ∞.

Proof. Let

M = {φ : [0,∞)→ R
k | |φ |r ≤ max

t∈Z+

|φ(t)|
|r(t)| < ∞}.

Then
(
M , | · |r

)
is a Banach space. For φ ∈M , define the mapping Q by

(
Qφ
)
(t) = a(t)−

t−1

∑
s=0

C(t,s)φ(s).

Then,

∣∣(Qφ
)
(t)
∣∣/r(t) ≤ |a(t)|/r(t)+

t−1

∑
s=0

|C(t,s)|(r(s)/r(t))|φ(s)|/r(s)

≤ k+ |φ |r
t−1

∑
s=0

|C(t,s)|(r(s)/r(t))

≤ k+α|φ |r,
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which shows that Qφ ∈M . Let φ ,η ∈M , then we readily have that
∣
∣
∣
(
Qφ
)
(t)
)− (Qη

)
(t)
∣
∣
∣/r(t)≤ α|φ −η |r

and so we have Q is a contraction on M and therefore it has a unique fixed point
x(t) in M that solves (3.9.13). Moreover, maxt∈Z+

|x(t)|
|r(t)| < ∞, implies that |x(t)| ≤

k∗r(t) → 0, as t → ∞. Also by (3.9.19) we have |a(t)| → 0, as t → ∞ and hence
using (3.9.15) we have

t−1

∑
s=0

|R(t,s)a(s)| ≤ |a(t)|+ |x(t)| → 0, as t → ∞.

This completes the proof.

The next theorem relates the kernel to a kernel of convolution type. Also, unlike
Theorem 3.9.2 we only ask for boundedness on a(t).

Theorem 3.9.9. Assume the existence of a constant α ∈ (0,1) such that

∞

∑
u=1

|C(u+ t, t)| ≤ α, (3.9.20)

and let a(t) be a bounded sequence. Suppose there is a decreasing sequence Φ :
[0,∞)→ (0,∞) with Φ ∈ l1[0,∞), and

Φ(t − s)≥
∞

∑
u=t−s

|C(u+ s,s)|. (3.9.21)

If in addition there exists a positive constant K with

∞

∑
u=t−s

|C(u+ s,s)| ≥ K|C(t,s)|, (3.9.22)

then the unique solution x(t) of (3.9.13) is bounded and

max
t∈Z+

t−1

∑
s=0

|R(t,s)|< ∞.

Proof. Define the Lyapunov functional V by

V (t) =
t−1

∑
s=0

∞

∑
u=t−s

|C(u+ s,s)||x(s)|.

Then along the solutions of (3.9.13) we have

�V (t) = |x(t)|
∞

∑
u=1

|C(u+ s,s)|−
t−1

∑
s=0

|C(t,s)||x(s)|.
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Using (3.9.13) we arrive at

|x(t)|− |a(t)| ≤
t−1

∑
s=0

|C(t,s)||x(s)|.

Hence,

�V (t) ≤ |x(t)|
∞

∑
u=1

|C(u+ s,s)|− |x(t)|+ |a(t)|

= (α− 1)|x(t)|+ |a(t)| :=−δ |x(t)|+ |a(t)|,

for δ > 0. Replace t with s in the above expression and then multiply both sides by
Φ(t − s) for 0 ≤ s ≤ t < ∞.

�sV (s)Φ(t − s)≤−δ |x(s)|Φ(t − s)+ |a(s)|Φ(t − s). (3.9.23)

Suppose there is a t > 0 satisfying

V (t) = max
0≤s≤t−1

V (s+ 1).

Then summing from 0 to t −1 followed with summation by parts and by noting that
V (0) = 0 we arrive at

t−1

∑
s=0

�sV (s)Φ(t − s) = V (s)Φ(t − s)
∣∣t
s=0 −

t−1

∑
s=0

V (s+ 1)�sΦ(t − s)

≥ V (t)Φ(0)−V(0)Φ(t)−V(t)
t−1

∑
s=0

�sΦ(t − s)

= V (t)Φ(0)−V(t)[Φ(0)−Φ(t)]

= V (t)Φ(t). (3.9.24)

Hence (3.9.24) combined with (3.9.23) and making use of (3.9.22) yield

V (t)Φ(t) ≤
t−1

∑
s=0

�sV (s)Φ(t − s)

≤ −δ
t−1

∑
s=0

Φ(t − s)|x(s)|+
t−1

∑
s=0

Φ(t − s)|a(s)|

≤ −δ
t−1

∑
s=0

∞

∑
u=t−s

|C(u+ s,s)||x(s)|+
t−1

∑
s=0

Φ(t − s)|a(s)|

≤ −δV (t)+ ||a||q,



3.9 Volterra Summation Equations 151

where ||a|| is the maximum norm of a and q is a positive constant that we get from
|Φ| ∈ l1[0,∞). The above inequality implies that

V (t)≤ ||a||q
Φ(t)+ δ

,

and V (t) is bounded. Using (3.9.22) in V (t) gives

V (t)≥ K
t−1

∑
s=0

|C(t,s)||x(s)| ≥ K[|x(t)|− |a(t)|],

from which we conclude x(t) is bounded since both V (t) and a(t) are bounded.

Now from (3.9.15) we have that
t−1

∑
s=0

|R(t,s)a(s)| ≤ |x(t)|+ |a(t)| and hence ∑t−1
s=0 |

R(t,s)a(s)| is bounded and by Theorem 3.9.6, we have that max
t∈Z+

t−1

∑
s=0

|R(t,s)| < ∞.

This completes the proof.

For Theorem 3.9.10 we assume (3.9.13) is scalar.

Theorem 3.9.10. Assume the existence of constants α, β ∈ (0,1) such that

∞

∑
u=1

|C(u+ t, t)| ≤ α, (3.9.25)

and

max
t∈Z+

t−1

∑
s=0

|C(t,s)| ≤ β . (3.9.26)

If a ∈ l2[0,∞) so is the solution x of (3.9.13).

Proof. Define the Lyapunov functional V by

V (t) =
t−1

∑
s=0

∞

∑
u=t−s

|C(u+ s,s)|x2(s).

Then along the solutions of (3.9.13) we have that

�V (t) = x2(t)
∞

∑
u=1

|C(u+ s,s)|−
t−1

∑
s=0

|C(t,s)|x2(s).

Squaring both sides of (3.9.13) gives

x2(t) = a2(t)− 2a(t)
t−1

∑
s=0

C(t,s)x(s)+
( t−1

∑
s=0

C(t,s)x(s)
)2

≤ 2
(

a2(t)+
( t−1

∑
s=0

C(t,s)x(s)
)2
)
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≤ 2a2(t)+ 2
t−1

∑
s=0

|C(t,s)|
t−1

∑
s=0

|C(t,s)|x2(s)

≤ 2a2(t)+ 2β
t−1

∑
s=0

|C(t,s)|x2(s).

This implies that

−
t−1

∑
s=0

|C(t,s)|x2(s)≤ a2(t)/β − x2(t)/(2β ).

Substituting into �V gives

�V (t) = x2(t)
∞

∑
u=1

|C(u+ s,s)|−
t−1

∑
s=0

|C(t,s)|x2(s)

≤ a2(t)/β − (1/(2β )−α)x2(t).

Summing the above inequality for 0 to n− 1 yields

0 ≤V (t)−V(0)≤ 1/β
n−1

∑
s=0

a2(s)− (1/(2β )−α
)n−1

∑
s=0

x2(s),

and hence the results. This completes the proof.

3.10 The Need for Large Contraction

So far, we have been successful in using fixed point theorems including the contrac-
tion mapping principles in obtaining different results concerning functional differ-
ence equations. It is naive to believe that every map can be defined so that it is a
contraction, even with the strictest conditions. For example, consider

f (x) = x− x3

then for x,y ∈R we have that

| f (x)− f (y)|= |x− x3 − y+ y3| ≤ |x− y|
(

1− x2 + y2

2

)

and the contraction constant tends to one as x2 + y2 → 0. As a consequence, the
regular contraction mapping principle failed to produce any results. This forces us
to look for other alternative, namely the concept of Large Contraction. We will re-
state the contraction mapping principle and Krasnoselskii’s fixed point theorems in
which the regular contraction is replaced with Large Contraction. Then based on the
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notion of Large Contraction, we introduce two theorems to obtain boundedness and
periodicity results in which Large Contraction is substituted for regular contraction.

Definition 3.10.1. Let (M ,d) be a metric space and B: M → M . The map B is
said to be large contraction if φ ,ϕ ∈ M , with φ 	= ϕ then d(Bφ ,Bϕ) ≤ d(φ ,ϕ)
and if for all ε > 0, there exists a δ ∈ (0,1) such that

[φ ,ϕ ∈M ,d(φ ,ϕ) ≥ ε]⇒ d(Bφ ,Bϕ)≤ δd(φ ,ϕ).

The next theorems are alternative to the regular Contraction Mapping Principle and
Krasnoselskii’s fixed point theorem in which we substitute Large Contraction for
regular contraction. The proofs of the two theorems and the statement of Defini-
tion 3.10.1 can be found in [24].

Theorem 3.10.1. Let (M ,ρ) be a complete metric space and B be a large contrac-
tion. Suppose there are an x ∈M and an L > 0 such that ρ(x,Bnx)≤ L for all n ≥ .
Then B has a unique fixed point in M .

Theorem 3.10.2. Let M be a bounded convex nonempty subset of a Banach space
(B,‖ · ‖). Suppose that A and B map M into B such that

i. x,y ∈M implies Ax+By ∈M ;
ii. A is compact and continuous;

iii. B is a large contraction mapping.

Then there exists z ∈M with z = Az+Bz.

Next, we consider the completely nonlinear difference equation

x(t + 1) = a(t)x(t)5 + p(t), (3.10.1)

where a, p : Z→R. To invert our equation, we create a linear term by letting

H(x) =−x+ x5. (3.10.2)

It would become clearer later on that H(x) is not a contraction and, as a conse-
quence, the Contraction Mapping Principle cannot be used. Instead, we will show
that H is a Large Contraction and hence our mapping, to be constructed, will define a
Large Contraction. Then we use Theorem 3.10.2 and show that solutions of (3.10.1)
are bounded. This allows us to put (3.10.1) in the form

x(t + 1)− a(t)x(t) = a(t)H(x(t))+ p(t). (3.10.3)

Let x(0) = x0, then by the variation of parameters formula, one can easily show that
for t ≥ 0, x(t) is a solution of (3.10.3) if and only if

x(t) = x0

t−1

∏
s=0

a(s)+
t−1

∑
s=0

(
a(s)H(x(s))

t−1

∏
u=s+1

a(u)
)
+

t−1

∑
s=0

(
p(s)

t−1

∏
u=s+1

a(u)
)
. (3.10.4)
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We begin with the following lemma.

Lemma 3.9. Let ‖ · ‖ denote the maximum norm. If

M=
{
φ : Z→R | φ(0) = φ0, and ‖φ‖ ≤ 5−1/4

}
,

then the mapping H defined by (3.10.2) is a large contraction on the set M.

Proof. For any reals a and b we have the following inequalities

0 ≤ (a+ b)4 = a4 + b4 + ab(4a2+ 6ab+ 4b2),

and

−ab(a2 + ab+ b2)≤ a4 + b4

4
+

a2b2

2
≤ a4 + b4

2
.

If x,y ∈M with x 	= y, then x(t)4 + y(t)4 < 1. Hence, we arrive at

|H(u)−H(v)| ≤ |u− v|
∣
∣
∣
∣1−

(
u5 − v5

u− v

)∣∣
∣
∣

= |u− v|{1− u4− v4 − uv(u2+ uv+ v2)
}

≤ |u− v|
{

1−
(
u4 + v4

)

2

}

≤ |u− v|, (3.10.5)

where we use the notations u = x(t) and v = y(t) for brevity. Now, we are ready to
show that H is a large contraction on M. For a given ε ∈ (0,1), suppose x,y ∈M

with ‖x− y‖ ≥ ε . There are two cases:

a. ε
2
≤ |x(t)− y(t)| for some t ∈ Z,

or
b.

|x(t)− y(t)| ≤ ε
2

for some t ∈ Z.

If ε/2 ≤ |x(t)− y(t)| for some t ∈ Z, then

(ε/2)4 ≤ |x(t)− y(t)|4 ≤ 8(x(t)4 + y(t)4),

or

x(t)4 + y(t)4 ≥ ε4

27 .

For all such t, we get by (3.10.5) that

|H(x(t))−H(y(t))| ≤ |x(t)− y(t)|
(

1− ε4

27

)
.
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On the other hand, if |x(t)−y(t)| ≤ ε/2 for some t ∈ Z, then along with (3.10.5) we
find

|H(x(t))−H(y(t))| ≤ |x(t)− y(t)| ≤ 1
2
‖x− y‖.

Hence, in both cases we have

|H(x(t))−H(y(t))| ≤ min

{
1− ε4

27 ,
1
2

}
‖x− y‖.

Thus, H is a large contraction on the set M with δ = min
{

1− ε4/27,1/2
}
. The

proof is complete.

Remark 3.6. It is clear from inequality (3.10.5) that (u4+v4)/2→ 0, the contraction
constant approaches one. Hence, H(x) does not define a contraction mapping as we
have claimed before.

For ψ ∈M, we define the map B : M→M by

(Bψ)(t) = ψ0

t−1

∏
s=0

a(s)+
t−1

∑
s=0

(
a(s)H(ψ(s))

t−1

∏
u=s+1

a(u)
)
+

t−1

∑
s=0

(
p(s)

t−1

∏
u=s+1

a(u)
)
.

(3.10.6)

Lemma 3.10. Assume for all t ∈ Z

|ψ0|
∣
∣
∣

t−1

∏
s=0

a(s)
∣
∣
∣+4(5−5/4)

t−1

∑
s=0

∣
∣
∣

t−1

∏
u=s

a(u)
∣
∣
∣+

t−1

∑
s=0

(∣∣
∣p(s)

t−1

∏
u=s+1

a(u)
∣
∣
∣
)
≤ 5−1/4. (3.10.7)

If H is a large contraction on M, then so is the mapping B.

Proof. It is easy to see that

|H(x(t))|= |x(t)− x(t)5| ≤ 4(5−5/4) for all x ∈M.

By Lemma 3.9 H is a large contraction on M. Hence, for x,y ∈M with x 	= y, we
have ‖Hx−Hy‖ ≤ ‖x− y‖. Hence,

|Bx(t)−By(t)| ≤
t−1

∑
s=0

|H(x(s))−H(y(s))|
∣∣
∣

t−1

∏
u=s

a(u)
∣∣
∣

≤ 4(5−5/4)
t−1

∑
s=0

∣
∣
∣

t−1

∏
u=s

a(u)
∣
∣
∣‖x− y‖

= ‖x− y‖.

Taking maximum norm over the set [0,∞), we get that ‖Bx−By‖ ≤ ‖x− y‖. Now,
from the proof of Lemma 3.9, for a given ε ∈ (0,1), suppose x,y∈M with ‖x−y‖≥
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ε . Then δ =min
{

1− ε4/27,1/2
}
, which implies that 0< δ < 1. Hence, for all such

ε > 0 we know that

[x,y ∈M,‖x− y‖ ≥ ε]⇒ ‖Hx−Hy‖≤ δ‖x− y‖.

Therefore, using (3.10.7), one easily verify that

‖Bx−By‖≤ δ‖x− y‖.

The proof is complete.

We arrive at the following theorem in which we prove boundedness.

Theorem 3.10.3. Assume (3.10.7). Then (3.10.3) has a unique solution in M which
is bounded.

Proof. (M,‖ · ‖) is a complete metric space of bounded sequences. For ψ ∈M we
must show that (Bψ)(t) ∈M. From (3.10.6) and the fact that

|H(x(t))|= |x(t)− x(t)5| ≤ 4(5−5/4) for all x ∈M,

we have

|(Bψ)(t)| ≤ |ψ0|
∣∣
∣

t−1

∏
s=0

a(s)
∣∣
∣+ 4(5−5/4)

t−1

∑
s=0

∣∣
∣

t−1

∏
u=s

a(u)
∣∣
∣+

t−1

∑
s=0

(∣∣
∣p(s)

t−1

∏
u=s+1

a(u)
∣∣
∣
)

≤ 5−1/4.

This shows that (Bψ)(t) ∈M. Lemma 3.9 implies the map B is a large contraction
and hence by Theorem 3.10.1, the map B has a unique fixed point in M which is a
solution of (3.10.3). This completes the proof.

Next we use Theorem 3.10.2 and prove the existence of a periodic solution of the
nonlinear delay difference equation

x(t + 1) = a(t)x(t)5 +G(t,x(t − r))+ p(t), t ∈ Z, (3.10.8)

where r is a positive integer and

a(t +T ) = a(t), p(t +T) = p(t), and G(t +T, ·) = G(t, ·) (3.10.9)

and T is the least positive integer for which these hold. As before, for the sake of
inversion, we rewrite (3.10.8) as

x(t + 1)− a(t)x(t) = a(t)H(x(t))+G(t,x(t − r))+ p(t), (3.10.10)

where
H(x) =−x+ x5. (3.10.11)

We begin with the following lemma which we omit its proof.
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Lemma 3.11. Suppose that 1−∏t−1
s=t−T a(s) 	= 0 for all t ∈Z. Then x(t) is a solution

of (3.10.10) if and only if

x(t) =
(

1−
t−1

∏
s=t−T

a(s)
)−1 t−1

∑
u=t−T

(
a(u)H(x(u))+G(t,x(u− r))+ p(u)

) t−1

∏
s=u+1

a(s).

Let PT be the set of all sequences x(t), periodic in t of period T. Then (PT ,‖ ·‖) is a
Banach space when it is endowed with the maximum norm

‖x‖= max
t∈Z

|x(t)|= max
t∈[0,T−1]

|x(t)|.

Set
M= {ϕ ∈ PT : ‖ϕ‖ ≤ 5−1/4}. (3.10.12)

Obviously, M is bounded and convex subset of the Banach space PT . Let the map
A : M→ PT be defined by

(Aϕ)(t) =
(

1−
t−1

∏
s=t−T

a(s)
)−1 t−1

∑
u=t−T

(G(t,ϕ(u− r))+ p(u))
t−1

∏
s=u+1

a(s), t ∈ Z.

(3.10.13)
In a similar way, we set the map B : M→ PT by

(Bψ)(t) =
(

1−
t−1

∏
s=t−T

a(s)
)−1 t−1

∑
u=t−T

(
a(u)H(ψ(u))

) t−1

∏
s=u+1

a(s), t ∈ Z. (3.10.14)

It is clear from (3.10.13) and (3.10.14) that Aϕ and Bψ are T -periodic in t. For
simplicity we let

η :=
∣
∣
∣
(

1−
t−1

∏
s=t−T

a(s)
)−1∣∣

∣.

Let
G(u,ψ(u− r)) = b(u)ψ(u− r)5. (3.10.15)

For x ∈M, we have
|x(t)|5 ≤ 5−5/4,

and therefore,

G(u,x(u− r))+ p(u) = b(u)x(u− r)5+ p(u)

≤ 5−5/4|b(u)|+ |p(u)| (3.10.16)

and
|H(x(t))|= |x(t)− x(t)5| ≤ 4(5−5/4) for all x ∈M.

We have the following theorem.

Theorem 3.10.4. Suppose G(u,ψ(u−r)) is given by (3.10.15). Assume for all t ∈Z
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η
t−1

∑
u=t−T

(
5−5/4|b(u)|+ |p(u)|+ 4(5−5/4)|a(u)|

)∣∣
∣

t−1

∏
u=s+1

a(u)
∣
∣
∣≤ 5−1/4. (3.10.17)

Then (3.10.8) has a periodic solution.

Proof. Using condition (3.10.17) and by a similar argument as in Lemma 3.9, one
can easily show that B is a large contraction since H is a large contraction. Also,
the map A is continuous and maps bounded sets into compact sets and hence it is
compact. Moreover, for ϕ ,ψ ∈M, we have by (3.10.17) that

Aϕ+Bψ : M→M.

Hence an application of Theorem 3.10.2 implies the existence of a periodic solution
in M. This completes the proof.

It is evident from Lemma 3.9 that proving large contraction is tedious, long, and not
very practical to consider case by case function. Consider the mapping H be defined
by

H(x(u)) = x(u)− h(x(u)). (3.10.18)

We have observed from Lemma 3.9 that the properties of the function h in (3.10.18)
plays a substantial role in obtaining a large contraction on a convenient set. Next
we state and prove a remarkable theorem that generalizes the concept of Large Con-
traction. The theorem provides easily checked sufficient conditions under which a
mapping is a Large Contraction. The next theorem is due to Adivar, Raffoul, and
Islam. Several authors have published it in their work without the proper citations.
Let α ∈ (0,1] be a fixed real number. Define the set Mα by

Mα = {φ : φ ∈C(R,R) and ‖φ‖ ≤ α} . (3.10.19)

H.1. h : R→ R is continuous on [−α,α] and differentiable on (−α,α),
H.2. The function h is strictly increasing on [−α,α],
H.3. sup

t∈(−α ,α)
h′(t)≤ 1.

Theorem 3.10.5. [Adivar-Raffoul-Islam [4] (Classifications of Large Contraction
Theorem)] Let h : R→ R be a function satisfying (H.1-H.3). Then the mapping H
in (3.10.18) is a large contraction on the set Mα .

Proof. Let φ ,ϕ ∈Mα with φ 	= ϕ . Then φ(t) 	= ϕ(t) for some t ∈R. Let us denote
this set by D(φ ,ϕ), i.e.,

D(φ ,ϕ) = {t ∈R : φ(t) 	= ϕ(t)} .

For all t ∈ D(φ ,ϕ), we have

|Hφ(t)−Hϕ(t)|= |φ(t)− h(φ(t))−ϕ(t)+ h(ϕ(t))|

= |φ(t)−ϕ(t)|
∣
∣
∣∣1−

(
h(φ(t))− h(ϕ(t))

φ(t)−ϕ(t)

)∣∣
∣∣ . (3.10.20)
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Since h is a strictly increasing function we have

h(φ(t))− h(ϕ(t))
φ(t)−ϕ(t)

> 0 for all t ∈ D(φ ,ϕ). (3.10.21)

For each fixed t ∈ D(φ ,ϕ) define the interval Ut ⊂ [−α,α] by

Ut =

{
(ϕ(t),φ(t)) if φ(t)> ϕ(t)
(φ(t),ϕ(t)) if φ(t)< ϕ(t) .

Mean Value Theorem implies that for each fixed t ∈ D(φ ,ϕ) there exists a real
number ct ∈Ut such that

h(φ(t))− h(ϕ(t))
φ(t)−ϕ(t)

= h′(ct).

By (H.2-H.3) we have

0≤ inf
u∈(−α ,α)

h′(u)≤ inf
u∈Ut

h′(u)≤ h′(ct)≤ sup
u∈Ut

h′(u)≤ sup
u∈(−α ,α)

h′(u)≤ 1. (3.10.22)

Hence, by (3.10.20)–(3.10.22) we obtain

|Hφ(t)−Hϕ(t)| ≤
∣
∣
∣
∣1− inf

u∈(−α ,α)
h′(u)

∣
∣
∣
∣ |φ(t)−ϕ(t)| . (3.10.23)

for all t ∈ D(φ ,ϕ). This implies a large contraction in the supremum norm. To see
this, choose a fixed ε ∈ (0,1) and assume that φ and ϕ are two functions in Mα
satisfying

ε ≤ sup
t∈D(φ ,ϕ)

|φ(t)−ϕ(t)|= ‖φ −ϕ‖ .

If |φ(t)−ϕ(t)| ≤ ε
2 for some t ∈ D(φ ,ϕ), then we get by (3.10.22) and (3.10.23)

that

|H(φ(t))−H(ϕ(t))| ≤ |φ(t)−ϕ(t)| ≤ 1
2
‖φ −ϕ‖ . (3.10.24)

Since h is continuous and strictly increasing, the function h
(
u+ ε

2

)− h(u) attains
its minimum on the closed and bounded interval [−α,α]. Thus, if ε

2 < |φ(t)−ϕ(t)|
for some t ∈ D(φ ,ϕ), then by (H.2) and (H.3) we conclude that

1 ≥ h(φ(t))− h(ϕ(t))
φ(t)−ϕ(t)

> λ ,

where

λ :=
1

2α
min{h(u+ ε/2)− h(u) : u ∈ [−α,α]}> 0.
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Hence, (3.10.20) implies

|Hφ(t)−Hϕ(t)| ≤ (1−λ )‖φ(t)−ϕ(t)‖ . (3.10.25)

Consequently, combining (3.10.24) and (3.10.25) we obtain

|Hφ(t)−Hϕ(t)| ≤ δ ‖φ −ϕ‖ ,

where

δ = max

{
1
2
,1−λ

}
< 1.

The proof is complete.

Example 3.11. Let α ∈ (0,1) and k ∈N be fixed elements and u ∈ (−1,1).

1. The condition (H.2) is not satisfied for the function h1(u) = 1
2k u2k.

2. The function h2(u) =
1

2k+1 u2k+1 satisfies (H.1-H.3).

Proof. Since h′1(u) = u2k−1 < 0 for −1 < u < 0, the condition (H.2) is not satisfied
for h1. Evidently, (H.1-H.2) hold for h2. (H.3) follows from the fact that h′2(u)≤α2k

and α ∈ (0,1).

3.11 Open Problems

Open Problem 1.
Consider the neutral delay functional difference equation

x(n+ 1) = αx(n+ 1− h)+ ax(n)−q(n,x(n),x(n−h)), n ∈ Z
+ (3.11.1)

where the function q : Z+ ×R×R→ R is continuous and α and a are constants.
For a > 1, (3.11.1) is equivalent to

�[(x(n)−αx(n− h)a1−n)
]
=
[
aαx(n− h)− q(n,x(n),x(n− h))

]
a−n. (3.11.2)

We search for a solution of (3.11.1) having the property

(x(n)−αx(n− h))a−n → 0, as n → ∞.

Hence, by summing (3.11.2) from 0 to ∞ we get the following advanced type
Volterra difference equation,

x(n+ 1) = αx(n− h)−
∞

∑
s=n

[
aαx(s− h)− q(s,x(s),x(s− h))

]
an−s (3.11.3)
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which is an indication to study the general advanced type Volterra difference equa-
tion

x(n) = f (n,x(n),x(n− h))−
∞

∑
s=n

Q(s,x(s),x(s− h))C(n− s). (3.11.4)

Under suitable conditions, one might explore the boundedness of solutions and the
existence of periodic solutions. Finding suitable Lyapunov functionals to imply the
results is almost impossible. It is my suggestion that the use of fixed point the-
ory would be fruitful. For instance, if the right spaces are set up, one have the
choice to use the contraction mapping principle; Theorem 3.5.1 or the following
Krasnoselskii-Schaefer Theorem.

Theorem 3.11.1 (Krasnosselskii-Schaefer Theorem [25]). Let (S,‖ · ‖) be a Ba-
nach space. Suppose B : S → S is a contraction map, and A : S → S is continuous
and maps bounded sets into compact sets. Then either

(i) x = λB( x
λ )+λAx has a solution in S for λ = 1, or

(ii) the set of all such solutions, 0 < λ < 1, is unbounded.

It is noted that Krasnoselskii-Schaefer’s theorem requires a priori bounds on solu-
tions of a corresponding auxiliary equation. To obtain such bounds, one would have
to construct a Lyapunov functional that is suitable for Krasnoselskii-Schaefer’s the-
orem. For problem (3.11.4), the auxiliary equation is given by

x(n) = λ f (n,x(n)/λ ,x(n− h)/λ )−λ
∞

∑
s=n

Q(s,x(n),x(n− h))C(n− s).

Open Problem 2.
Extend the results of Section 3.9 to Volterra summation equations of the form

x(t) = a(t)−
n−1

∑
s=0

C(n,s)g(s,x(s)).

This is an unexplored area of research.

Open Problem 3.
We have seen in Chapter 3 that fixed point theory was successfully used to obtain
asymptotic stability, while as in Chapter 2 we obtained uniform asymptotic stability
using Lyapunov functionals. To my knowledge, no one has been able to use fixed
point theory to obtain uniform asymptotic stability. Such results would mainly rest
on how the set S is defined. Being able to do so would revolutionize the concept
of fixed point theory and open the door for new research in differential/difference
equations and even in dynamical systems on time scales.

Open Problem 4.
Consider the following system of two neurons:
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{
x1(n+ 1) = h1x1(n)+β1 f (x1(n− τ))+ a1 f (x2(n− τ1))
x2(n+ 1) = h2x2(n)+β2 f (x2(n− τ))+ a2 f (x1(n− τ2))

(3.11.5)

where x1(n) and x1(n) denote the activations of the two neurons, τi,(i = 1,2) and τ
denote the synaptic transmission delays, a1 and a2 are the synaptic coupling weights,
f : R→R is the activation function with f (0) = 0.
Use either Lyapunov functionals (Chapter 2) or fixed point theory (Chapter 3) to
analyze the system and compare both methods.



Chapter 4
Periodic Solutions

This chapter is devoted to the study of periodic solutions of functional difference
systems with finite and infinite delay. We will obtain different results concerning
Volterra difference equations with finite and infinite delays, using fixed point the-
ory. Fixed point theory will enable us to obtain results concerning stability, classi-
fication of solutions, existence of positive solutions, and the existence of periodic
solutions and positive periodic solutions. In the analysis, we make use of Schaefer
fixed point theorem, [159], Krasnoselskii’s fixed point theorem, [97], and Schauder
fixed point theorem. We apply our results to infinite delay Volterra difference equa-
tions, by constructing suitable Lyapunov functionals to obtain the a priori bound on
all possible solutions. We transition to systems or coupled Volterra infinite delay dif-
ference equations and show the existence of a periodic solution and asymptotically
periodic solution. For some classes of nonlinear systems with delay, it is shown that
the presence of the time delay results in the existence of periodic solutions. We end
the chapter by considering functional difference equation that has the characteristic
that every constant is a solution. Then by means of fixed point theory we show that
the unique solution converges to a pre-determined constant or a periodic solution. In
addition we show the solution is stable and that its limit function serves as a global
attractor. Most of the results of this chapter can be found in [1, 52, 127, 131, 135],
and [137].

4.1 Periodic Solutions in Finite and Infinite Delays Equations

This chapter is entirely devoted to the study of existence of periodic solutions of
functional difference equations and in particular Volterra infinite delay difference
equations. We begin by discussing some results from the celebrated paper of Elaydi
[52], in which the existence of a periodic solution is directly tied up to (UAS). We
consider the following systems of difference equations of non-convolution type
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x(n+ 1) = A(n)x(n)+
n

∑
r=0

B(n,r)x(r) (4.1.1)

and its corresponding perturbed system

x(n+ 1) = A(n)x(n)+
n

∑
r=0

B(n,r)x(r)+ g(n) (4.1.2)

where a,B are k× k matrix functions on Z
+ and Z

+×Z
+, respectively, and g is a

vector function on Z
+. As before, we let R(n,m) be the resolvent matrix of (4.1.1).

Our objective is to find a periodic solution for the difference system with infinite
delay

z(n+ 1) = A(n)x(n)+
n

∑
r=−∞

B(n,r)z(r)+ g(n), (4.1.3)

where

A(n+N) = A(n), B(n+N,m+N) = B(n,m), g(n+N) = g(n). (4.1.4)

It can be easily shown, see [52], that

R(n+N,m+N) = R(n,m).

Hence we have the following theorem.

Theorem 4.1.1 ([52]). Suppose that the zero solution of Equation (4.1.1) is (UAS).
Then Equation (4.1.3) has the unique N-periodic solution

z(n) =
n−1

∑
m=−∞

R(n,m+ 1)g(m).

The next theorem provides criteria for the (UAS) of Equation (4.1.1).

Theorem 4.1.2 ([52]). Let

|x|=
k

∑
i=1

|xi|, β jn(n) =
∞

∑
s=n

b ji(s,n)|< ∞.

Assume that

k

∑
j=1

[|a ji(n)|+ |β ji(n)| ≤ 1− c,1 ≤ i ≤ k, n ≥ n0, for some c ∈ (0,1).

Then the zero solution of Equation (4.1.1) is (UAS).

As in the case of Chapter 2, we feel the need for the development of a more general
theory for the existence of periodic solutions that will accommodate a wider range
of equations. Thus, in this section we consider the functional nonlinear system of
difference equations with either finite or infinite delay,
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�x(n) = F(n, xn),n ∈ Z (4.1.5)

where F : Z× BC → R
k is continuous in x and T -periodic in n. Here BC is the

space of bounded sequences φ : (−∞,0] → R
k with the maximum norm || · ||. By

xn we mean that xn(s) = x(n+ s) for s ≤ 0. Let (PT , || · ||) be the Banach space of
T -periodic sequences φ : Z→R

k with the maximum norm

||x||= max
n∈ [0,T−1]

|x(n)|.

Also, we let

P0
T =

{
φ ∈ PT :

T−1

∑
s=0

φ(s) = 0
}
.

Proving the existence of a periodic solution of (4.1.5) rest on the following Schaefer
fixed point theorem.

Theorem 4.1.3 ([159]). Let (B, | · |) be a normed linear space, H a continuous
mapping of B into B which is compact on each bounded subset of B. Then either (i)
the equation x = λHx has a solution for λ = 1, or (ii) the set of all solutions x, for
0 < λ < 1, is unbounded.

We make the following assumptions.
(a) For every φ ∈ P0

T , there exists a constant dφ ∈ R such that ∑T−1
s=0 F(s,ψs) = 0

where
{

ψ(n) = dφ +∑n−1
s=0 φ(s), for n ≥ 1,

ψ(n) = dφ +∑ j−1
s=0 φ(s), for n ≤ 0, n = j mod T, 1 ≤ j ≤ T.

(4.1.6)

(b) Let E(φ)(n) = ψ(n) be continuous in φ with E : P0
T → PT such that for each

α > 0, there exists a constant Lα > 0 such that |dφ | ≤ Lα whenever ||φ || ≤ α.
The following proposition assures that ψ is well defined. Its proof is straightforward
and therefore omitted.

Proposition 4.1. Let n and T ≥ 1 be any given integers. Then there exist unique
integers K and j, 1 ≤ j ≤ T , such that n = KT + j.

Theorem 4.1.4 ([135]). Suppose conditions (i) and (ii) hold. For 0 < λ < 1, define
Gλ : P0

T → P0
T by

Gλ (φ)(n) = λF(n,ψn).

If there is a constant D > 0 such that ||φ || < D whenever φ is a fixed point of Gλ ,
then Equation (4.1.5) has a T -periodic solution .

Proof. First we note that PT is equivalent to R
T k. Let n ∈ Z. By the continuity of F

and condition (i), we can easily see that

T−1

∑
s=0

Gλ (φ)(s) = λ
T−1

∑
s=0

F(s,ψs) = 0.
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Hence, we have that Gλ (φ)∈ P0
T . For each α > 0, the set S= {E(φ) : φ ∈ P0

T , ||φ || ≤
α} is closed and bounded by (ii). Let Q = {Gλ (φ)(n) : φ ∈ S}. Then S is a subset
of R

Tk which is closed and bounded and thus compact. As Gλ is continuous in
φ , it maps compact sets into compact sets. Therefore, Q = Gλ (S) is compact. The
hypothesis ||φ || < D rules out Condition (i) of Theorem 4.1.3 and thus applying
Schaefer’s theorem to φ = Gλ (φ) we conclude that Gλ has a fixed point for λ = 1.
That is φ = G1φ = F(n,ψn). On the other hand, φ(n) =�ψ(n) = F(n,ψn). Thus,
ψ is a T -periodic solution of (4.1.5). This completes the proof.

Corollary 4.1. Suppose conditions (a) and (b) hold. Assume the functional F maps
bounded sets into compact sets. If there exists a positive constant J such that any
T -periodic solution x(n) of

�x(n) = λF(n, xn), λ ∈ (0,1) (4.1.7)

satisfies ||x||< J, then (4.1.5) has a T-periodic solution .

Proof. Since Gλ (φ)(n) = λF(n,ψn), then any fixed solution φ of Gλ implies the
existence of a T -periodic solution of (4.1.5). As the functional F maps bounded
sets into compact subsets, we have, whenever ||ψ || ≤ J, that |F(n,ψn)| ≤ R, where
R depends on the a priori bound J. Let φ be a fixed solution of Gλ . Then φ(n) =
�ψ(n) = λF(n,ψn). Since all T -periodic solutions of (4.1.7) have a priori bound
J, by Theorem 4.1.4, Equation (4.1.5) has a T -periodic solution. This completes the
proof.

Corollary 4.2. Suppose conditions (i) and (ii) hold. If there exist constants M,r, 0<
r < 1 such that

|F(n,ψn)| ≤ r||φ ||+M, for all φ ∈ P0
T

where ψ is given by (4.1.6), then Equation (4.1.5) has a T -periodic solution.

Proof. The proof is straightforward. To see this, let φ be a fixed solution of Gλ .
Then for φ ∈ P0

T
|φ(n)|= λ |F(n,ψn)| ≤ r||φ ||+M,

from which we arrive at

||φ || ≤ M
1− r

.

Hence, Equation (4.1.5) has a T -periodic solution by Theorem 4.1.4.

For the next theorem we consider the functional delay equation

�x(n) = L(n, xn)+ p(n),n ∈ Z (4.1.8)

where L : Z×BC →R
k is continuous and linear in x, T -periodic in n and p ∈ PT .

Theorem 4.1.5 ([135]). Suppose that for every d in R
k, the k× k matrix L(n, ·) sat-

isfies the relation
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L(n, ·)d = L(n,d) and
T−1

∑
n=0

L(n, ·) is invertible.

If there is a priori bound on all possible T -periodic solutions of

�x(n) = λ
[
L(n, xn)+ p(n)

]
, λ ∈ (0,1) (4.1.9)

then Equation (4.1.8) has a T -periodic solution .

Proof. First we note that

T−1

∑
n=0

L(n, ·) is invertible if and only if the matrix
(T−1

∑
n=0

L(n, ·)
)−1

exists. In view of Corollary 4.1, we only need to verify (i) and (ii). Set F(n,ψn) =
L(n, ψn)+ p(n) and

dφ =−
(T−1

∑
n=0

L(n, ·)
)−1[T−1

∑
n=0

L
(

n,(
n−1

∑
s=0

φ(s))n

)
+

T−1

∑
n=0

p(n)
]
. (4.1.10)

For φ ∈ P0
T , dφ ∈R

k is uniquely determined by (4.1.10). Since L(n, ·)d = L(n,d) we
have

T−1

∑
n=0

L
(

n,(dφ +(
n−1

∑
s=0

φ(s))n

)
+

T−1

∑
n=0

p(n) = 0.

Thus, ∑T−1
s=0 F(s,ψs) = 0. Let E be defined as in (ii), then it is readily verified that

E : P0
T →PT and continuous in φ . Now, since L is linear and continuous in the second

argument, there exists a β > 0 such that for any ψ ∈ BC, |L(n,ψn)| ≤ β ||ψ ||. This
yields

∣
∣
∣L
(

n,(
n−1

∑
s=0

φ(s))n

)∣∣
∣≤ βT ||φ ||.

Thus, from (4.1.10) one obtains for ||φ || ≤ α that

dφ ≤
∣
∣
∣
(T−1

∑
n=0

L(n, ·)
)−1∣∣

∣
(
βTα+ ||p||

)
T =: Lα .

Thus, by Corollary 4.1 Equation (4.1.8) has a T -periodic solution and the proof is
complete.

4.2 Application to Functional Difference Equations

It is obvious that Theorem 4.1.4 is of general nature and hence we will apply it to
different types of functional difference equations. Namely, we will obtain existence
of periodic solutions of scalar Volterra difference equations with finite or infinite
delay.
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4.2.1 Finite Delay Difference Equations

We will use Theorem 4.1.4 to prove the existence of a periodic solution for a scalar
difference equation with finite delay.

Theorem 4.2.1 ([135]). Consider the scalar delay difference equation

�x(n) = a(n)x(n)+ b(n)x(n− h)+ p(n), n ∈ Z, (4.2.1)

where the sequences a(n),b(n), and p(n) are T-periodic sequences, and h ∈ Z with
h ≥ 0.
Suppose that either a(n)> 0 or a(n)< 0 for all n ∈ Z. Suppose there exists a con-
stant N > 1 such that

|a(n)|−N|b(n+ h)| ≥ 0.

If
(i) ρ−||b||−ρT(||a||+ ||b||> 0
where ρ = minn∈[0,T−1] |a(n)|, then Equation (4.2.1) has a T -periodic solution.

Proof. First we note that since either a(n) > 0 or a(n) < 0 for all n ∈ Z, we have
∑T−1

n=0 a(n) 	= 0. Define L by L(n,xn) = a(n)x(n)+b(n)x(n−h). Then L is linear and
L(n, ·) = a(n)+b(n). In view of Theorem 4.1.5, we need to show that ∑T−1

n=0 L(n, ·) 	=
0 and all T -periodic solutions of

�x(n) = λ
[
a(n)x(n)+ b(n)x(n− h)+ p(n)

]
, λ ∈ (0,1) (4.2.2)

have a priori bound. By noting that b(n+ h) is also T -periodic, we have

T−1

∑
n=0

|b(n)|=
T−h−1

∑
s=−h

|b(s+ h)|=
T−1

∑
s=0

|b(s+ h)|.

Thus for a(n)> 0,

T−1

∑
n=0

(a(n)+ b(n))≥
T−1

∑
n=0

(|a(n)|− |b(n)|) =
T−1

∑
n=0

(|a(n)|− |b(n+ h)|).

By making use of |a(n)|−N|b(n+ h)| ≥ 0 in the above inequality, we get

T−1

∑
n=0

(a(n)+ b(n)) ≥
T−1

∑
n=0

(|a(n)|− |b(n+ h)|)

=
N − 1

N

T−1

∑
n=0

|a(n)|+ 1
N

T−1

∑
n=0

(|a(n)|−N|b(n+ h)|)

≥ N − 1
N

T−1

∑
n=0

a(n)> 0.
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Next, suppose a(n)< 0 for all n ∈ Z. Then

T−1

∑
n=0

(a(n)+ b(n)) ≤
T−1

∑
n=0

(−|a(n)|+ |b(n+ h)|)

=
1−N

N

T−1

∑
n=0

|a(n)|− 1
N

T−1

∑
n=0

(|a(n)|−N|b(n+ h)|)

≤ 1−N
N

T−1

∑
n=0

|a(n)|< 0.

Hence, we have shown that ∑T−1
n=0 L(n, ·) 	= 0 for all n ∈ Z. Now we turn our atten-

tion to finding the a priori bound. Let x(n) be a T -periodic solution of (4.2.2). By
summing equation (4.2.2) from n to n+T − 1 we get

0 = x(n+T)− x(n) = λ
n+T−1

∑
s=n

[
a(s)x(s)+ b(s)x(s− h)+ p(s)

]
.

Thus,
n+T−1

∑
s=n

a(s)x(s) =−
n+T−1

∑
s=n

(b(s)x(s− h)+ p(s)).

Since there exists an n∗ ∈ [n,n+T − 1] such that

T |a(n∗)|x(n∗)| ≤
n+T−1

∑
s=n

|a(s)||x(s)|,

we arrive from the above relation that

T |a(n∗)|x(n∗)| ≤
n+T−1

∑
s=n

(|b(s)||x(s− h)|+ |p(s)|)

≤ T ||b|| ||x||+T ||p||.

As a consequence, we get

|x(n∗)| ≤ ||b||
ρ

||x||+ ||p||
ρ

.

Using Equation (4.2.2) we have

|�x| ≤ |a(n)||x(n)|+ |b(n)||x(n− h)|+ |p(n)|
≤ ||a|| ||x||+ ||b|| ||x||+ ||p||
= (||a||+ ||b||)||x|+ ||p||.
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For all n ∈ Z, we write x(n) ∈ PT as

x(n) = x(n∗)+
n+T−1

∑
s=n∗

�x(s). (4.2.3)

Using (4.2.3) and then the norms of x(n∗),�x and x we get

|x(n)| ≤ |x(n∗)|+
n+T−1

∑
s=n

|�x(s)|

≤ ||x(n∗)||+T ||�x||

≤ ||b||
ρ

||x||+ ||p||
ρ

+T
(
(||a||+ ||b||)||x||+ ||p||

)
.

The above inequality yields

||x|| ≤ Tρ ||p||
ρ−||b||−ρT(||a||+ ||b||) .

This defines a priori bound on all possible T -periodic solutions of Equation (4.2.2).
Hence, Equation (4.2.1) has a T -periodic solution by Theorem 4.1.4.

In the next corollary, we relax condition (i) of Theorem 4.2.1.

Corollary 4.3 ([135]). Suppose the hypothesis of Theorem 4.2.1 holds with (i) being
replaced by

|a(n)+ b(n)|
(
|d−1|T 2(||a||+ ||b||)+T

)
= ς < 1,

where

d−1 =
[T−1

∑
n=0

(a(n)+ b(n))
]−1

.

Then Equation (4.2.1) has a T -periodic solution.

Proof. Take φ , ψ , and L(n, ·) to be as in Theorem 4.2.1. In view of Corollary 4.2 we
only need to show that |F(n,ψn)| ≤ r||φ ||+M, M > 0 is a constant and 0 < r < 1.
By a similar argument as in Theorem 4.1.5, one may easily find that

dφ =−
[T−1

∑
n=0

(a(n)+ b(n))
]−1{T−1

∑
n=0

(a(n)+ b(n))
n−1

∑
n=0

φ(s)+
T−1

∑
n=0

p(n)
}
.

Now,

|dφ | ≤ |d−1|T (|a|+ |b|)T |φ |+T |P|
≤ |d−1|T 2(|a|+ |b|)T ||φ ||+T ||P||.
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This yields to

|F(n,ψn)| ≤ |a(n)+ b(n)||dφ |+ |a(n)+ b(n)|T||φ ||+ ||p||
≤ |a(n)+ b(n)|

(
|d−1|T 2(||a||+ ||b||)+T

)
= ς < 1.

Thus, by Corollary 4.2, Equation (4.2.1) has a T -periodic solution. This completes
the proof.

4.2.2 Infinite Delay Volterra Difference Systems

In this section, we apply Corollary 4.2 and Theorem 4.1.5 to show that the Volterra
difference system with infinite delay given by

�x(n) = A(n)x(n)+
n

∑
s=−∞

B(n,s)x(s)+ g(n), −∞< s ≤ t < ∞ (4.2.4)

where A,B are k×k T -periodic matrices and g is a given k×1 T -periodic sequence,
has a T -periodic solution. We begin with the following theorem.

Theorem 4.2.2 ([135]). Suppose that

D =
T−1

∑
s=0

(
A(n)+

n

∑
s=−∞

B(n,s)
)

is invertible, (4.2.5)

max
n∈ [0,T−1]

[∣∣∣A(n)+
n

∑
s=−∞

B(n,s)
∣
∣∣MT +(|A(n)|+

n

∑
s=−∞

|B(n,s)|)T
]
=: ς < 1, (4.2.6)

where

M = |D−1|
T−1

∑
u=0

(
|A(u)|+

u

∑
s=−∞

|B(u,s)|
)
.

Then Equation (4.2.4) has a T -periodic solution.

Proof. Set F(n,xn) = A(n)x(n)+∑n
s=−∞ B(n,s)x(s)+ p(n).

Then (4.2.5) and Theorem 4.1.4 imply that for each φ ∈ P0
T , there exists a unique

dφ ∈ R such that ∑T−1
n=0 F(n,ψn) = 0, where ψ(n) is defined by (4.1.6). In fact for

∑T−1
n=0 F(n,ψn) = 0 gives

T−1

∑
n=0

(A(n)(d+
n−1

∑
s=0

φ(s))+
T−1

∑
n=0

[ n

∑
s=−∞

B(n,s)(d +
s−1

∑
u=0

φ(u))
]
+

T−1

∑
n=0

p(n) = 0.

This yields

dφ =−D−1
[T−1

∑
n=0

(
A(n)

n−1

∑
s=0

φ(s)+
n

∑
s=−∞

B(n,s)
s−1

∑
u=0

φ(u)+ p(n)
)]

.
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Thus,
|dφ | ≤ MT ||φ ||+ |D−1|||p||T.

On the other hand,

|F(n,ψn)| ≤
∣
∣
∣A(n)ψn +

n

∑
s=−∞

B(n,s)ψs + p(n)
∣
∣
∣

≤
∣
∣
∣A(n)(dφ +

n−1

∑
s=0

φ(s))

+
n

∑
s=−∞

B(n,s)(dφ +
s−1

∑
u=0

φ(u))+
T−1

∑
n=0

p(n)
∣
∣
∣

≤
∣
∣
∣A(n)+

n

∑
s=−∞

B(n,s)
∣
∣
∣|dφ |

+
(
|A(n)|+

n

∑
s=−∞

|B(n,s)|
)

T ||φ ||+ ||p||.

Replacing |dφ | by its value, we get

|F(n,ψn)| ≤ ς ||φ ||+K

where K = maxn∈[0.T−1]

∣
∣∣A(n) + ∑n

s=−∞ B(n,s)
∣
∣∣|D−1| ||p||T + ||p||. Thus, Equa-

tion (4.2.4) has a T -periodic solution by Corollary 4.2. This completes the proof.

Remark 4.1. Condition (4.2.6) is severe and therefore in the next theorem we avoid
it by appealing to Lyapunov functional.

But first, if A = (ai j) is a k× k real matrix, then we define the norm of A by

|A|= max
1≤i≤k

k

∑
j=1

|ai j|.

Theorem 4.2.3 ([135]). Consider the 2-dimensional system

�x(n) = λ
[
Ax(n)+

n

∑
j=−∞

C(n− j)x( j)+ g(n)
]
, λ ∈ (0,1) (4.2.7)

A =

(
1 0
0 −1

)
,∑n−1

j=−∞∑∞
s=n |C(s− j)|< ∞, g(n) ∈ PT ,

∑∞
u=0 |C(u)|=α ≤ 2

25 and CT (u)=C(u)(transpose). Assume that Q=∑T−1
n=0

(
A(n)+

∑n
s=−∞ B(n,s)

)
is invertible. Then (4.2.7) has a solution in PT for λ = 1.
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Proof. Set F(n,xn) = A(n)x(n)+∑n
s=−∞C(n− s)x(s)+ p(n). If we let

dφ =−Q−1
[T−1

∑
n=0

(
A(n)

n−1

∑
s=0

φ(s)+
n

∑
s=−∞

C(n− s)
s−1

∑
u=0

φ(u)+ p(n)
)]

,

then by a similar argument as in Theorem 4.2.2, it is readily verified that

T−1

∑
n=0

F(n,ψn) = 0,

where ψ(n) is defined by (4.1.6). Also, by a similar argument as in the Theo-
rem 4.2.2, it can be easily shown that there exists a constant Lα > 0 such that |dφ | ≤
Lα . Next we show that F maps bounded sets into bounded sets. Let J be a given
positive constant. Then if ψ is given by (4.1.6), we set S = {ψ : φ ∈ P0

T , ||ψ || ≤ J}
which is closed and bounded. Now

|F(n,ψn)| ≤
∣
∣
∣A(n)ψn +

n

∑
s=−∞

C(n− s)ψs + p(n)
∣
∣
∣

≤ |A|J+
∞

∑
u=0

|C(u)|JT + |p|

≤ |A|J+ JT
2

25
+ ||p|| ≤ M,M > 0.

This shows that F maps bounded sets into bounded sets. According to Corollary 4.1,
it is left to show that all T -periodic solutions of (4.2.7) have a priori bound. Note
that (4.2.7) has an a priori bound on all its T -periodic solutions if and only if

x(n+ 1) = Dx(n)+λ
n

∑
j=−∞

C(n− j)x( j)+λg(n) (4.2.8)

does, where D =

(
λ + 1 0

0 1−λ

)
. Find E = ET such that

DT ED−E =−2λ I, as follows.

Let E =

(
a b
c d

)
. Then DT ED−E =−2λ I implies that

(
a(λ + 1)2 − a b(1−λ 2)− b
c(1−λ )2− c d(1−λ 2)− d

)
=−2λ

(
1 0
0 1

)

from which it follows

E =

(− 2
λ+2 0
0 2

2−λ

)
.
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Thus
|E| ≤ 2 for λ ∈ (0,1).

Also,

DT E =

(
λ + 1 0

0 1−λ

)
×
( −2

λ+2 0
0 2

2−λ

)
=

(
−2 λ+1

λ+2 0
0 2 1−λ

2−λ

)

.

Thus |DT E| ≤ 2 for λ ∈ (0,1). Find γ > 2+ 2α such that (2+ γ)α < 2. This is
possible because for α ∈ (0, 2

25 ], it is elementary to verify that 2+ 2α < 2
α − 2.

Hence we may choose γ such that 2+ 2α < γ < 2
α − 2.

Define a Lyapunov type functional

V (n,x(·)) = xT (n)Ex(n)+λγ
n−1

∑
j=−∞

∞

∑
s=n

|C(s− j)|x2( j).

It is of interest to note that V is not positive definite. Then along solutions of (4.2.8)
we have

�V = xT (n+ 1)Ex(n+ 1)+λγ
∞

∑
s=n+1

|C(s− n)|x2(n)

−λγ
n−1

∑
j=−∞

|C(n− j)|x2( j)− xT (n)Ex(n)

=

[

xT (n)DT +λ
n

∑
j=−∞

xT ( j)CT (n− j)+λgT(n)

]

E

[

Dx(n)+λ
n

∑
j=−∞

C(n− j)x( j)+λg(n)

]

−xT (n)Ex(n)+λγ
∞

∑
s=n+1

|C(s− n)|x2(n)

−λγ
n−1

∑
j=−∞

|C(n− j)|x2( j)

= xT (n)DT EDx(n)+λxT (n)DT E
n

∑
j=−∞

C(n− j)x( j)

+λxT (n)DT Eg(n)+λ
n

∑
j=−∞

xT ( j)CT (n− j)EDx(n)

+λ 2
n

∑
j=−∞

xT ( j)CT (n− j)E
n

∑
j=−∞

C(n− j)x( j)

+λ 2
n

∑
j=−∞

xT ( j)CT (n− j)Eg(n)+λgT(n)EDx(n)
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+λ 2gT (n)E
n

∑
j=−∞

C(n− j)x( j)+λ 2gT (n)Eg(n)− xT (n)Ex(n)

+λγ
∞

∑
s=n+1

|C(s− n)|x2(n)−λγ
n−1

∑
j=−∞

|C(n− j)|x2( j).

Hence

�V = xT (n)(DT ED−E)x(n)+ 2λ
n

∑
j=−∞

xT (n)DT EC(n− j)x( j)

+2λxT (n)DT Eg(n)+ 2λ 2gT (n)E
n

∑
j=−∞

C(n− j)x( j)

+λ 2
n

∑
j=−∞

xT ( j)CT (n− j)E
n

∑
j=−∞

C(n− j)x( j)

+λγ
∞

∑
s=n+1

|C(s− n)|x2(n)

−λγ
n−1

∑
j=−∞

|C(n− j)|x2( j)+λ 2gT (n)Eg(n).

Note that

2
n

∑
j=−∞

xT (n)DT EC(n− j)x( j) ≤ 2
n

∑
j=−∞

|xT (n)| |DT E| |C(n− j)| |x( j)|

= |DT E|
n

∑
j=−∞

|C(n− j)|2 |x(n)T | |x( j)|

≤ |DT E|
n

∑
j=−∞

|C(n− j)|(x2(n)+ x2( j))

≤ 2
n

∑
j=−∞

|C(n− j)|(x2(n)+ x2( j))

= 2αx2(n)+ 2
n

∑
j=−∞

|C(n− j)|x2( j).

In the next two terms we make use of the following fact: for any real numbers a, b,
and L with L 	= 0, 2ab ≤ a2

L2 + L2b2, which can be easily proven by using the fact
that ( a

L −Lb)2 ≥ 0. As a consequence, for some L > 0 we have
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2xT (n)DT Eg(n)≤ 2|xT (n)| |DT Eg(n)| ≤ x2(n)
L2 +L2|DT Eg(n)|2

and

2λgT (n)E
n

∑
j=−∞

C(n− j)x( j) ≤ 2|λgT (n)E|
n

∑
j=−∞

|C(n− j)| |x( j)|

≤
n

∑
j=−∞

|C(n− j)|2|gT (n)E| |x( j)|

≤
n

∑
j=−∞

|C(n− j)|x
2( j)
L2 +

n

∑
j=−∞

|C(n− j)|(gT (n)EL)2

=
n

∑
j=−∞

|C(n− j)|x
2( j)
L2 +α(λgT (n)EL)2.

For u = s− n,

γ
∞

∑
s=n+1

|C(s− n)|x2(n) = γ
∞

∑
u=1

|C(u)|x2(n)

= γαx2(n)− γ|C(0)|x2(n).

Also,

γ
n−1

∑
j=−∞

|C(n− j)|x2( j) = γ
n

∑
j=−∞

|C(n− j)|x2( j)− γ|C(0)|x2(n).

Thus

γ
∞

∑
s=n+1

|C(s− n)| x2(n)− γ
n−1

∑
j=−∞

|C(n− j)|x2( j)

= γαx2(n)− γ
n

∑
j=−∞

|C(n− j)|x2( j).

Finally,

λ
n

∑
j=−∞

xT ( j) CT (n− j)E
n

∑
j=−∞

C(n− j)x( j)

≤ 2
n

∑
j=−∞

|xT ( j)| |CT (n− j)|
n

∑
j=−∞

|C(n− j)| |x( j)|

≤
( n

∑
j=−∞

|xT ( j)| |CT (n− j)|
)2

+

( n

∑
j=−∞

|C(n− j)| |x( j)|
)2
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= 2

( n

∑
j=−∞

|C(n− j)| |x( j)|
)2

= 2

( n

∑
j=−∞

|C(n− j)| 1
2 |C(n− j)| 1

2 |x( j)|
)2

≤ 2
n

∑
j=−∞

|C(n− j)|
n

∑
j=−∞

|C(n− j)|x2( j)

= 2α
n

∑
j=−∞

|C(n− j)|x2( j), by Schwartz inequality for series.

Putting everything together we obtain

�V ≤ λ
[
−2x2(n)+ 2αx2(n)+ 2

n

∑
j=−∞

|C(n− j)|x2( j)

+
x2(n)

L2 +L2(DT Eg(n))2 +
n

∑
j=−∞

|C(n− j)|x
2( j)
L2

+α(λgT (n)EL)2 +αγx2(n)− γ
n

∑
j=−∞

|C(n− j)|x2( j)

+2α
n

∑
j=−∞

|C(n− j)|x2( j)+ |λgT (n)Eg(n)|
]

= λ
[(

−2+ 2α+αγ+
1
L2

)
x2(n)

+

(
2− γ+ 2α+

1
L2

) n

∑
j=−∞

|C(n− j)|x2( j)

+|gT (n)Eg(n)|+((DT Eg(n))2 +(gT (n)E)2α)L2
]
.

Since −2+2α+αγ < 0 and 2− γ+2α < 0 we may choose L large enough so that
−2+ 2α+αγ+ 1

L2 < 0 and 2− γ+ 2α+ 1
L2 < 0. Then we have

�V ≤ λ
[
(−2+ 2α+αγ+

1
L2 )x

2(n)+M

]

≤ λ
[−μx2(n)+M

]

for some positive constants μ and M. Using the fact that V ∈ PT , we have

0 =V (n+T)−V(n) =
n+T−1

∑
i=n

�V (i)≤ λ

[

−μ
n+T−1

∑
i=n

x2(i)+TM

]

from which it follows
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n+T−1

∑
i=n

x2(i)≤ TM
μ

and
T

∑
j=1

|x( j+ n− 1)|2 ≤ T M
μ

.

Thus |x(n)|2 is bounded over one period, and hence

‖x(n)‖ ≤ K, for some K > 0.

Thus, every possible T -periodic solution x(n) of (4.2.8) for λ ∈ (0,1] is bounded.
Therefore, by Corollary 4.1, Equation (4.2.8) has a T -periodic solution for λ = 1.
It is obvious that condition (4.2.6) of the Theorem 4.2.2 cannot be satisfied for
Equation (4.2.7) with λ = 1.

4.3 Periodicity in Scalar Nonlinear Neutral Systems

Next we use Krasnoselskii’s fixed point theorem (Theorem 3.5.1) to show that the
nonlinear neutral difference equation with functional delay

x(t + 1) = a(t)x(t)+ c(t)�x(t− g(t))+ q
(
t,x(t),x(t − g(t)

)
(4.3.1)

has a periodic solution. As usual, in order to apply Krasnoselskii’s fixed point theo-
rem, one would need to construct two mappings; one is contraction and the other
is compact. Also, by making use of the variation of parameters techniques we
are able, using the contraction mapping principle, to show that the periodic solu-
tion is unique. Let T be an integer such that T ≥ 1. We assume the periodicity
conditions

a(t +T ) = a(t), c(t +T ) = c(t), g(t +T) = g(t), g(t)≥ g∗ > 0 (4.3.2)

for some constant g∗. Let BC is the space of bounded sequences φ : (−g∗,0]→ R
k

with the maximum norm || · ||. Materials of this section can be found in [111]. Define
PT = {φ ∈ BC,φ(t + T ) = φ(t)}. Then PT is a Banach space when it is endowed
with the maximum norm

‖x‖= max
t∈[0,T−1]

|x(t)|.

Also, we assume that
t−1

∏
s=t−T

a(s) 	= 1. (4.3.3)

Throughout this section we assume that a(t) 	= 0 for all t ∈ [0,T −1]. It is interesting
to note that equation (4.3.1) becomes of advanced type when g(t)< 0. Since we are
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searching for periodic solutions, it is natural to ask that q(t,x,y) is periodic in t and
Lipschitz continuous in x and y. That is

q(t +T,x,y) = q(t,x,y) (4.3.4)

and
|q(t,x,y)− q(t,z,w)| ≤ L‖x− z‖+K‖y−w‖ (4.3.5)

for some positive constants L and E . Note that

|q(t,x,y)|− |q(t,0,0)| ≤ |q(t,x,y)− q(t,0,0)| ≤ L‖x− 0‖+K‖y− 0‖
= L‖x‖+K‖y‖.

As a result,
|q(t,x,y)| ≤ L‖x‖+K‖y‖+ |q(t,0,0)|. (4.3.6)

We have the following lemma.

Lemma 4.1. Suppose (4.3.2)–(4.3.4) hold. If x(t) ∈ PT , then x(t) is a solution of
equation (4.3.1) if and only if

x(t) = c(t − 1)x(t − g(t))

+
1

1−∏t−1
s=t−T a(s)

t−1

∑
r=t−T

[
x(r− g(r))

(
a(r)c(r− 1)− c(r)

)

+q(r,x(r),x(r− g(r)))
] t−1

∏
s=r+1

a(s). (4.3.7)

Proof. The proof is the same as for (3.5.2) by summing from t − T to t − 1 and
noting that for x ∈ PT , x(t) = x(t −T ).

We use the following notion of compact mapping.
Let S be a subset of a Banach space B and f : S → B. If f is continuous and
f (S ) is contained in a compact subset of B, then f is a compact mapping.
We express equation (4.3.7) as

(Hϕ)(t) = (Bϕ)(t)+ (Aϕ)(t) (4.3.8)

where A,B : PT → PT are given by

(Bϕ)(t) = c(t − 1)ϕ(t − g(t)) (4.3.9)
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and

(Aϕ)(t) =
(

1−
t−1

∏
s=t−T

a(s)
)−1 t−1

∑
r=t−T

[
ϕ(r− g(r))[a(r)c(r− 1)− c(r)]

+q(r,ϕ(r),ϕ(r− g(r)))
] t−1

∏
s=r+1

a(s). (4.3.10)

Lemma 4.2. Suppose (4.3.2)–(4.3.5) hold. If A is defined by (4.3.10), then A : PT →
PT and is compact.

Proof. First we want to show that (Aϕ)(t +T ) = (Aϕ)(t).
Let ϕ ∈ PT . Then using (4.3.10) we arrive at

(Aϕ)(t +T ) =
[
1−

t+T−1

∏
s=t

a(s)
]−1 t+T−1

∑
r=t

[
ϕ(r− g(r))[a(r)c(r− 1)− c(r)]

+q(r,ϕ(r),ϕ(r− g(r)))
] t+T−1

∏
s=r+1

a(s).

Let j = r−T , then

(Aϕ)(t +T ) =
[
1−

t+T−1

∏
s=t

a(s)
]−1 t−1

∑
j=t−T

[
ϕ( j+T − g( j+T))[a( j+T )c( j+T − 1)− c( j+T)]

+q( j+T,ϕ( j+T),ϕ( j+T − g( j+T)))
] t+T−1

∏
s= j+T+1

a(s)

=
[
1−

t+T−1

∏
s=t

a(s)
]−1 t−1

∑
j=t−T

[
ϕ( j− g( j))[a( j)c( j− 1)− c( j)]

+q( j,ϕ( j),ϕ( j− g( j)))
] t+T−1

∏
s= j+T+1

a(s).

Now let k = s−T , then

(Aϕ)(t +T) =
[
1−

t−1

∏
k=t−T

a(k)
]−1 t−1

∑
j=t−T

[
ϕ( j− g( j))[a( j)c( j− 1)− c( j)]

+q( j,ϕ( j),ϕ( j− g( j)))
] t−1

∏
k= j+1

a(s)

= (Aϕ)(t).
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To see that A is continuous, we let ϕ ,ψ ∈ PT with ‖ϕ‖ ≤C and ‖ψ‖ ≤C. Let

η = max
t∈[0,T−1]

∣
∣
∣

1

(1−∏t−1
s=t−T a(s)

∣
∣
∣, β = max

r∈[t−T,t]
|a(r)c(r− 1)− c(r)|,

γ = max
t∈[0,T−1]

t−1

∏
s=t−T

a(s). (4.3.11)

Given ε > 0, take δ = ε/M such that ‖ϕ −ψ‖ < δ , where M = T γη [β +L+K].
By making use of (4.3.5) into (4.3.10) we obtain

∥
∥
∥
(

Aϕ(t)
)
−
(

Aψ(t)
)∥∥
∥

=
∥
∥
∥

1

1−∏t−1
s=t−T a(s)

t−1

∑
r=t−T

[(
ϕ(r− g(r))−ψ(r− g(r))

)(
c(r− 1)a(r)− c(r)

)

+
(

q(r,ϕ(r),ϕ(r− g(r)))− q(r,ψ(r),ψ(r− g(r)))
)] t−1

∏
s=r+1

a(s)
∥
∥
∥

≤ η
t−1

∑
r=t−T

[
‖ϕ−ψ‖β +L‖ϕ−ψ‖+K‖ϕ−ψ‖

]
γ

≤ γη
t−1

∑
r=t−T

(β +L+K)‖ϕ−ψ‖= ηγT (β +L+K)‖ϕ−ψ‖

= M‖ϕ−ψ‖= Mδ < ε

where L and K are given by (4.3.5). This proves A is continuous.
Next, we show that A maps bounded subsets into compact sets. Let J be given,
S = {ϕ ∈ PT :‖ ϕ ‖≤ J} and Q = {(Aϕ)(t) : ϕ ∈ S}, then S is a subset of RT which
is closed and bounded thus compact. As A is continuous in ϕ it maps compact sets
into compact sets. Therefore Q = A(S) is compact.

It is trivial to show that the map B is a contraction provided we assume that
∥
∥
∥c(t − 1)

∥
∥
∥≤ ζ < 1. (4.3.12)

Theorem 4.3.1 ([111]). Let α = ||q(t,0,0)||. Let η ,β and γ be given by (4.3.11).
Suppose (4.3.2)–(4.3.5) and (4.3.12) hold. Suppose there is a positive constant G
such that all solutions x(t) of (4.3.1), x(t) ∈ PT satisfy |x(t)| ≤ G, the inequality

{
ζ +ηγT (β +L+K)

}
G+ηγTα ≤ G (4.3.13)

holds. Then equation (4.3.1) has a T -periodic solution.

Proof. Define M = {ϕ ∈ PT : ||ϕ || ≤ G}. Then Lemma 4.2 implies A : M → PT

and A is compact and continuous. Also the mapping B is a contraction and it is
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clear that B : M→ PT . Next, we show that if ϕ ,ψ ∈M, we have ||Aφ +Bψ || ≤ G.
Let ϕ ,ψ ∈ M with ||ϕ ||, ||ψ || ≤ G. Then from (4.3.8)–(4.3.12) and the fact that
|q(t,x,y)| ≤ L‖x‖+K‖y‖+α, we have

∥
∥∥
(

Aϕ(t)
)
+
(

Bψ(t)
)∥∥∥ =

∥
∥∥

1

1−∏t−1
s=t−T

t−1

∑
r=t−T

[
ϕ(r− g(r))

(
c(r− 1)a(r)− c(r)

)

+ q(r,ϕ(r),ϕ(r− g(r)))
] t−1

∏
s=r+1

a(s)+ c(t − 1)ψ(t − g(t))
∥
∥
∥

≤ ηγ
t−1

∑
r=t−T

[
L‖ϕ‖+K‖ϕ‖+β‖ϕ‖+α

]
+ ζ‖ψ‖

≤ ηγ[(β +L+K)‖ϕ‖+α]T + ζ‖ψ‖
≤ ηγT (β +L+K)G+ηγTα+Gζ

=
{
ζ +ηγT (β +L+K)

}
G+ηγTα

≤ G.

We see that all the conditions of Krasnoselskii’s theorem are satisfied on the set M.
Thus there exists a fixed point z in M such that z = Az+Bz. By Lemma 4.1 this fixed
point is a solution of (4.3.1). Hence (4.3.1) has a T -periodic solution.

Remark 4.2. The constant G of Theorem 4.3.1 serves as a priori bound on all possi-
ble T-periodic solutions of equation (4.3.1) as we shall see in the Example 4.1.

Next we use the contraction mapping principle to show the periodic solution is
unique.

Theorem 4.3.2 ([111]). Suppose (4.3.2)–(4.3.5) and (4.3.12) hold. Let η ,β , and γ
be given by (4.3.11). If

ζ +Tγη
(
β +L+K

)
≤ ν < 1,

then equation (4.3.1) has a unique T -periodic solution.

Proof. Let the mapping H be given by (4.3.8). For ϕ ,ψ ∈ PT , in view of (4.3.8), we
have

∥
∥
∥
(

Hϕ(t)
)
−
(

Hψ(t)
)∥∥
∥ =

∥
∥
∥
(

Bϕ(t)
)
+
(

Aϕ(t)
)
−
(

Bψ(t)
)
−
(

Aψ(t)
)∥∥
∥

=
∥
∥∥
((

Bϕ(t)
)
−
(

Bψ(t)
))

+
((

Aϕ(t)
)
−
(

Aψ(t)
))∥∥∥

≤
∥
∥
∥
(

Bϕ(t)
)
−
(

Bψ(t)
)∥∥
∥+

∥
∥
∥
(

Aϕ(t)
)
−
(

Aψ(t)
)∥∥
∥
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≤ ζ‖ϕ−ψ‖|+ γη
t−1

∑
r=t−T

[
L‖ϕ−ψ‖+K‖ϕ −ψ‖+β‖ϕ −ψ‖

]

≤
[
ζ +T γη

(
β +L+K

)]
‖ϕ−ψ‖

< ν‖ϕ−ψ‖.

By the contraction mapping principle, (4.3.1) has a unique T -periodic solution.

We have the following example.

Example 4.1 ([111]). Consider equation (4.3.1) along with conditions (4.3.2)–(4.3.5).
Suppose that a(t) 	= 1 for all t ∈ [0,T − 1]. Set

ρ = min
t∈[0,T−1]

|a(t)− 1| , δ = max
t∈[0,T−1]

k(t),

where k(t) = c(t)− c(t − 1). Suppose 1−||c||> 0. If

ρ(1−||c||)> (1−||c||)(δ +L+K)+Tρ(||a− 1||+L+K)

holds, and G is defined by

G =
α(1−||c||+Tρ

ρ(1−||c||)− (1−||c||)(δ+L+K)−Tρ(||a− 1||+L+K)

satisfies inequality (4.3.13), then (4.3.1) has a T -periodic solution.

Proof. We rewrite (4.3.1) as

�x(t) =
(

a(t)− 1
)

x(t)+ c(t)�x(t − g(t))+ q
(
t,x(t),x(t − g(t)

)
. (4.3.14)

Let the mappings A and B be defined by (4.3.10) and (4.3.9), respectively.
Let x(t) ∈ PT . A summation of equation (4.3.14) from 0 to T − 1 gives

T−1

∑
s=0

�x(s) =
T−1

∑
s=0

[
(a(s)− 1)x(s)+ c(s)�x(s− g(s))+ q

(
s,x(s),x(s− g(s)

)]
.

Or,

x(T )− x(0) =
T−1

∑
s=0

[
(a(s)− 1)x(s)+ c(s)�x(s− g(s))+ q

(
s,x(s),x(s− g(s)

)]
.

Since x(t) ∈ PT , x(T ) = x(0). Therefore

0 =
T−1

∑
s=0

[
(a(s)− 1)x(s)+ c(s)�x(s− g(s))+ q

(
s,x(s),x(s− g(s)

)]
. (4.3.15)
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Rewrite and then sum by parts, using the summation by parts formula

∑Ey�z = yz−∑z�y

with Ey(s) = c(s) and z = x(s− g(s)). As a consequence, we have

T−1

∑
s=0

c(s)�x(s− g(s)) = c(s− 1)x(s− g(s))
∣
∣∣
T

s=0
−

T−1

∑
s=0

x(s− g(s))�c(s− 1)

= c(T − 1)x(T − g(T))− c(−1)x(0− g(0))

−
T−1

∑
s=0

x(s− g(s))[c(s)− c(s− 1)]

= −
T−1

∑
s=0

x(s− g(s))[c(s)− c(s− 1)].

As a result (4.3.15) becomes

T−1

∑
s=0

[a(s)− 1]x(s)

=
T−1

∑
s=0

x(s− g(s))[c(s)− c(s− 1)]− q
(
s,x(s),x(s− g(s)

)
. (4.3.16)

Let S = ∑T−1
s=0

∣
∣
∣a(s)− 1

∣
∣
∣
∣
∣
∣x(s)

∣
∣
∣. We claim that there exists a t∗ ∈ [0,T − 1] such that

T
∣
∣∣a(t∗)− 1

∣
∣∣
∣
∣∣x(t∗)

∣
∣∣≤

T−1

∑
s=0

∣
∣∣a(s)− 1

∣
∣∣
∣
∣∣x(s)

∣
∣∣.

Suppose such t∗ does not exist. Then

T
∣
∣
∣a(t∗)− 1

∣
∣
∣
∣
∣
∣x(t∗)

∣
∣
∣> S,

which implies that

T
∣
∣
∣a(t∗)− 1

∣
∣
∣
∣
∣
∣x(t∗)

∣
∣
∣> S+ ε.

Or
T−1

∑
t∗=0

∣
∣
∣a(t∗)− 1

∣
∣
∣
∣
∣
∣x(t∗)

∣
∣
∣>

T−1

∑
t∗=0

S+ ε
T

.

Hence, S > S+ ε, which is a contradiction. Therefore, such t∗ exists.
From (4.3.16), it implies that there exists a t∗ ∈ (0,T − 1) such that

T
∣
∣
∣a(t∗)− 1

∣
∣
∣
∣
∣
∣x(t∗)

∣
∣
∣≤

T−1

∑
s=0

∣
∣
∣k(t)

∣
∣
∣
∣
∣
∣x(s− g(s))

∣
∣
∣+
∣
∣
∣q
(
s,x(s),x(s− g(s)

)∣∣
∣.
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By taking the maximum over t ∈ [0,T − 1], we obtain from the above inequality

Tρ ||x(t∗)|| ≤
T−1

∑
s=0

(
δ ||x||+L||x||+E||x||+α

)

=
T−1

∑
s=0

(
(δ +L+E)||x||+α

)

= T
(
(δ +L+E)||x||+α

)
,

which gives us

||x(t∗)|| ≤ 1
ρ
(δ +L+K)||x||+ α

ρ
. (4.3.17)

Since for all t ∈ [0,T − 1]

x(t) = x(t∗)+
t−1

∑
s=t∗

�x(s),

taking maximum over t ∈ [0,T − 1] and using

||x(t)|| ≤ ||x(t∗)||+
T−1

∑
s=0

|�x(s)|

yields

||x(t)|| ≤ 1
ρ
(δ +L+E)||x||+ α

ρ
+T ||�x||. (4.3.18)

Taking the norm in (4.3.1) yields

||�x(t)|| ≤ ||a− 1|| ||x||+ ||c|| ||�x||+K||x||+L||x||+α.

Or
(

1−||c||
)
||�x(t)|| ≤

(
||a− 1||+E+L

)
||x||+α.

Thus

||�x(t)|| ≤
(
||a− 1||+E+L

)
||x||+α

1−||c|| . (4.3.19)



186 4 Periodic Solutions

A substitution of (4.3.19) into (4.3.18) yields

||x(t)|| ≤ 1
ρ
(δ +L+K)||x||+ α

ρ
+T

(
||a− 1||+K+L

)
||x||+α

1−||c|| .

Hence

||x(t)|| ≤ α(1−||c||+Tρ)
ρ(1−||c||)− (1−||c||)(δ+L+E)−Tρ(||a− 1||+L+E)

= G.

Thus, for all x(t) ∈ PT we have shown that

||x(t)|| ≤ G.

Define M = {ϕ ∈ PT : ||ϕ || ≤ G}. Then by Theorem 4.3.1, Equation (4.3.1) has a
T -periodic solution. This completes the proof.

4.4 Periodicity in Vector Neutral Nonlinear Functional
Difference Equations

Motivated by the work of Hale on functional differential equations [74], in this
section we consider the nonlinear neutral difference equation

�x(t) = A(t)x(t)+�Q(t,x(t− g(t)))+G(t,x(t),x(t − g(t))) (4.4.1)

where A is an n× n matrix function, g : Z → Z
+ is scalar and the functions Q :

Z×R
n → R

n and G : Z×R
n ×R

n → R
n are continuous in x. The purpose of this

work is to make use of the notion of the fundamental matrix and invert (4.4.1) so
that fixed point theory can be used. Krasnoselskii’s fixed point theorem is one of
the tools that we use in this research in order to show the existence of a periodic
solution. The obtained mapping is the sum of two mappings; one is a contraction
and the other is compact. The need to use Krasnoselkii’s fixed point theorem may be
necessary if one of the mappings is not compact nor satisfies a Lipschitz condition.
Inverting equation (4.4.1) to a fixed point problem enables us to show the uniqueness
of the periodic solution by appealing to the contraction mapping principle.
For an integer T > 1 let PT be the set of all n-vector functions x(t), periodic in t of
period T. Then (PT , || · ||) is a Banach space when it is endowed with the maximum
norm

‖x‖= max
t∈Z

|x(t)|= max
t∈[0,T−1]

|x(t|.

Note that PT is equivalent to the Euclidean space R
nT . If A is an n× n real ma-

trix, then we define the norm of A by |A| = max1≤i≤n ∑n
j=1 |ai j|. First we make the

following definition.
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Definition 4.4.1. If the matrix B(t) is periodic of period T , then the linear system

y(t + 1) = B(t)y(t) (4.4.2)

is said to be noncritical with respect to T, if it has no periodic solution of period T
except the trivial solution y = 0.

Since we are searching for the existence of periodic solution for system (4.4.1), it is
natural to assume that

A(t +T ) = A(t), g(t +T ) = g(t), g(t)≥ g∗ > 0 (4.4.3)

with g : Z→ Z
+ being scalar and Q(t,x) and G(t,x,y) are continuous functions and

periodic in t of period T. That is

Q(t +T,x) = Q(t,x), G(t +T,x,y) = G(t,x,y). (4.4.4)

Throughout this section it is assumed that the matrix B(t) = I +A(t) is nonsingular
and system (4.4.2) is noncritical, where I is the n× n identity matrix. Also, if x(t)
is a sequence, then the forward operator E is defined as Ex(t) = x(t + 1). Next we
state some known results about system (4.4.2). Let K(t) represent the fundamental
matrix of (4.4.2) with K(0) = I. Then
(i) detK(t) 	= 0.
(ii) K(t + 1) = B(t)K(t) and K−1(t + 1) = K−1(t)B−1(t).
(iii) System (4.4.2) is noncritical if and only if det(I−K(T )) 	= 0.
(iv) There exists a nonsingular matric L such that K(t +T ) = K(t)LT and K−1(t +
T ) = L−T K−1(t).
With the above-mentioned K(t) in mind we have the following lemma.

Lemma 4.3. Suppose (4.4.3)–(4.4.4) hold. If x(t) ∈ PT , then x(t) is a solution of
equation (4.4.1) if and only if

x(t) = Q(t,x(t − g(t)))

+ K(t)
(

K−1(T )− I
)−1 t+T

∑
u=t

K−1(u)
(

I −A(u)B−1(u)
)[

A(u)Q(u,x(u− g(u)))

+ G(u,x(u),x(u− g(u)))
]
. (4.4.5)

Proof. Let x(t) ∈ PT be a solution of (4.4.1) and K(t) be a fundamental matrix of
solutions of (4.4.2). First we write (4.4.1) as

�{x(t)−Q(t,x(t − g(t)))} = A(t){x(t)−Q(t,x(t− g(t)))}
+A(t)Q(t,x(t − g(t)))+G(t,x(t),x(t− g(t))).
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Since K(t)K−1(t) = I, it follows that

0 = �
(

K(t)K−1(t)
)
= K(t)�(K−1(t))+�(K(t))EK(t)

= K(t)�(K−1(t))+A(t)K(t)K−1(t)B−1(t)

= K(t)�(K−1(t))+A(t)B−1(t).

Or,

�(K−1(t)) =−K−1(t)A(t)B−1(t). (4.4.6)

If x(t) is a solution of (4.4.1) with x(0) = x0, then

�
{

K−1(t)
(

x(t)−Q(t,x(t −g(t)))
)}

= K−1(t)�
(

x(t)−Q(t,x(t −g(t)))
)
+�(K−1(t))E

(
x(t)−Q(t,x(t −g(t)))

)

= K−1(t)
[
A(t)

(
x(t)−Q(t,x(t −g(t)))

)
+A(t)Q(t,x(t −g(t)))+G(t,x(t),x(t −g(t)))

]

−K−1(t)A(t)B−1(t)
[
B(t)

(
x(t)−Q(t,x(t −g(t)))

)

+A(t)Q(t,x(t −g(t)))+G(t,x(t),x(t −g(t)))
]
, by (4.4.6)

= K−1(t)
(

I −A(t)B−1(t)
)(

A(t)Q(t,x(t −g(t)))+G(t,x(t),x(t −g(t)))
)
.

Summing the above equation from 0 to t − 1 yields

x(t) = Q(t,x(t − g(t)))+K(t)
(

x0 −Q(0,x(−g(0)))
)

+ K(t)
t−1

∑
u=0

K−1(u)
(

I−A(u)B−1(u)
)[

A(u)Q(u,x(u− g(u)))

+ G(u,x(u),x(u− g(u)))
]
. (4.4.7)

For the sake of simplicity, we let

D(u) =
(

I−A(u)B−1(u)
)[

A(u)Q(u,x(u− g(u)))+G(u,x(u),x(u− g(u)))
]
.

Since x(T ) = x0 = x(0), using (4.4.7) we get

x0 −Q(0,x(−g(0))) =
(

I −K(T)
)−1 T−1

∑
u=0

K(T )K−1(u)D(u). (4.4.8)
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A substitution of (4.4.8) into (4.4.7) yields

x(t) = Q(t,x(t − g(t))) + K(t)
(

I −K(T )
)−1 T−1

∑
u=0

K(T )K−1(u)D(u)

+
t−1

∑
u=0

K(t)K−1(u)D(u). (4.4.9)

It remains to show that expression (4.4.9) is equivalent to (4.4.5). Since

(I −K(T)
)−1

=
(

K(T )(K−1(T )− I)
)−1

=
(

K−1(T )− I
)−1

K−1(T ),

(4.4.9) becomes

x(t) = Q(t,x(t − g(t)))+K(t)
(

K−1(T )− I
)−1 T−1

∑
u=0

K−1(u)D(u)

+
t−1

∑
u=0

K(t)K−1(u)D(u)

= Q(t,x(t − g(t)))+K(t)
(

K−1(T )− I
)−1{T−1

∑
u=0

K−1(u)D(u)

+
t−1

∑
u=0

K−1(T )K−1(u)D(u)−
t−1

∑
u=0

K−1(u)D(u)
}

= Q(t,x(t − g(t)))+K(t)
(

K−1(T )− I
)−1{−

t−1

∑
u=T

K−1(u)D(u)

+
t−1

∑
u=0

K−1(T )K−1(u)D(u)
}
.

By letting u = s−T in the third term on the right side of the above expression, we
end up with

x(t) = Q(t,x(t − g(t)))+K(t)
(

K−1(T )− I
)−1{−

t−1

∑
u=T

K−1(u)D(u)

+
T+t−1

∑
s=T

K−1(T )K−1(s−T )D(s−T )
}
. (4.4.10)

By (iv) we have K(t −T ) = K(t)L−T and K(T ) = LT , where L−T = (LT )−1. Hence,
K−1(T )K−1(s−T ) =K−1(s). Moreover, since D(s−T) =D(s) expression (4.4.10)
becomes
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x(t) = Q(t,x(t − g(t)))+K(t)
(

K−1(T )− I
)−1{−

t−1

∑
u=T

K−1(u)D(u)

+
t+T−1

∑
u=T

K−1(u)D(u)
}

= Q(t,x(t − g(t)))+K(t)
(

K−1(T )− I
)−1 t+T−1

∑
u=t

K−1(u)D(u).

This completes the proof.

Now we are in a position to define a suitable mapping that satisfies all the require-
ments of Theorem 3.5.1. Define a mapping H by

(Hϕ)(t) = Q(t,ϕ(t − g(t)))

+ K(t)
(

K−1(T )− I
)−1 t+T−1

∑
u=t

K−1(u)
(

I−A(u)B−1(u)
)

×
[
A(u)Q(u,ϕ(u− g(u)))+G(u,ϕ(u),ϕ(u− g(u)))

]
. (4.4.11)

It is clear that H : PT → PT by the way it was constructed in Lemma 4.3.
We note that to apply the above theorem we need to construct two mappings; one is
a contraction and the other is compact. Therefore, we express equation (4.4.11) as

(Hϕ)(t) = (Bϕ)(t)+ (Cϕ)(t)

where C,B : PT → PT are given by

(Bϕ)(t) = Q(t,ϕ(t − g(t))) (4.4.12)

and

(Cϕ)(t) = K(t)
(

K−1(T )− I
)−1 t+T−1

∑
u=t

K−1(u)
(

I −A(u)B−1(u)
)

×
[
A(u)Q(u,ϕ(u− g(u)))+G(u,ϕ(u),ϕ(u− g(u)))

]
. (4.4.13)

We assume the functions Q and G are Lipschitz continuous in x and in x and y,
respectively. That is, there are positive constants E1,E2, and E3 such that

|Q(t,x)−Q(t,y)| ≤ E1‖x− y‖ and (4.4.14)

|G(t,x,y)−G(t,z,w))| ≤ E2‖x− z‖+E3‖y−w‖. (4.4.15)
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Observe that in view of (4.4.14) and (4.4.15) we have

|Q(t,x)| = |Q(t,x)−Q(t,0)+Q(t,0)|
≤ |Q(t,x)−Q(t,0)|+ |Q(t,0)|
≤ E1‖x‖+α.

Similarly,

|G(t,x,y)| = |G(t,x,y)−G(t,0,0)+G(t,0,0)|
≤ |G(t,x,y)−G(t,0,0)|+ |G(t,0,0)|
≤ E2‖x‖+E3‖y‖+β

where α = maxt∈Z |Q(t,0)| and β = maxt∈Z |G(t,0,0)|. The next lemma plays an
important role in showing C is compact.

Lemma 4.4. Suppose the hypothesis of Lemma 4.3 holds. If C is defined by (4.4.13),
then
(I)

||Cϕ || ≤ r
T−1

∑
u=0

∥
∥
∥A(u)Q(u,ϕ(u− g(u)))+G(u,ϕ(u),ϕ(u− g(u)))

∥
∥
∥,

where

r = max
t∈[0,T−1]

(
max

t≤u≤t+T−1

∣∣
∣
[
K(u)(K−1(T )− I)K−1(t)

]−1(
I−A(u)B−1(u)

)∣∣
∣
)

(4.4.16)
is a constant which is independent of Q and G and depends only upon T,A(t),B(t),
and K(t) where 1 ≤ t ≤ T.
(II) C is continuous and compact.

Proof. Let C be defined by (4.4.13) which is equivalent to

(Cϕ)(t) =
t+T−1

∑
u=t

[
K(u)(K−1(T )− I)K−1(t)

]−1

(
I−A(u)B−1(u)

)[
A(u)Q(u,ϕ(u− g(u)))

+ G(u,ϕ(u),ϕ(u− g(u)))
]
.
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As (Cϕ)(t) ∈ PT , we have

‖(Cϕ)(t)‖= max
t∈[0,T−1]

∣∣
∣

t+T−1

∑
u=t

[
K(u)(K−1(T )− I)K−1(t)

]−1(
I −A(u)B−1(u)

)

×
[
A(u)Q(u,ϕ(u− g(u)))+G(u,ϕ(u),ϕ(u− g(u)))

]∣∣
∣

≤ max
t∈[0,T−1]

(
max

t≤u≤t+T−1

∣∣
∣
[
K(u)(K−1(T )− I)K−1(t)

]−1(
I−A(u)B−1(u)

)∣∣
∣
)

×
T−1

∑
u=0

∥∥
∥A(u)Q(u,ϕ(u− g(u)))+G(u,ϕ(u),ϕ(u− g(u)))

∥∥
∥.

This completes the proof of (I). To see that C is continuous, we let ϕ ,ψ ∈ PT with
‖ϕ‖ ≤ D and ‖ψ‖ ≤ D. Given ε > 0, take δ = ε/N such that ‖ϕ −ψ‖ < δ . By
making use of (4.4.14) and (4.4.15) into (4.4.13) we get

∥
∥
∥Cϕ−Cψ

∥
∥
∥ ≤ rT

[
|A|E1‖ϕ−ψ‖+(E2+E3)‖ϕ−ψ‖

]

≤ N‖ϕ−ψ‖< ε

where E1, E2, and E3 are given by (4.4.14) and (4.4.15) and N = rT (|A|E1 +E2 +
E3). This proves C is continuous. Next, we show that C maps bounded subsets into
compact sets. Let J be given and let S = {ϕ ∈ PT :‖ ϕ ‖≤ J} and Q = {Cϕ : ϕ ∈
S}, then S is a subset of R

nT which is closed and bounded thus compact. As C
is continuous in ϕ it maps compact sets into compact sets. Therefore Q = C(S) is
compact.

Lemma 4.5. If B is given by (4.4.12) and E1 ≤ ζ < 1, where E1 is given by (4.4.14)
then B is a contraction.

Proof. Let B be defined by (4.4.12). Then for ϕ ,ψ ∈ PT we have

‖Bϕ−Bψ‖ = max
t∈[0,T−1]

|Bϕ−Bψ |
≤ E1 max

t∈[0,T−1]
|ϕ(t − g(t))−ψ(t− g(t))|

≤ ζ‖ϕ−ψ‖|.

Hence B defines a contraction mapping with contraction constant ζ .

Theorem 4.4.1. Let α =maxt∈Z |Q(t,0)| and β =maxt∈Z |G(t,0,0)|. Let r be given
by (4.4.16). Suppose (4.4.3), (4.4.4), (4.4.14), and (4.4.15) hold. Let J be a positive
constant satisfying the inequality

α+E1J+ rT
[
|A|(E1 +α)+E2+E3

]
J+ rTβ ≤ J. (4.4.17)

Let M= {ϕ ∈ PT : ||ϕ || ≤ J}. Then equation (4.4.1) has a solution in M.
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Proof. Define M = {ϕ ∈ PT : ||ϕ || ≤ J}. Then Lemma 4.4 implies C : PT → PT

and C is compact on M and continuous. Also, from Lemma 4.5, the mapping B is
a contraction and it is clear that B : PT → PT . Next, we show that if ϕ ,ψ ∈M, we
have ||Cφ +Bψ || ≤ J. Let ϕ ,ψ ∈M with ||ϕ ||, ||ψ || ≤ J. Then

∥
∥
∥Cϕ+Bψ

∥
∥
∥ ≤ E1||ψ ||+α+ r

T−1

∑
u=0

[|A|(α+E1||ϕ ||)+E2||ϕ ||+E3||ϕ ||+β ]

≤ α+E1J+ rT
[
|A|(E1 +α)+E2+E3

]
J+ rTβ ≤ J.

We see that all the conditions of Krasnoselskii’s theorem (Theorem 3.5.1) are satis-
fied on the set M. Thus there exists a fixed point z in M such that z = Az+Bz. By
Lemma 4.3, this fixed point is a solution of (4.4.1). Hence (4.4.1) has a T -periodic
solution.

Corollary 4.4. Suppose (4.4.3), (4.4.4), (4.4.14), and (4.4.15) hold and Q(t,x(t −
g(t))) and G(t,x(t),x(t −g(t))) are uniformly bounded. Let M be defined as in The-
orem 4.4.1 such that for ϕ ∈ M,

||Q(,ϕ(t − g(t)))|| ≤ J1,

and

∥
∥
∥

t+T−1

∑
u=t

[
K(u)(K−1(T )− I)K−1(t)

]−1

[
A(u)Q(u,ϕ(u− g(u)))+G(u,ϕ(u),ϕ(u− g(u)))

]∥∥
∥≤ J2

for positive constants J1 and J2. If

J1 + J2 ≤ J,

then (4.4.1) has a T -periodic solution.

Proof. Define B and C by (4.4.12) and (4.4.13), respectively and imitate the proof
of Theorem 4.4.1.

In the next theorem we use the contraction mapping principle to show that the peri-
odic solution is unique.

Theorem 4.4.2. Suppose (4.4.3), (4.4.4), (4.4.14), and (4.4.15) hold. Then equa-
tion (4.4.1) has a unique T -periodic solution.

Proof. Due to condition (4.4.21) we have that

E1 + rT (|A|E1 +E2 +E3)< 1.
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Let the mapping H be given by (4.4.11). For ϕ ,ψ ∈ PT , in view of (4.4.11), we have
∥
∥
∥Hϕ−Hψ

∥
∥
∥ ≤

(
E1 + rT (|A|E1 +E2 +E3)

)
‖ϕ−ψ‖.

This completes the proof.

It is worth noting that Theorem 4.4.1 and Theorem 4.4.2 are not applicable to func-
tions G of the form

G(t,ϕ(t),ϕ(t − g(t))) = f1(t)ϕ2(t)+ f2(t)ϕ2(t − g(t))),

where f1(t), f2(t), and g(t)> 0 are periodic sequences. To accommodate such func-
tions, we state the following corollary, which requires the functions Q and G to be
locally Lipschitz.

Corollary 4.5. Suppose (4.4.3)–(4.4.4) hold and let α and β be the constants de-
fined in Theorem 4.4.1. Let J be a positive constant and define M= {ϕ ∈ PT : ||ϕ || ≤
J}. Suppose there are positive constants E∗

1 ,E
∗
2 , and E∗

3 so that for x,y,z, and w ∈M

we have
|Q(t,x)−Q(t,y)| ≤ E∗

1‖x− y‖,
|G(t,x,y)−G(t,z,w))| ≤ E∗

2‖x− z‖+E∗
3‖y−w‖,

and
α+E∗

1 J+ rT
[
|A|(E∗

1 +α)+E∗
2 +E∗

3

]
J + rTβ ≤ J. (4.4.18)

Then equation (4.4.1) has a unique solution in M.

Proof. Let M= {ϕ ∈ PT : ||ϕ || ≤ J}. Let the mapping H be given by (4.4.11). Then
the results follow immediately from Theorem 4.4.1 and Theorem 4.4.2, since

E∗
1 + rT (|A|E∗

1 +E2 +E∗
3)< 1.

This completes the proof.

Now we display an example as an application.

Example 4.2. For small positive ε1 and ε2, we consider the perturbed discrete Van
Der Pol equation

�2x+(ε2x2 − 1)�x− x− ε1�
(

cos(tπ)x2(t − g(t))
)
− ε2cos(tπ) = 0, (4.4.19)

where g : Z → Z
+ is scalar and 2-periodic. By letting �x1 = x2 we can trans-

form (4.4.19) to

�
(

x1

x2

)
=

(
0 1
1 1

)(
x1

x2

)
+�

(
0

ε1cos(πt)x2
1(t − g(t))

)
+

(
0

ε2cos(πt)− ε2x2x2
1

)
,
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where

A =

(
0 1
1 1

)
, Q(t,x(t − g(t))) =

(
0

ε1cos(πt)x2
1(t − g(t))

)

and

G(t,x(t),x(t − g(t))) =

(
0

ε2cos(πt)− ε2x2x2
1

)
.

Since the matrix B = I + A has real eigenvalues, the system x(t + 1) = Bx(t) is
noncritical. Let ϕ(t) = (ϕ1(t),ϕ2(t)), ψ(t) = (ψ1(t),ψ2(t))∈M= {φ ∈P2 : ||ϕ || ≤
J}. Then,

∥
∥∥G(t,ϕ(t),ϕ(t − g(t)))−G(t,ψ(t),ψ(t− g(t)))

∥
∥∥

≤ ε2 max
t∈[0,1]

∣
∣∣(ϕ2(t)(ϕ1(t)+ψ1(t)),ψ2

1 (t))

(
ϕ1(t)−ψ1(t)

ϕ2(t)−ψ2(t)

)∣
∣∣

≤ 2ε2J2‖ϕ−ψ‖.

Hence, we see that β = ε2,E2 = 2ε2J2, and E3 = 0. In a similar fashion, we obtain
α = 0 and E1 = 2ε1J2. Thus, inequality (4.4.21)

2ε1J2 + 2r
[
2ε1J|A|+ 2ε2J2

]
J+ 2rε2 ≤ J

is satisfied for small ε1 and ε2. Hence, equation (4.4.19) has a 2-periodic solution,
by Theorem 4.4.1. On the other hand, the above inequality automatically implies
that

2ε1J + 2r
[
2ε1J|A|+ 2ε2J2

]
< 1

for small ε1 and ε2, and hence equation (4.4.19) has a unique 2-periodic solution,
by Corollary 4.5.

Next we make use of Schauder’s fixed point theorem, Theorem 4.7.1, to show that
Equation (4.4.1) has a T -periodic solution. This scenario could be encountered when
one of the mappings is neither contraction nor compact. Thus, we assume that the
function Q is uniformly continuous and bounded. That is there exists a positive
constant W such that

|Q(t,x)| ≤W, for all t ≥ 0. (4.4.20)

Theorem 4.4.3. Let β = maxt∈Z |G(t,0,0)|. Let r be given by (4.4.16). Suppose
(4.4.3), (4.4.4), (4.4.15), and (4.4.20) hold. Let J be a positive constant satisfying
the inequality

W + rT
[
|A|W +E2 +E3

]
J+ rTβ ≤ J. (4.4.21)

Then for M= {ϕ ∈ PT : ||ϕ || ≤ J}, equation (4.4.1) has a solution in M.
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Proof. Define M= {ϕ ∈ PT : ||ϕ || ≤ J}. Let the map H be defined by (4.4.11). Then
by similar argument, one can easily show that

H : M→M.

In addition, using the Lebesgue dominated convergence theorem, one can easily
show the map H is compact. For the complete argument we refer to Section 4.7.1.
Thus, by Theorem 4.7.1, Equation (4.4.1) has a T -periodic solution.

4.5 Periodicity in Nonlinear Systems with Infinite Delay

As we have seen in the previous section that using Schaefer’s fixed-point theorem
(Theorem 4.1.3) enabled us to show that if there is an a priori bound on all possible
T-periodic solutions of a related auxiliary Volterra difference equation, then there is
a T-periodic solution. In this section we apply our results to scalar Volterra differ-
ence equations in which the a priori bound is established by means of nonnegative
definite Lyapunov functionals. Thus, we consider

x(n+ 1) = Dx(n)+ f (x(n))+
n

∑
j=−∞

K(n, j)g(x( j))+ p(n), (4.5.1)

with the existence of positive constant Q such that

supn∈Z
n

∑
j=−∞

|K(n, j)| ≤ Q,

where D is a k× k matrix and p is a given k× 1 vector with p(n+ T) = p(n) for
integer T. The kernel K(n, j) satisfies K(n+T, j+T ) = K(n, j) for all −∞ < j ≤
n < ∞, where (n, j) ∈ Z

2 and K(n, j) = 0 for j > n. The period T is taken to be the
least positive integer for which these hold. The functions f and g are continuous.
Results of this section can be partially found in [137]. In [131] the author studied
the existence of periodic solutions of the Volterra difference system with

�x(n) = Dx(n)+
n

∑
j=−∞

C(n− j)x( j)+ g(n),n ∈ Z with
∞

∑
u=0

|C(u)|< ∞ (4.5.2)

where D and C are k×k matrices and g is a given k×1 vector with g(n+T ) = g(n)
for integer T, by using Schaefer’s fixed point theorem. In [131] the mapping was
constructed by taking direct sum in (4.5.2). On the other hand, Elaydi [52] con-
sidered (4.5.2) and utilized the notion of the resolvent of an equation associated
with (4.5.2) and concluded the existence of a periodic solution of (4.5.2). In arriving
at his results, Elaydi had to show that the zero solution of an homogenous equation
associated with (4.5.2) is uniformly asymptotically stable . Thus, it was assumed
that |D|< 1 where | · | is a suitable matrix norm. Later on, for the purpose of relax-
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ing |D|< 1, Elaydi and Zhang [53] used the notion of degree theory, due to Grannas,
and obtained the existence of a periodic solution of (4.5.2).
Once our results are established, we apply them to nonlinear Volterra discrete equa-
tions of the form

x(n+ 1) = ax(n)+ f (x(n))+
n

∑
j=−∞

K(n, j)g(x( j))+ p(n). (4.5.3)

In [130] the author considered (4.5.3) with the assumptions that the two functions
f and g are uniformly bounded and the coefficient a satisfies the stringent condition
−1 ≤ a ≤ 1. Our objective is to relax those conditions. We achieve our objective
by displaying nonnegative definite Lyapunov functionals, which in turn give the a
priori bound. Thus, the results of this section will advance the theory of existence
of periodic solutions in the most general form of nonlinear Volterra difference equa-
tions. For (4.5.1) a homotopy will have to be constructed which we obtain in the
following manner.
Let m be a real number such that either m > 1 or m < −1. For 0 ≤ λ ≤ 1, we
rewrite (4.5.1) as

x(n+ 1) = λ (−m−1I +D)x(n)+m−1x(n)+λ f (x(n))

+λ
n

∑
j=−∞

K(n, j)g(x( j))+λ p(n). (4.5.4)

One may easily verify that

x(n) = λ
n−1

∑
j=−∞

m−(n− j−1)
[
(−m−1I+D)x( j)+ f (x( j))

]

+ λ
n−1

∑
s=−∞

m−(n−s−1)
s

∑
j=−∞

K(s, j)g(x( j))

+ λ
n−1

∑
j=−∞

p( j)m−(n− j−1) (4.5.5)

is a solution of (4.5.4) and hence of (4.5.1). Define the space PT by

PT =
{

x(n) : x(n+T) = x(n), for all n ∈ Z

}

where T is the least positive integer so that x(n+T ) = x(n). Then
(

PT , | · |
)

defines

a Banach space of T -periodic k× 1 real vector sequences x(n) with the maximum
norm

|x|= max
i=1,·,·,·,k

{
max

n∈ [0,T−1]
|xi(n)|

}
.

For x(n) ∈ PT , using (4.5.5) we define the mapping H : PT → PT by
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(Hx)(n) = λ
n−1

∑
j=−∞

m−(n− j−1)
[
(−m−1I +D)x( j)+ f (x( j))

]

+ λ
n−1

∑
s=−∞

m−(n−s−1)
s

∑
j=−∞

K(s, j)g(x( j))

+ λ
n−1

∑
j=−∞

p( j)m−(n− j−1). (4.5.6)

Thus,
x = λHx

is equivalent to (4.5.5). Next we prove two Lemmas that are essential for the appli-
cation of Schaefer’s theorem (Theorem 4.1.3).

Lemma 4.6 ([137]). If H is defined by (4.5.6), then H is continuous and H : PT →
PT .

Proof. For the continuity of H we let φ1,φ2 ∈ PT and use (4.5.6) to obtain,

∣
∣
∣(Hφ1)− (Hφ2)

∣
∣
∣ ≤

n−1

∑
j=−∞

|m−(n− j−1)|
∣
∣
∣(−m−1I+D

∣
∣
∣|φ1 −φ2|

+
n−1

∑
j=−∞

|m−(n− j−1)|| f (φ1)− f (φ2)|

+ Q
n−1

∑
s=−∞

|m−(n−s−1)||g(φ1)− g(φ2)|.

By invoking the continuity of f and g and the fact that the infinite series
∑n−1

j=−∞ |m−(n− j−1)| is convergent, we deduce that H is continuous. Left to show
that H : PT → PT . Let ϕ(n) ∈ PT and use the substitution v = j−T followed by the
substitution r = s−T to obtain (Hϕ)(n+T ) = (Hϕ)(n). This concludes the proof
of the lemma.

Lemma 4.7 ([137]). If H is defined by (4.5.6), then H maps bounded subsets into
compact subsets.

Proof. Let J > 0 be given and define the two sets S =
{

x(n) ∈ PT : |x| ≤ J
}

and
W =

{
(Hx)(n) : x(n)∈PT

}
. Then W is a subset ofRT k, which is closed and bounded

and thus compact. As H is continuous in x it maps compact sets into compact sets.
We deduce that W = H(S) is compact. This concludes the proof of the Lemma.

Now we are in a position to state and prove our main theorem that yields the exis-
tence of a periodic solution of (4.5.1).

Theorem 4.5.1. If there exists an L > 0 such that for any T -periodic solution
of (4.5.4), 0 < λ < 1 satisfies |x| ≤ L, then (4.5.1) has a solution in PT .
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Proof. Let H be defined by (4.5.6). Then, by Lemmas 4.6 and 4.7, H is continuous,
compact, and T -periodic. The hypothesis |x| ≤ L rules out part (ii) of Theorem 4.1.3
and thus x = λHx has a solution for λ = 1, which solves (4.5.1). This concludes the
proof.

Remark 4.3. When it comes to application, the reader shall see that we may have
to require m ∈ (−1,0)∪ (0,1). Thus, to take care of such situation we note that
Equation (4.5.1) is equivalent for λ = 1 to

x(n+ 1) = λ (−mI+D)x(n)+mx(n)+λ f (x(n))

+λ
n

∑
j=−∞

K(n, j)g(x( j))+λ p(n). (4.5.7)

Then it follows readily that x is a bounded solution of (4.5.7) if and only if

x(n) = λ
n−1

∑
j=−∞

m−( j−n+1)
[
(−mI+D)x( j)+ f (x( j))

]

+ λ
n−1

∑
s=−∞

m−(s−n+1)
s

∑
j=−∞

K(s, j)g(x( j))

+ λ
n−1

∑
s=−∞

p( j)m−( j−n+1). (4.5.8)

Then one may easily prove a theorem similar to Theorem 4.5.1 for the case m ∈
(−1,0)∪ (0,1).

4.5.1 Application to Infinite Delay Volterra Equations

Now we apply the results of the previous section to scalar nonlinear Volterra differ-
ence equations with of the form

x(n+ 1) = ax(n)+ f (x(n))+
n

∑
j=−∞

K(n, j)g(x( j))+ p(n), (4.5.9)

where the terms f ,g,K, and p obey the same conditions as before. The highlight of
this work is to prove the existence of periodic solution of Equation (4.5.9) where the
magnitude of a could be |a|> 1. In most of the literature, it is required that |a|< 1.
To relax this condition we resort to nonnegative definite Lyapunov functional to
obtain the a priori bound on all possible T -periodic solutions of Equation (4.5.9)
and then conclude the existence of a periodic solution by invoking Theorem 4.5.1.
We shall assume in addition to those assumptions made in the previous section that
there exists F : Z+ →R and R > 0 such that
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|K(n,u+ n)| ≤ F(u), with
∞

∑
u=0

|F(u)| ≤ R, (4.5.10)

and

max
n∈Z

n−1

∑
j=−∞

∞

∑
s=n

|K(s, j)| < ∞. (4.5.11)

We note that assumption (4.5.10) implies that

max
n∈Z

∞

∑
s=n

|K(s, j)| ≤ R.

Now we state two theorems; one will show the existence of a periodic solution
of (4.5.9) when |a| < 1, and the other when |a|> 1. The proof of the first theorem
will be established in three different cases on the coefficient a.

Theorem 4.5.2 ([137]). Assume (4.5.10) and (4.5.11). Also, we assume that there
exists an α > 0 such that

| f (x)|+R|g(x)| ≤ α|x|,

and
|μ |+α− 1 ≤−β , for some positive constant β , (4.5.12)

where μ is to be defined in the body of the proof and R is given by (4.5.10). Then,
Equation (4.5.9) has a T -periodic solution.

Proof. Case 1. 0 < a < 1
Set m = a. Then 0 < m < 1. We shall apply Theorem 4.5.1 with m ∈ (0,1) to the
corresponding family of equations

x(n+ 1) = λ (−m+ a)x(n)+mx(n)+λ f (x(n))

+λ
n

∑
j=−∞

K(n, j)g(x( j))+λ p(n). (4.5.13)

Our aim is to show that there is a priori bound, say L such that all solutions x(n) of

x(n) = λ
n−1

∑
j=−∞

m−( j−n+1)
[
(−m+ a)x( j)+ f (x( j))

]

+ λ
n−1

∑
s=−∞

m−(s−n+1)
s

∑
j=−∞

K(s, j)g(x( j))+λ
n−1

∑
s=−∞

p( j)m−( j−n+1)

for 0 < λ < 1 satisfies |x| ≤ L. Once this is accomplished then we can rule out (ii)
of Schaefer’s theorem (Theorem 4.1.3), and then conclude the above equation has a
solution for λ = 1.
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We begin by rewriting (4.5.13) in the form

x(n+ 1) = μx(n)+λ f (x(n))+λ
n

∑
j=−∞

K(n, j)g(x( j))+λ p(n), (4.5.14)

where μ = m+λ (−m+ a). Define the Lyapunov functional V by

V (n,x(·)) = |x(n)|+λ
n−1

∑
j=−∞

∞

∑
s=n

|K(s, j)||g(x( j))|. (4.5.15)

It is clear that for x(n) ∈ PT , V (n+T,x) =V (n,x) and hence V is periodic.
Along the solutions of (4.5.14) we have

�V (n,x(·)) = |x(n+ 1)|− |x(n)|+λ
∞

∑
s=n+1

|K(s,n)||g(x(n))|

−λ
n−1

∑
j=−∞

|K(n, j)||g(x( j))|

≤
(
|μ |− 1

)
|x(n)|+λ | f (x)|+λ

∞

∑
s=n

|K(s,n)||g(x(n))|+ |p|

≤
(
|μ |− 1

)
|x(n)|+ | f (x)|+R|g(x)|+ |p|

≤
(
|μ |+α− 1

)
|x(n)|+ |p|

≤ −β |x(n)|+ |p|.

Since V is periodic for x ∈ PT , we have by summing the above inequality over one
period that

0 =V (n+T,x(·))−V(n,x(·)) =
n+T−1

∑
s=n

�V (s,x(·))

≤ −β
n+T−1

∑
s=n

|x(s)|+T |p|.

This implies that
n+T−1

∑
s=n

|x(s)| ≤ T |p|
β

.

Thus, |x(n)| is bounded over one period, and hence for any T -periodic solution
of (4.5.13) there is an E > 0 such that |x(n)| ≤ E, which serves as the a priori bound
on every possible T -periodic solution of (4.5.13). Therefore, by Theorem 4.5.1
Equation (4.5.9) has a T -periodic solution for 0 < a < 1. This concludes the proof
of Case 1.
Note that since 0 < λ < 1 condition (4.5.12) reduces to |a|+α− 1 ≤−β .



202 4 Periodic Solutions

Case 2. −1 < a < 0
Set m = a. Then −1 < m < 0 and we apply Theorem 4.5.1 with m ∈ (−1,0) to the
corresponding family of equations (4.5.13) with μ = m+λ (−m+ a) = a. Define
the Lyapunov functional V by (4.5.15) and proceed with the proof as in Case 1.
Note that since 0 < λ < 1, and μ = a, condition (4.5.12) reduces to |a|+α− 1 ≤
−β .
Case 3. a = 0
Let m be any fixed number strictly between 0 and 1. Then, μ = m − λm < m.
Choose m small enough so that (4.5.12) is satisfied. Then apply Theorem 4.5.1 with
m ∈ (0,1) to the corresponding family of equations (4.5.13). Define the Lyapunov
functional V by (4.5.15) and proceed with the proof as in Case 1.

The next theorem handles the case |a|> 1.

Theorem 4.5.3 ([137]). Assume (4.5.10) and (4.5.11). Also, we assume that there
exists an α > 0 such that

| f (x)|+R|g(x)| ≤ α|x|,

and
|μ |−α− 1 ≥ β , for some positive constant β ,

where μ is to be defined in the body of the proof. Then, Equation (4.5.9) has a
T -periodic solution.

Proof. Case 1. a > 1
Set m = a. We shall apply Theorem 4.5.1 with m > 1 to the corresponding family
of equations (4.5.13). Then, μ = m+λ (−m+ a) = a.
Define the Lyapunov functional V by

V (n,x(·)) = |x(n)−λ
n−1

∑
j=−∞

∞

∑
s=n

|K(s, j)||g(x( j))|. (4.5.16)

It is clear that for x(n) ∈ PT , then V (n+T,x) =V (n,x) and hence V is periodic.
Along the solutions of (4.5.14) we have

�V (n,x(·)) = |x(n+ 1)|− |x(n)|−λ
∞

∑
s=n

|K(s,n)||g(x(n))|

+ λ
n−1

∑
j=−∞

|K(n, j)||g(x( j))|

≥
(
|μ |− 1

)
|x(n)|− (| f (x)|+R|g(x)|)−|p|

≥
(
|μ |+α− 1

)
|x(n)|− |p|

≥ β |x(n)|− |p|.
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Since V is periodic for x ∈ PT , we have by summing the above inequality over one
period that

0 =V (n+T,x(·))−V(n,x(·)) =
n+T−1

∑
s=n

�V (s,x(·))

≥ β
n+T−1

∑
s=n

|x(s)|−T p.

This implies that
n+T−1

∑
s=n

|x(s)| ≤ T p
β

.

Thus, |x(n)| is bounded over one period, and hence for any T -periodic solution
of (4.5.13) there is an E > 0 such that |x(n)| ≤ E, which serves as the a priori bound
on every possible T -periodic solution of (4.5.13). Therefore, by Theorem 4.5.1
Equation (4.5.9) has a T -periodic solution for a > 1. This concludes the proof of
Case 1.
Again, we remark that the condition |μ |−α−1 ≥ β , for some positive constant β ,
reduces to |a|−α− 1 ≥ β .
Case 2. a <−1
Set m = a. Then m < −1 and we apply Theorem 4.5.1 to the corresponding family
of equations (4.5.13) with μ = m+ λ (−m+ a) = a. Thus, |μ | = |a|. Define the
Lyapunov functional V by (4.5.16) and then the proof is the same as in Case 2. This
concludes the proof of the theorem.

Remark 4.4. 1) By relaxing the condition |a| < 1, we point out that Theorem 4.5.3
significantly improves the literature that is related to the existence of periodic solu-
tions in Volterra difference equations.
2) In [130], for |a| = 1, the author was able to show the existence of a periodic so-
lution under the stringent condition that the functions f and g are uniform bounded
by certain positive constants. However, we could not do the same here under the
condition

| f (x)|+R|g(x)| ≤ α|x|.

4.6 Functional Equations with Constant or Periodically
Constant Solutions

Consider the difference equation

�x(t) = x(t)− x(t −L), (4.6.1)

then any constant is a solution of (4.6.1). In this case we ask ourselves if the constant
solution is pre-determined. Therefore, it is convenient to generalize the concept and
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look at variant forms of the general functional difference equation

�x(t) = g(x(t))− g(x(t −L)), (4.6.2)

where g : R → R and is continuous in x. Eqn.(4.6.2) can be easily generalized to
functional equations of the form

�x(t) = g(x(t −L1))− g(x(t −L1 −L2)), (4.6.3)

�x(t) = g(x(t))−
t−1

∑
s=t−L

p(s− t)g(x(s)). (4.6.4)

�x(t) =
t−1

∑
s=t−L

p(s− t)g(x(s))−
t−1

∑
s=−∞

q(s− t)g(x(s)). (4.6.5)

Results of this section are partially published in [127] and [139]. In [139] Raffoul,
studied systems (4.6.2) and (4.6.3) along with

�x(t) = g(t,x(t))− g(t,x(t −L)), g(t +L,x) = g(t,x). (4.6.6)

The first term on the right takes into account the ideas of (4.6.4) while the second
term takes into account the deaths distributed over all past times. Note that if x = c
where c is constant, then �x(t) = 0 in (4.6.2)–(4.6.5) provided that

−1

∑
s=−L

p(s) = 1, and
−1

∑
s=−∞

q(s) = 1.

4.6.1 The Finite Delay System

By means of fixed point theory we show that the unique solution of (4.6.4) converges
to a pre-determined constant or a periodic solution. Then, we show the solution is
stable and that its limit function serves as a global attractor. The same theory will
be extended to two more models. We will use the contraction mapping principle
to determine that constant. First, we state what it means for x(t) to be a solution
of (4.6.4). Note that since (4.6.4) is autonomous, we lose nothing by starting the
solution at 0.
Let ψ(t) : [−L,0] → R be a given bounded initial function. We say x(t,0,ψ) is a
solution of (4.6.4) if x(t,0,ψ) = ψ(t) on [−L,0] and x(t,0,ψ) satisfies (4.6.4) for
t ≥ 0.
It is of importance to us to know such constants since all of our models have constant
solutions. First we rewrite (4.6.4) as

�x(t) =�t

−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(x(u)), (4.6.7)
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where p(s) satisfies the condition

−1

∑
s=−L

p(s) = 1. (4.6.8)

Also, we assume that the function g is globally Lipschitz. That is, there exists a
constant k > 0 such that

|g(x)− g(y)| ≤ k|x− y|. (4.6.9)

On the other hand, in order to obtain contraction, we assume there is a positive
constant ξ < 1 so that

k
−1

∑
s=−L

|p(s)|(−s)≤ ξ . (4.6.10)

We note that if p(t) =
1
L

, then (4.6.8) is satisfied. Moreover, in this case condi-

tion (4.6.10) becomes

k
−1

∑
s=−L

|p(s)|(−s) = k
−1

∑
s=−L

1
L
(−s) =

k(L+ 1)
2

.

Thus, condition (4.6.10) is satisfied for

k(L+ 1)
2

≤ ξ .

To construct a suitable mapping, we let ψ : [−L,0]→ R be a given initial function.
By summing (4.6.7) from s = 0 to s = t − 1 we arrive at the expression

x(t) = ψ(0)−
−1

∑
s=−L

p(s)
−1

∑
u=s

g(ψ(u))+
−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(x(u)). (4.6.11)

If x(t) is given by (4.6.11), then it solves (4.6.4). In the next theorem we show that,
given an initial function ψ : [−L,0]→ R, the unique solution of (4.6.4) converges
to a unique determined constant.

Theorem 4.6.1 ([127]). Assume (4.6.8)–(4.6.10) and let ψ : [−L,0]→ R be a given
initial function. Then, the unique solution x(t,0,ψ) of (4.6.4) satisfies x(t,0,ψ)→ r,
where r is unique and given by

r = ψ(0)+ g(r)
−1

∑
s=−L

p(s)(−s)−
−1

∑
s=−L

p(s)
−1

∑
u=s

g(ψ(u)). (4.6.12)

Proof. For | · | denoting the absolute value, the metric space (R, | · |) is complete.
Define a mapping H : R→ R, by

H r = ψ(0)+ g(r)
−1

∑
s=−L

p(s)(−s)−
−1

∑
s=−L

p(s)
−1

∑
u=s

g(ψ(u)).
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For a,b ∈ R, we have

∣
∣H a−H b

∣
∣≤

−1

∑
s=−L

|p(s)|(−s)|g(a)−g(b)| ≤ k
−1

∑
s=−L

|p(s)|(−s)|a−b| ≤ ξ |a−b|.

This shows that H is a contraction on the complete metric space (R, | · |), and hence
H has a unique fixed point r, which implies that (4.6.12) has a unique solution.
It remains to show that (4.6.4) has a unique solution and that it converges to the
constant r.
Let || · || denote the maximum norm and let M be the set bounded functions φ :
[−L,∞)→R with φ(t) =ψ(t) on [−L,0],φ(t)→ r as t →∞. Then (M, || · ||) defines
a complete metric space. For φ ∈M, define P : M→M by

(Pφ)(t) = ψ(t), for −L ≤ t ≤ 0,

and

(Pφ)(t) = ψ(0)−
−1

∑
s=−L

p(s)
−1

∑
u=s

g(ψ(u))+
−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(φ(u)), for t ≥ 0.

(4.6.13)
For φ ∈M with φ(t)→ r, we have

−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(φ(u))→ g(r)
−1

∑
s=−L

p(s)(−s), as t → ∞.

Then, using (4.6.12) and (4.6.13), we see that

(Pφ)(t)→ ψ(0)+ g(r)
−1

∑
s=−L

p(s)(−s)−
−1

∑
s=−L

p(s)
−1

∑
u=s

g(ψ(u)) = r.

Thus, P : M→M. It remains to show that P is a contraction.
For a,b ∈M, we have

∣
∣(Pa)(t)− (Pb)(t)

∣
∣ ≤

−1

∑
s=−L

|p(s)|(−s)|g(a(s))− g(b(s))|

≤ k
−1

∑
s=−L

|p(s)|(−s) |a− b| ≤ ξ ||a− b||.

Thus, P is a contraction and has a unique fixed point φ ∈ M. Based on how the
mapping P was constructed, we conclude the unique fixed point φ satisfies (4.6.4).

Remark 4.5. For any given initial function, Theorem 4.6.1 explicitly gives the limit
to which the solution converges to. That limit is the unique solution r of (4.6.12).

Remark 4.6. For arbitrary initial function, say η : [−L,0]→R, Theorem 4.6.1 shows
that x(t,0,η)→ r. Thus, we may think of r as being “global attractor.”
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Remark 4.7. We may think of Theorem 4.6.1 as of stability results. In general, we
know that solutions depend on initial functions. That is, solutions which start close
remain close on finite intervals. Under conditions Theorem 4.6.1 such solutions re-
main close forever, and their asymptotic respective constants remain close too.

The next theorem is a verification of our claim in Remark 4.7.

Theorem 4.6.2 ([127]). Assume the hypothesis of Theorem 4.6.1. Then every initial
function is stable. Moreover, if ψ1 and ψ2 are two initial functions with x(t,0,ψ1)→
r1, and x(t,0,ψ2)→ r2, then |r1 − r2|< ε for positive ε .

Proof. Let ||ψ ||[−L,0] denote the supremum norm of ψ on the interval [−L,0]. Fix
an initial function ψ1 and let ψ2 be any other initial function. Let Pi, i = 1,2 be
the mapping defined by (4.6.13). Then by Theorem 4.6.1 there are unique functions
θ1,θ2 and unique constants r1 and r2 such that

P1θ1 → θ1, P2θ2 → θ2, θ1(t)→ r1, θ2(t)→ r2.

Let ε > 0 be any given positive number and set δ =
ε
(
1− k∑−1

s=−L |p(s)|(−s)
)

1+ k∑−1
s=−L |p(s)|(−s)

.

Then

|θ1(t)−θ2(t)| = |(P1θ1)(t)− (P2θ2)(t)|

≤ |ψ1(0)−ψ2(0)|+
−1

∑
s=−L

p(s)
−1

∑
u=s

|g(ψ1(s)
)− g

(
ψ2(s)

)|

+
−1

∑
s=−L

p(s)
t−1

∑
u=t+s

|g(θ1(s)
)− g

(
θ2(s)

)|

≤ |ψ1(0)−ψ2(0)|+ k
−1

∑
s=−L

|p(s)|(−s)||ψ1 −ψ2||[−L,0]

+ k
−1

∑
s=−L

|p(s)|(−s)|||θ1 −θ2||.

This yields

||θ1 −θ2||<
1+ k∑−1

s=−L |p(s)|(−s)

1− k∑−1
s=−L |p(s)|(−s)

||ψ1 −ψ2||[−L,0] < ε,

provided that

||ψ1 −ψ2||[−L,0] <
ε
(
1− k∑−1

s=−L |p(s)|(−s)
)

1+ k∑−1
s=−L |p(s)|(−s)

:= δ .
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This shows that

|x(t,0,ψ1)− x(t,0,ψ2)|< ε, whenever ||ψ1 −ψ2||[−L,0] < δ .

For the rest of the proof we note that |θi(t)− ki| → 0, as t → ∞ implies that

|r1 − r2| = |r1 −θ1(t)+θ1(t)−θ2(t)+θ2(t)− r2|
≤ |r1 −θ1(t)|+ ||θ1 −θ2||+ |θ2(t)− r2| → ||θ1 −θ2||, (as t → ∞)
< ε.

4.6.2 The Infinite Delay System

In this section, we consider the infinite delay system . For completeness we restate
the infinite delay system

�x(t) =
t−1

∑
s=t−L

p(s− t)g(x(s))−
t−1

∑
s=−∞

q(s− t)g(x(s)) (4.6.14)

and rewrite it as

�x(t) =−�t

−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(x(u))+�t

t−1

∑
s=−∞

s−t

∑
u=−∞

q(u)g(x(s)), (4.6.15)

where we have assumed (4.6.8) and

−1

∑
s=−∞

q(s) = 1. (4.6.16)

Let ψ : (−∞,0]→ R be an initial bounded sequence. Then

x(t) =−
−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(x(u))+
t−1

∑
s=−∞

s−t

∑
u=−∞

q(u)g(x(s))+ c, (4.6.17)

where

c = ψ(0)+
−1

∑
s=−L

p(s)
−1

∑
u=s

g(x(u))−
−1

∑
s=−∞

s

∑
u=−∞

q(u)g(ψ(s)) (4.6.18)

is a solution of (4.6.14). We have the following theorem.

Theorem 4.6.3 ([127]). Assume (4.6.8), (4.6.9), and (4.6.16) and there exists a con-
stant α so that for 0 < α < 1, we have
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k
( −1

∑
s=−L

|p(s)(−s)|+
−1

∑
s=−∞

s

∑
u=−∞

|q(u)|
)
≤ α. (4.6.19)

Then, the unique solution x(t,0,ψ) of (4.6.14) satisfies x(t,0,ψ) → r, where r is
unique and given by

r = c− g(r)
−1

∑
s=−L

p(s)(−s)+ g(r)
−1

∑
s=−∞

s

∑
u=−∞

q(u), (4.6.20)

and c is given by (4.6.18).

Proof. For | · | denoting the absolute value, the metric space (R, | · |) is complete.
Define a mapping H : R→ R, by

H r = c− g(r)
−1

∑
s=−L

p(s)(−s)+ g(r)
−1

∑
s=−∞

s

∑
u=−∞

q(u).

For a,b ∈ R, we have

∣
∣H a−H b

∣
∣ ≤

−1

∑
s=−L

|p(s)(−s)||g(a)− g(b)|+ |g(a)− g(b)|
−1

∑
s=−∞

s

∑
u=−∞

|q(u)|

≤ k
( −1

∑
s=−L

|p(s)(−s)|+
−1

∑
s=−∞

s

∑
u=−∞

|q(u)|
)
|a− b|

≤ α|a− b|.

This shows that H is a contraction on the complete metric space (R, | · |), and hence
H has a unique fixed point r, which implies that (4.6.20) has a unique solution. It
remains to show that (4.6.14) has a unique solution and that it converges to the
constant r.
Let || · || denote the maximum norm and let M be the set bounded functions φ :
[−∞,∞) → R with φ(t) = ψ(t) on [−∞,0],φ(t) → r as t → ∞. Then (M, || · ||)
defines a complete metric space. For φ ∈M, define P : M→M by

(Pφ)(t) = ψ(t), for t ∈ (−∞,0],

and

(Pφ)(t) = c−
−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(φ(u))+
t−1

∑
s=−∞

s−t

∑
u=−∞

q(u)g(φ(s)), for t ≥ 0

(4.6.21)
where c is given by (4.6.18). Due to the continuity of g we have that for φ ∈M with
φ(t)→ r,

−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(φ(u))→ g(r)
−1

∑
s=−L

p(s)(−s), as t → ∞.
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Next we show that

t−1

∑
s=−∞

s−t

∑
u=−∞

q(u)g(φ(s))→ g(r)
t−1

∑
s=−∞

s−t

∑
u=−∞

q(u), as t → ∞. (4.6.22)

Again, due to the continuity of G, for φ ∈M with φ(t)→ r, one might find positive
numbers Q and T such that for any ε > 0 we have

|g(φ(t))− g(r)| ≤ Q for all t and |φ(t)− r|< ε if T ≤ t < ∞.

With this in mind, we have

∣
∣

t−1

∑
s=−∞

s−t

∑
u=−∞

q(u)
(
g(φ(s))− g(r)

)∣∣
∣ ≤

T−1

∑
s=−∞

s−t

∑
u=−∞

|q(u)|
∣
∣
∣
(
g(φ(s))− g(r)

)∣∣
∣

+
t−1

∑
s=T

s−t

∑
u=−∞

|q(u)|
∣∣
∣
(
g(φ(s))− g(r)

)∣∣
∣

≤ Q
T−1

∑
s=−∞

s−t

∑
u=−∞

|q(u)|+
t−1

∑
s=T

s−t

∑
u=−∞

|q(u)||φ(s)− r|

≤ Q
T−1

∑
s=−∞

s−t

∑
u=−∞

|q(u)|+ kε
t−1

∑
s=T

s−t

∑
u=−∞

|q(u)|

≤ Q
T−t−1

∑
s=−∞

s

∑
u=−∞

|q(u)|+ kε
t−1

∑
s=−∞

s−t

∑
u=−∞

|q(u)|.

Due to the convergence that was assumed in (4.6.19), we have
T−t−1

∑
s=−∞

s

∑
u=−∞

|q(u)| →

0, as t →∞. Moreover, for T ≤ t <∞, condition (4.6.19) implies that kε
t−1

∑
s=−∞

s−t

∑
u=−∞

|
q(u)| ≤ εα. Hence (4.6.22) is proved. It remains to show that P is a contraction.
For a,b ∈M, we have

∣
∣(Pa)(t)− (Pb)(t)

∣
∣ ≤

−1

∑
s=−L

|p(s)|(−s)|g(a(s))− g(b(s))|

+
t−1

∑
s=−∞

s−t

∑
u=−∞

|q(u)||g(a(s))− g(b(s))|

≤ k
( −1

∑
s=−L

|p(s)(−s)|+
t−1

∑
s=−∞

s−t

∑
u=−∞

|q(u)|
)
||a− b||

≤ α||a− b||.

Parallel remarks to Remarks 4.5–4.7 can be made regarding the infinite delay model
given by (4.6.14).
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4.6.3 The Finite Delay System Revisited

We revisit the finite delay system given by (4.6.4) with slight adjustment, namely

�x(t) = g(t,x(t))−
t−1

∑
s=t−L

p(s− t)g(s,x(s)), (4.6.23)

where
g(t +L,x) = g(t,x) (4.6.24)

and investigate the existence of periodic solutions. As before, we assume there exists
a positive constant k such that for all x,y ∈ R we have

|g(t,x)− g(t,y)| ≤ k|x− y|. (4.6.25)

If (4.6.8) holds, then we may rewrite (4.6.23) as

�x(t) =�t

−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(u,x(u)). (4.6.26)

As before, to construct a suitable mapping, we let ψ : [−L,0]→R be a given initial
function. By summing (4.6.26) from s = 0 to s = t − 1 we arrive at the expression

x(t) =
−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(u,x(u))+ c, (4.6.27)

where c is given by

c = ψ(0)−
−1

∑
s=−L

p(s)
−1

∑
u=s

g(u,ψ(u)). (4.6.28)

Theorem 4.6.4 ([127]). Assume (4.6.8)–(4.6.10), (4.6.24), and (4.6.25) and let
ψ : [−L,0] → R be a given initial function. Then, the unique solution x(t,0,ψ)
of (4.6.23) satisfies x(t,0,ψ)→ ρ , as t → ∞ where ρ is a unique L-periodic solu-
tion of (4.6.23).

Proof. Let || · || denote the maximum norm and let M be the set of L-periodic se-
quences φ : Z→Z. Then (M, || · ||) defines a Banach space of L-periodic sequences.
For φ ∈M, define P : M→M by

(Pφ)(t) = c+
−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(u,φ(u)) (4.6.29)

Next we show that
(Pφ)(t +L) = (Pφ)(t).
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To see, for φ ∈M, we have

(Pφ)(t +L) = c+
−1

∑
s=−L

p(s)
t+L−1

∑
u=t+s+L

g(u,φ(u))

= c+
−1

∑
s=−L

p(s)
t−1

∑
l=t+s

g(l +L,φ(l +L)), (l = u−L)

= c+
−1

∑
s=−L

p(s)
t−1

∑
l=t+s

g(l,φ(l)) = (Pφ)(t).

Hence, P maps M into M. Also, by similar argument as in the previous theorems,
one can easily show that P is a contraction. Hence, (4.6.29) has a unique fixed point
ρ in M, which solves (4.6.23). It remains to show that (Pφ)(t)→ ρ(t).
Let || · || denote the maximum norm and let M be the set of bounded functions
φ : [−L,∞)→R with φ(t) =ψ(t) on [−L,0], φ(t)→ ρ(t) as t →∞. Then (M, || · ||)
defines a complete metric space. For φ ∈M, define P : M→M by

(Pφ)(t) = ψ(t), for −L ≤ t ≤ 0,

and

(Pφ)(t) = c+
−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(u,φ(u)), for t ≥ 0.

∣
∣(Pφ)(t)−ρ(t)

∣
∣ =

∣
∣

−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(u,φ(u))−
−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(u,ρ(u))
∣
∣

≤
−1

∑
s=−L

|p(s)|
t−1

∑
u=t+s

k|φ(u)−ρ(u)|

≤
−1

∑
s=−L

|p(s)|
t−1

∑
u=t−L

k|φ(u)−ρ(u)| → 0, as t → ∞,

since |φ(u)− ρ(u)| → 0, as t → ∞. The proof for showing P is a contraction is
similar to before and hence we omit. Thus we have shown that P has a unique
fixed point in M, which converges to ρ .

We note that Remarks 4.5–4.7 and hence Theorem 4.6.2 hold for equations (4.6.14)
and (4.6.23). We end with the following corollary.

Corollary 4.6 ([127]). Assume the hypothesis of Theorem 4.6.4. If there exists an
r ∈ R, such that

g(t,r) =
−1

∑
s=−L

p(s)g(t + s,r), (4.6.30)

then ρ of Theorem 4.6.4 is constant.

Proof. Suppose (4.6.23) has a constant solution r. Then from (4.6.26) we have
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0 =�r = �t

−1

∑
s=−L

p(s)
t−1

∑
u=t+s

g(u,r)

=
−1

∑
s=−L

p(s)
(
g(t,r)− g(t+ s,r)

)

= g(t,r)
−1

∑
s=−L

p(s)−
−1

∑
s=−L

p(s)g(t + s,r)

= g(t,r)−
−1

∑
s=−L

p(s)g(t + s,r), due to (4.6.8).

Or,

g(t,r) =
−1

∑
s=−L

p(s)g(t + s,r).

This completes the proof.

4.7 Periodic and Asymptotically Periodic Solutions
in Coupled Systems

Now we turn our attention to the existence of periodic and asymptotically periodic
solutions of a coupled system of nonlinear Volterra difference equations with infinite
delay. By means of fixed point theory, namely Schauder’s fixed point theorem, we
furnish conditions that guarantee the existence of such periodic solutions. Consider
the coupled system of nonlinear Volterra difference equations with infinite delay

⎧
⎪⎨

⎪⎩

�xn = hnxn +
n
∑

i=−∞
an,i f (yi)

�yn = pnyn +
n
∑

i=−∞
bn,ig(xi)

(4.7.1)

where f and g are real valued and continuous functions, and {an,i}, {bn,i}, {hn},
and {pn} are real sequences. In this study, we use Schauder’s fixed point theorem
to provide sufficient conditions guaranteeing the existence of periodic and asymp-
totically periodic solutions of system (4.7.1). Since we are seeking the existence of
periodic solutions it is natural to ask that there exists a least positive integer T such
that

hn+T = hn, pn+T = pn, (4.7.2)

an+T,i+T = an,i, (4.7.3)

and
bn+T,i+T = bn,i (4.7.4)



214 4 Periodic Solutions

hold for all n ∈ N, where N indicates the set of all natural numbers.
There is a vast literature on this subject in the continuous and discrete cases. For
instance, in [179] the authors considered the two-dimensional system of nonlinear
Volterra difference equations

⎧
⎪⎨

⎪⎩

�xn = hnxn +
n
∑

i=1
an,i f (yi)

�yn = pnyn +
n
∑

i=1
bn,ig(xi)

, n = 1,2, ...

and classified the limiting behavior and the existence of its positive solutions with
the help of fixed point theory. Also, the authors of [102] analyzed the asymptotic
behavior of positive solutions of second order nonlinear difference systems, while
the authors of [107] studied the classification and the existence of positive solutions
of the system of Volterra nonlinear difference equations. Periodicity of the solutions
of difference equations has been handled by [6, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75]. In
[48] and [49], the authors focused on a system of Volterra difference equations of
the form

xs(n) = as(n)+ bs(n)xs(n)+
r

∑
p=1

n

∑
i=0

Ksp(n, i)xp(i), n ∈N,

where as, bs, xs : N→ R and Ksp : N×N→ R, s = 1,2, ...,r, and R denotes the set
of all real numbers and obtained sufficient conditions for the existence of asymptot-
ically periodic solutions. They had to construct a mapping on an appropriate space
and then obtain a fixed point. Furthermore, in [86] the authors investigated the ex-
istence of periodic and positive periodic solutions of system of nonlinear Volterra
integro-differential equations. The paper [55] of Elaydi was one of the first to ad-
dress the existence of periodic solutions and the stability analysis of Volterra dif-
ference equations. Since then, the study of Volterra difference equations has been
vastly increasing. For instance, we mention the papers [93, 113], and the references
therein. In addition to periodicity we refer to [96] and [117] for results regarding
boundedness.
The main purpose of this study is to extend the results of the above-mentioned lit-
erature by investigating the possibility of existence of periodic and the asymptotic
periodic solutions for systems of nonlinear Volterra difference equations with infi-
nite delay.

By a solution of the system (4.7.1) we mean a pair of sequences {(xn,yn)}n∈Z of real
numbers which satisfies (4.7.1) for all n ∈ N. Let Z− denote the set of all negative
integers. The initial sequence space for the solutions of the system (4.7.1) can be
constructed as follows. Let S denote the nonempty set of pairs of all sequences
(η ,ζ ) = {(ηn,ζn)}n∈Z− of real numbers such that

max

{
sup

n∈Z−
|ηn| , sup

n∈Z−
|ζn|
}
< ∞
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and for each n ∈ N, the series

0

∑
i=−∞

an,i f (ηi) and
0

∑
i=−∞

bn,ig(ζi)

converge. It is clear that for any given pair of initial sequences {(ηn,ζn)}n∈Z− in S
there exists a unique solution {(xn,yn)}n∈Z of the system (4.7.1) which satisfies the
initial condition (

xn

yn

)
=

(
ηn

ζn

)
for n ∈ Z

−. (4.7.5)

Such solution {(xn,yn)}n∈Z is said to be the solution of the initial problem (4.7.1-
4.7.5). For any pair (η ,ζ ) ∈ S, one can specify a solution of (4.7.1–4.7.5) by denot-
ing it by

(
xη ,yζ

)
:= {(xn (η) ,yn (ζ ))}n∈Z, where

(xn (η) ,yn (ζ )) =
{
(ηn,ζn) for n ∈ Z

−
(xn,yn) for n ∈N

In our analysis, we apply a fixed point theorem to general operators over a Banach
space of bounded sequences defined on the whole set of integers. Unlike the above-
mentioned literature that dealt with stability of delayed difference systems, in the
construction of our existence type theorems we neglect the consideration of phase
space, for simplicity. For similar approach we refer to [28].

Theorem 4.7.1. [Schauder’s Fixed Point Theorem] Let X be a Banach space. As-
sume that K is a closed, bounded, and convex subset of X. If T : K → K is a compact
operator, then it has a fixed point in K.

4.7.1 Periodicity

In this section, we use Schauder’s fixed point theorem to show that system (4.7.1)
has a periodic solution. First, we start by defining periodic sequences on Z.

Definition 4.7.1. Let T be a positive integer. A sequence x = {xn}n∈Z is called T -
periodic if xn+T = xn for all n ∈ Z. The smallest positive integer T such that xn+T =
xn holds for all n ∈ Z is called the period of the sequence x = {xn}n∈Z.

Let PT be the set of all T -periodic sequences on Z. Then PT is a Banach space when
it is endowed with the maximum norm

‖(x,y)‖ := max

{
max

n∈[1,T ]
Z

|xn| , max
n∈[1,T ]

Z

|yn|
}
.

Let us define the subset Ω (W ) of PT by

Ω (W ) := {(x,y) ∈ PT : ‖(x,y)‖ ≤W},
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where W > 0 is a constant. Then Ω (W ) is bounded, closed, and convex subset of
PT . For any pair (x,y) = {(xn,yn)}n∈Z ∈Ω (W ), we define the mapping E : Ω → PT

by

E (x,y) := {E(x,y)n}n∈Z :=

{(
E1(x,y)n

E2(x,y)n

)}

n∈Z
,

where

E1(x,y)n :=

⎧
⎨

⎩

xn for n ∈ Z
−

αh

n+T−1
∑

i=n

(
n+T−1
∏

l=i+1
(1+ hl)

)
i
∑

m=−∞
ai,m f (ym) for n ∈N

, (4.7.6)

E2(x,y)n :=

⎧
⎨

⎩

yn for n ∈ Z
−

αp

n+T−1
∑

i=n

(
n+T−1
∏

l=i+1
(1+ pl)

)
i
∑

m=−∞
bi,mg(xm) for n ∈ N

, (4.7.7)

and

αh :=

[

1−
T−1

∏
l=0

(1+ hl)

]−1

,

αp :=

[

1−
T−1

∏
l=0

(1+ pl)

]−1

.

We shall use the following result on several occasions in our further analysis.

Lemma 4.8. Assume that (4.7.2–4.7.4) hold. Suppose that 1+ hn 	= 0, 1+ pn 	= 0
for all n ∈ [1,T ]Z := [1,T ]∩Z, and that

T−1

∏
l=0

(1+ hl) 	= 1 and
T−1

∏
l=0

(1+ pl) 	= 1. (4.7.8)

The pair (x,y) = {(xn,yn)}n∈Z satisfies

E(x,y) = (x,y)

if and only if it is a T -periodic solution of (4.7.1).

Proof. One may easily verify that the pair (x,y) = {(xn,yn)}n∈Z ∈Ω (W ) satisfying
(x,y) = E(x,y) also satisfies the system (4.7.1) for all n ∈ N. Conversely, suppose
that the pair (x,y) = {(xn,yn)}n∈Z is a T -periodic sequence satisfying (4.7.1) for all

n ∈ N. Multiplying both sides of the first equation in (4.7.1) with

(
n
∏
l=0

(1+ hl)

)−1

and taking the summation from n to n+T − 1, we obtain

n+T−1

∑
i=n

�
⎡

⎣xi

(
i−1

∏
l=0

(1+ hl)

)−1
⎤

⎦=
n+T−1

∑
i=n

(
i

∏
l=0

(1+ hl)

)−1 i

∑
m=−∞

ai,m f (ym).
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This implies that

xn+T

(
n+T−1

∏
l=0

(1+ hl)

)−1

− xn

(
n−1

∏
l=0

(1+ hl)

)−1

=
n+T−1

∑
i=n

(
i

∏
l=0

(1+ hl)

)−1 i

∑
m=−∞

ai,m f (ym).

Using the equalities xn+T = xn and
n+T−1
∏

l=n
(1+hl) =

T−1
∏
l=0

(1+hl), we have E1(x,y)n =

(xn,yn) for n ∈ N. The equality E2(x,y)n = (xn,yn) for n ∈ N can be obtained by
using a similar procedure. The proof is complete.

In preparation for the next result we assume that there exist positive constants W1,
W2, K1, and K2 such that

| f (x)| ≤W1 (4.7.9)

|g(y)| ≤W2, (4.7.10)

|αh|
n+T−1

∑
i=n

∣
∣
∣
∣
∣

n+T−1

∏
l=i+1

(1+ hl)

∣
∣
∣
∣
∣

i

∑
m=−∞

|ai,m| ≤ K1, (4.7.11)

and
∣
∣αp
∣
∣

n+T−1

∑
i=n

∣
∣∣
∣
∣

n+T−1

∏
l=i+1

(1+ pl)

∣
∣∣
∣
∣

i

∑
m=−∞

|bi,m| ≤ K2 (4.7.12)

for all n ∈ Z and all (x,y) ∈Ω (W ).

Theorem 4.7.2. In addition to the assumptions of Lemma 4.8 suppose that (4.7.9–
4.7.12) hold. Then (4.7.1) has a T -periodic solution.

Proof. From Lemma 4.8, we can deduce that E(x,y)n+T = E(x,y)n for any (x,y) ∈
Ω (W ). Moreover, if (x,y) ∈Ω (W ), then

|E1(x,y)n| ≤ |αh|
n+T−1

∑
i=n

∣∣
∣
∣
∣

n+T−1

∏
l=i+1

(1+ hl)

∣∣
∣
∣
∣

i

∑
m=−∞

|ai,m| | f (ym)| ≤W1K1, (4.7.13)

and

|E2(x,y)n| ≤
∣
∣αp
∣
∣

n+T−1

∑
i=n

∣
∣
∣
∣∣
αp

n+T−1

∏
l=i+1

(1+ pl)

∣
∣
∣
∣∣

i

∑
m=−∞

|bi,m| |g(xm)| ≤W2K2 (4.7.14)

for all n ∈N. If we set W = max{W1K1,W2K2}, then E maps Ω (W ) into itself. Now
we show that E is continuous. Let {(xl ,yl)}, l ∈ N={0,1,2, ...}, be a sequence in
Ω (W ) such that
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lim
l→∞

∥
∥∥(xl ,yl)− (x,y)

∥
∥∥= lim

l→∞

(
max

n∈[1,T ]
Z

{∣∣∣xl
n − xn

∣
∣∣ ,
∣
∣∣yl

n − yn

∣
∣∣
})

= 0.

Since Ω (W ) is closed, we must have (x,y) ∈ Ω (W ). Then by definition of E we
have

∥∥
∥E(xl ,yl)−E(x,y)

∥∥
∥= max{ max

n∈[1,T ]
Z

∣∣
∣E1(x

l ,yl)n −E1(x,y)n

∣∣
∣ ,

max
n∈Z

∣
∣
∣E2(x

l ,yl)n −E2(x,y)n

∣
∣
∣},

in which

∣
∣
∣E1(x

l ,yl)n −E1(x,y)n

∣
∣
∣= |αh|

∣
∣
∣
∣
∣

n+T−1

∑
i=n

(
n+T−1

∏
l=i+1

(1+ hl)

)
i

∑
m=−∞

ai,m f (yl
m)−

n+T−1

∑
i=n

(
n+T−1

∏
l=i+1

(1+ hl)

)
i

∑
m=−∞

ai,m f (ym)

∣∣
∣
∣
∣

≤ |αh|
n+T−1

∑
i=n

∣
∣
∣∣
∣

n+T−1

∏
l=i+1

(1+ hl)

∣
∣
∣∣
∣

i

∑
m=−∞

|ai,m|
∣
∣∣ f (yl

m)− f (ym)
∣
∣∣ .

Similarly,

∣
∣
∣E2(x

l ,yl)n −E2(x,y)n

∣
∣
∣≤

∣
∣αp
∣
∣

n+T−1

∑
i=n

∣∣
∣
∣
∣

n+T−1

∏
l=i+1

(1+ pl)

∣∣
∣
∣
∣

i

∑
m=−∞

|bi,m|
∣
∣
∣g(xl

m)− g(xm)
∣
∣
∣ .

The continuity of f and g along with the Lebesgue dominated convergence theorem
imply that

lim
l→∞

∥
∥∥E(xl ,yl)−E(x,y)

∥
∥∥= 0.

This shows that E is continuous. Finally, we have to show that EΩ (W ) is precom-
pact. Let {(xl ,yl)}l∈N be a sequence in Ω (W ). For each fixed l ∈N, {(xl

n,y
l
n)}n∈Z is

a bounded sequence of real pairs. Then by Bolzano-Weierstrass Theorem, {(xl
n,y

l
n)}n∈Z

has a convergent subsequence {(xl
nk
,yl

nk
)}. By repeating the diagonalization pro-

cess for each l ∈ N, we can construct a convergent subsequence {(xlk ,ylk)}lk∈N
of {(xl ,yl)}l∈N in Ω (W ) . Since E is continuous, we deduce that {E(xl ,yl)}l∈N
has a convergent subsequence in EΩ (W ). This means, EΩ (W ) is precompact. By
Schauder’s fixed point theorem we conclude that there exists a pair (x,y) ∈ Ω (W )
such that E(x,y) = (x,y).

Theorem 4.7.3. In addition to the assumptions of Lemma 4.8, we assume that (4.7.9),
(4.7.11), and (4.7.12) hold. If g is a nondecreasing function satisfying

|g(x)| ≤ g(|x|), (4.7.15)
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then (4.7.1) has a T -periodic solution.

Proof. By (4.7.11) and (4.7.13) we already have

|E1(x,y)| ≤W1K1 for all (x,y) ∈Ω (W ) .

This along with (4.7.15) imply

|E2(x,y)n| ≤
n+T−1

∑
i=n

∣
∣∣
∣
∣
αp

n+T−1

∏
l=i+1

(1+ pl)

∣
∣∣
∣
∣

i

∑
m=−∞

|bi,m| |g(xm)|

≤
n+T−1

∑
i=n

∣∣
∣
∣
∣
αp

n+T−1

∏
l=i+1

(1+ pl)

∣∣
∣
∣
∣

i

∑
m=−∞

|bi,m|g(|E1(x,y)|)

≤ K2g(W1K1).

If we set W = max{W1K1,K2g(W1K1)}, then the rest of the proof is similar to the
proof of Theorem 4.7.2 and hence we omit it.

Similarly, we can give the following result.

Theorem 4.7.4. In addition to the assumptions of Lemma 4.8, we assume (4.7.10),
(4.7.11), and (4.7.12) hold. If f is a nondecreasing function satisfying

| f (y)| ≤ f (|y|),

then (4.7.1) has a T -periodic solution.

Example 4.3. Let

hn = 1+ cosnπ ,
pn = 1− cosnπ ,

an,i = bn,i = ei−n,

and
f (x) = sinx and g(x) = sin2x.

Then (4.7.1) turns into the following system

⎧
⎪⎨

⎪⎩

�xn = (1+ cosnπ)xn +
n
∑

i=−∞
ei−n sin(yi),

�yn = (1− cosnπ)yn +
n
∑

i=−∞
ei−n sin(2xi)

.

It can be easily verified that conditions (4.7.2–4.7.8) and (4.7.9–4.7.12) hold. By
Theorem 4.7.2, there exists a 2-periodic solution (x,y) = {(xn,yn)}n∈Z of sys-
tem (4.7.1) satisfying
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xn =−1
2

n+1

∑
i=n

n+1

∏
l=i+1

(2+ cos(lπ))
i

∑
m=−∞

em−i sin(ym),

yn =−1
2

n+1

∑
i=n

n+1

∏
l=i+1

(2− cos(lπ))
i

∑
m=−∞

em−i sin(2xm),

for all n ∈ N.

4.7.2 Asymptotic Periodicity

In this section, we study the existence of an asymptotically T -periodic solution of
system (4.7.1) by using Schauder’s fixed point theorem. First we state the following
definition.

Definition 4.7.2. A sequence {xn}n∈Z is called asymptotically T -periodic if there
exist two sequences un and vn such that un is T -periodic, limn→∞ vn = 0, and xn =
un + vn for all n ∈ Z.

First, we suppose that

T−1

∏
j=0

(1+ h j) = 1 and
T−1

∏
j=0

(1+ p j) = 1. (4.7.16)

Then we define the sequences ϕ := {ϕn}n∈N and ψ := {ψn}n∈N as follows

ϕn :=
n−1

∏
j=0

1
1+ h j

and ψn :=
n−1

∏
j=0

1
1+ p j

. (4.7.17)

Furthermore, we define the constants mk, Mk, k = 1,2, by

m1 := min
i∈[1,T ]Z

|ϕi| , M1 := max
i∈[1,T ]Z

|ϕi| , m2 := min
i∈[1,T ]Z

|ψi| , M2 := max
i∈[1,T ]Z

|ψi| .

We note that in this section, we do not assume (4.7.3–4.7.4) but instead we ask that
the series

∞

∑
i=0

i

∑
m=−∞

|ai,m|< ∞ and
∞

∑
i=0

i

∑
m=−∞

|bi,m|< ∞ (4.7.18)

converge to a and b, respectively. Observe that (4.7.18) implies

lim
n→∞

∞

∑
i=n

i

∑
m=−∞

|ai,m|= lim
n→∞

∞

∑
i=n

i

∑
m=−∞

|bi,m|= 0. (4.7.19)

Theorem 4.7.5. Suppose that (4.7.9–4.7.10), (4.7.16), and (4.7.18–4.7.19) hold.
Then system (4.7.1) has an asymptotically T -periodic solution (x,y) = {(xn,yn)}n∈Z
satisfying
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xn := u(1)n + v(1)n

yn := u(2)n + v(2)n

for n ∈ N, where

u(1)n = c1

n−1

∏
j=0

(1+ h j), u(2)n = c2

n−1

∏
j=0

(1+ p j), n ∈ Z
+

c1 and c2 are positive constants, and

lim
n→∞

v(1)n = lim
n→∞

v(2)n = 0.

Proof. Due to the T -periodicity of the sequences {hn}n∈Z and {pn}n∈Z and by (4.7.16-
4.7.17) we have

ϕn ∈ {ϕ1,ϕ2, ...,ϕT } and ψn ∈ {ψ1,ψ2, ...,ψT }

for all n ∈ N. This means

m1 ≤ |ϕn| ≤ M1 (4.7.20)

m2 ≤ |ψn| ≤ M2 (4.7.21)

for all n ∈ Z. Define
B= {(Φ,Ψ) :Φ =Φ1+Φ2,Ψ =Ψ1+Ψ2,(Φ1,Ψ1)n+T =(Φ1,Ψ1)n, and (Φ2,Ψ2)n →
(0,0) as n→∞}. Then B is a Banach space when endowed with the maximum norm

‖(x,y)‖= max{sup
n∈Z

|xn| ,sup
n∈Z

|yn|}.

For a positive constant W ∗ we define

Ω ∗ (W ∗) := {(x,y) ∈ B : ‖(x,y)‖ ≤W ∗}.

Then, Ω ∗ (W ∗) is a nonempty bounded convex, and closed subset of B. Define the
mapping E∗ : Ω ∗ (W ∗)→ B by

E∗ (x,y) = {E∗ (x,y)n}n∈Z =

{(
E∗

1 (x,y)n

E∗
2 (x,y)n

)}

n∈Z
,

where

E∗
1 (x,y)n :=

⎧
⎪⎨

⎪⎩

xn for n ∈ Z
−

c1
1
ϕn

−
∞
∑

i=n

i
∑

m=−∞

ϕi+1
ϕn

ai,m f (ym) for n ∈ N

, (4.7.22)
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and

E∗
2(x,y)n :=

⎧
⎨

⎩

yn for n ∈ Z
−

c2
1
ψn

−
∞
∑

i=n

i
∑

m=−∞

ψi+1
ψn

bi,mg(xm) for n ∈ N
. (4.7.23)

We will show that the mapping E∗ has a fixed point in B. First, we demonstrate that
E∗Ω ∗ (W ∗)⊂Ω ∗ (W ∗). If {(x,y)} ∈Ω ∗ (W ∗), then

∣
∣
∣
∣E

∗
1(x,y)n − c1

1
ϕn

∣
∣
∣
∣≤ M1m−1

1 W1

∞

∑
i=n

i

∑
m=−∞

|ai,m| (4.7.24)

≤ M1m−1
1 W1

∞

∑
i=0

i

∑
m=−∞

|ai,m|

= M1m−1
1 W1a, (4.7.25)

and
∣
∣
∣
∣E

∗
2 (x,y)n − c2

1
ψn

∣
∣
∣
∣≤ M2m−1

2 W2

∞

∑
i=n

i

∑
m=−∞

|bi,m| (4.7.26)

≤ M2m−1
2 W2

∞

∑
i=0

i

∑
m=−∞

|bi,m|

= M2m−1
2 W2b. (4.7.27)

This implies that

|E∗
1(xn,yn)| ≤ M1m−1

1 W1a+
c1

m1
,

and
|E∗

2(xn,yn)| ≤ M2m−1
2 W2b+

c2

m2
.

If we set
W ∗ = max{M1m−1

1 W1a+
c1

m1
,M2m−1

2 W2b+
c2

m2
},

then we have E∗Ω ∗ (W ∗)⊂Ω ∗ (W ∗) as desired.
Next, we show that E∗ is continuous. Let {(xq,yq)}q∈N be a sequence in Ω ∗ (W ∗)
such that
limq→∞ ‖(xq,yq)− (x,y)‖= 0, where (x,y) = {(xn,yn)}n∈Z. Since Ω ∗ (W ∗) is closed,
we must have (x,y) ∈Ω ∗ (W ∗). From (4.7.22) and (4.7.23), we have

|E∗
1 (x

q,yq)n −E∗
1(x,y)n| ≤

∞

∑
i=n

i

∑
m=−∞

∣
∣
∣
∣
ϕi+1

ϕn

∣
∣
∣
∣ |ai,m| | f (yq

m)− f (ym)|

and

|E∗
2 (x

q,yq)n −E∗
2(x,y)n| ≤

∞

∑
i=n

i

∑
m=−∞

∣∣
∣
∣
ψi+1

ψn

∣∣
∣
∣ |bi,m| |g(xq

m)− g(xm)| .
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Since f and g are continuous, we have by the Lebesgue dominated convergence
theorem that

lim
q→∞

‖E∗(xq,yq)−E∗(x,y)‖= 0.

As we did in the proof of Theorem 4.7.2 we can show that E∗ has a fixed point in
Ω ∗ (W ∗). On the other hand, using a similar procedure that we have employed in
the proof of Lemma 4.8, we can deduce that any solution (x,y) = {(xn,yn)}n∈Z of
the system (4.7.1) is a fixed point for the operator E∗. This means E∗ (x,y) = (x,y)
or equivalently,

xn = c1
1
ϕn

−
∞

∑
i=n

i

∑
m=−∞

ϕi+1

ϕn
ai,m f (ym) (4.7.28)

and

yn = c2
1
ψn

−
∞

∑
i=n

i

∑
m=−∞

ψi+1

ψn
bi,mg(xm). (4.7.29)

Conversely, any pair (x,y) = {(xn,yn)}n∈Z satisfying (4.7.28) and (4.7.29) will also
satisfy

xn+1 − xn(1+ hn) = c1(
n

∏
j=0

(1+ h j)− (1+ hn)
n−1

∏
j=0

(1+ h j))

+ (1+ hn)
∞

∑
i=n

i

∑
m=−∞

ϕi+1

ϕn
ai,m f (ym)

−
∞

∑
i=n+1

i

∑
m=−∞

ϕi+1

ϕn+1
ai,m f (ym),

and hence

xn+1 − xn(1+ hn) =
∞

∑
i=n

i

∑
m=−∞

(1+ hn)
n−1
∏
j=0

(1+ h j)

i
∏
j=0

(1+ h j)

ai,m f (ym)

−
∞

∑
i=n+1

i

∑
m=−∞

n
∏
j=0

(1+ h j)

i
∏
j=0

(1+ h j)

ai,m f (ym)

=
n

∑
m=−∞

an,m f (ym).

That is, any fixed point (x,y) = {(xn,yn)}n∈Z of the operator E∗ satisfies the first
equation in (4.7.1). Similarly, one may show that the second equation holds.
For an arbitrary fixed point (x,y) ∈Ω ∗ (W ∗) of E∗, we have
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lim
n→∞

∣
∣∣
∣xn − c1

1
ϕn

∣
∣∣
∣= lim

n→∞

∣
∣∣
∣E

∗
1 (x,y)n − c1

1
ϕn

∣
∣∣
∣= 0, (4.7.30)

and

lim
n→∞

∣∣
∣
∣yn − c2

1
ψn

∣∣
∣
∣= lim

n→∞

∣∣
∣
∣E2(x,y)n − c2

1
ψn

∣∣
∣
∣= 0. (4.7.31)

Choosing

u(1)n = c1
1
ϕn

, v(1)n =−
∞

∑
i=n

i

∑
m=−∞

ϕi+1

ϕn
ai,m f (ym) (4.7.32)

and

u(2)n = c2
1
ψn

, v(2)n =−
∞

∑
i=n

i

∑
m=−∞

ψi+1

ψn
bi,mg(xm), (4.7.33)

we have xn = u(1)n + v(1)n and yn = u(2)n + v(2)n . By (4.7.30) and (4.7.31), v(1)n and v(2)n

tend to 0 when n → ∞. Left to show that u(1)n and u(2)n are T -periodic.

u(1)n+T = c1

n+T−1

∏
j=0

(1+ h j) = c1

n−1

∏
j=0

(1+ h j)
n+T−1

∏
j=n

(1+ h j)

= c1

n−1

∏
j=0

(1+ h j)
T−1

∏
j=0

(1+ h j)

= c1

n−1

∏
j=0

(1+ h j), by (4.7.16).

The proof for u(2)n is identical and hence we omit.

Example 4.4. Consider the system (4.7.1) with the following entries

hn = pn =

{
1, if n = 2k+ 1 for k ∈ Z

− 1
2 , if n = 2k for k ∈ Z

,

an,i = ei−2n, for n, i ∈ Z

bn,i = e2i−3n, for n, i ∈ Z

f (x) = cosx and g(x) = cos2x.

Then (4.7.1) turns into the following system:

⎧
⎪⎨

⎪⎩

�xn = hnxn +
n
∑

i=−∞
ei−2n cos(yi),

�yn = pnyn +
n
∑

i=−∞
e2i−3n cos(2xi)

.

Obviously, the sequences {hn}n∈Z and {pn}n∈Z are 2-periodic and all conditions of
Theorem 4.7.5 are satisfied. Hence, we conclude by Theorem 4.7.5 the existence of
an asymptotically 2-periodic solution (x,y) = {(xn,yn)}n∈Z satisfying
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xn = c1
1
ϕn

−
∞

∑
i=n

i

∑
m=−∞

ϕi+1

ϕn
em−2i cos(ym)

yn = c2
1
ψn

−
∞

∑
i=n

i

∑
m=−∞

ψi+1

ψn
e2m−3i cos(2xm),

for all n ∈ N, where c1 and c2 are positive constants, ϕ := {ϕn}n∈N and ψ :=
{ψn}n∈N are as in (4.7.17).

4.8 Open Problems

In this section we propose seven open problems regarding existence of periodic
solutions of Volterra difference equations and functional equations. We begin by
considering the scalar Volterra difference equation

x(n+ 1) = c(n)−
n

∑
s=−∞

D(n,s)g(x(s)), (4.8.1)

where g is continuous.

Open Problem 1.
Use the method of Section 4.5 to show (4.8.1) has a periodic solution under suitable
conditions. Then prove parallel theorems to Theorems 4.5.2 and 4.5.3.
This will be different due to the absence of a linear term in x in Equation (4.8.1).
Actually, it will be very challenging to find a suitable Lyapunov functional that does
the trick.

Open Problem 2.
In light of our work in Section 4.7, what can be said about (4.8.1) with respect
to periodicity and asymptotic periodicity? Again, the absence of a linear term in x
makes (4.8.1) impossible to invert in order to obtain the possible mapping.

Open Problem 3.
Coupled integro-differential equations have many applications in science and engi-
neering. In computational neuroscience, the Wilson–Cowan model describes the dy-
namics of interactions between populations of very simple excitatory and inhibitory
model neurons. It was developed by H.R. Wilson and Jack D. Cowan [171, 172]
and extensions of the model have been widely used in modeling neuronal popula-
tions [89, 108, 153, 173]. Here we propose a parallel coupled Volterra difference
equations model

{�x(n) = h1(n)x(n)+ h2(n)y(n)+∑n−∞ a(n,s) f (x(s),y(s)),
�y(n) = p1(n)y(n)+ p2(n)x(n)+∑n−∞ b(n,s)g(x(s),y(s)),

(4.8.2)
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where the functions f and g are assumed to be continuous. It would be of great
interest to study the existence of periodic and asymptotically periodic solutions
of (4.8.2).

Open Problem 4.
Consider Equation (4.5.9) and let PT be the space of all periodic sequences of period
T . Let x ∈ PT and use Theorem 1.1.1 to invert (4.5.9) and then use the Contraction
mapping principle and the Schauder second fixed point theorem (see [156], p. 25) to
show the existence of a unique periodic solution and a periodic solution. Compare
both results and to the results of this chapter.

Open Problem 5 (Our Preferred System)
After careful examination of the three systems that we considered in the Sec-
tion 4.6.1, we are lead to suggest that the system

�x(t) =
t−1

∑
s=t−L

p(s− t)g(x(s))−
t−1

∑
s=−∞

q(s− t)g(x(s)) (4.8.3)

which incorporates the most realistic properties from each of the systems, is our
favorite system to be considered. The first term on the right takes into account the
ideas from (4.6.14) in a more general form. Here we assume that

−1

∑
s=−L

q(s) = 1 and
−1

∑
s=−∞

q(s) = 1. (4.8.4)

Next, one would need to rewrite (4.8.3) as we did in (4.6.15) and then proceed to
prove theorems that are parallel to Theorems 4.6.3 and 4.6.4.

Open Problem 6 (Neutral Systems)
There has been a tremendous effort in extending difference equations to neutral
difference equations. Neutral difference equations have not been developed like its
counterpart, differential equations. Suppose you are observing an organism that is
displaying a normal growth or sub-ordinary growth. Suddenly growth accelerates
and results in more accelerated growth. This is typical of neutral growth. Present
growth rate depends not only on the past state, but also on the past growth rate.
Typical models in the spirit of the previous section would be

�(x(t)− h(x(t −L1))
)
= g(x(t))− g(x(t −L2)). (4.8.5)

It is clear that any constant function is a solution of (4.6.25). Now suppose both
functions h and g are Lipschitz continuous. Let L = max{L1, L2}, define an initial
function and then prove a parallel Theorem to Theorem 4.6.3. Another possible
neutral model to consider is

�(x(t)− h(x(t −L1))
)
=

t−1

∑
s=t−L2

p(s− t)g(x(s))−
t−1

∑
s=−∞

q(s− t)g(x(s)) (4.8.6)
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If we assume (4.6.24) then any constant function is a solution of (4.8.6).

Open Problem 7 (Minorsky Model)
The second order differential equation

x′′(t)+ cx′(t)+ g(x(t − h)) = 0 (4.8.7)

is called Minorsky equation which he developed as an automatic steering device
controller for the large ship the New Mexico. It was pointed out later on that the
model given by (4.8.7) was not that accurate and since then a correction term was
added and hence the new model

x′′(t)+ cx′(t)+ g(x(t − h))− g(x(t− h−L)) = 0. (4.8.8)

Staying in the spirit of our study, one might consider analyzing the second order
difference equation

�2x(t)+ c�x(t)+ g(x(t− h))− g(x(t− h−L)) = 0. (4.8.9)

Clearly, any constant is a solution of (4.8.9).



Chapter 5
Population Dynamics

This chapter is devoted to the application of Volterra difference equations in popula-
tion dynamics and epidemics. We begin the chapter by introducing different types of
population models including predator-prey models. Most commonly studied version
of population models are described by continuous-time dynamics, whereas in real
ecosystem the changes in populations of each species due to competitive interac-
tion cannot occur continuously. Hence, discrete-time dynamical systems are often
more suitable tool for modeling the dynamics in competing species. Cone theory
is introduced and utilized to prove the existence of positive periodic solutions for
functional difference equations. We introduce an infinite delay population model
which governs the growth of population N(n) of a single species whose members
compete among themselves for the limited amount of food that is available to sus-
tain the population, and use the results on cone theory to obtain the existence of a
positive periodic solution. Moreover, from a biologist’s point of view, the idea of
permanence plays a central role in any competing species.

5.1 Background

We begin with a brief history regarding the early work of Vito Volterra on mod-
eling fish population utilizing what we call today: Volterra integral equations and
Volterra integro-differential equations. Volterra did not limit himself to academic
research. Volterra became interested in mathematical ecology late in 1925. His in-
terest in the field was stimulated by conversations with the young zoologist Um-
berto D’Ancona, then engaged to marry his daughter Luisa. D’Ancona, studying
the records of the fish markets in the upper Adriatic, had noticed a curious phe-
nomenon. He observed that during and after the war, when fishing was severely
limited, the proportion of predators among the total catch had increased correspond-
ingly, an effect predicted by Volterra’s models. D’Ancona was thus reinforced in his
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belief that the two facts were causally correlated. In other words, the proportion
of food fish markedly decreased during the war years. This beginning led Volterra
to attack more general problems in ecology. Volterra emphasized consistently that
differential equations are, at best, only rough approximations of actual ecological
systems. They would apply only to animals without age or memory, which eat all
the food they encounter and immediately convert it into offspring. Anything more
realistic would yield integro-differential rather than differential equations. The field
soon became his major research. More on the next discussion can be found in [158].
To put things into perspective we give some background on the famous Lotka prey-
predator model. In 1925 Lotka published his Elements of Physical Biology, in which
he developed and studied the interaction between two species via the model

dN1

dt
= (ε1 + γ1N2)N1,

dN2

dt
= (ε2 + γ2N1)N2,

where ε1 and ε2 are the “coefficients of self-increase,” while γ1 and γ2 account for the
interaction between two species, and the N1, N2, are population sizes. This model
can represent species preying on another, depending on the sign of the constants in
the model. In the case of predation, Lotka showed the existence of close periodic
orbits. Later on, Lotka considered more advanced models that dealt with multiple
species preying on a single specie. For the sake of the next discussion, we write
the above Lotka system to suit a predator-prey model. That is, by assuming all the
constants are positive we have that

dN1

dt
= (ε1 − γ1N2)N1,

dN2

dt
= (−ε2 + γ2N1)N2, (5.1.1)

where N1 and N2 represent the populations of the preys and predators at time t,
respectively. Note that the predators would die out without the presence of the preys.
To better explain this, we multiply the first equation of (5.1.1) by dt and then it is
clear that an amount of ε2N2 of them will die in a time interval dt. Suppose that
predator tendency to eat the prey when encountered does not depend on age, τ , nor
on the state of the association. Assume also that the age distribution of the predators,
λ (τ, t), can be considered as independent of time, λ (τ). The individuals of age not
younger than τ will be in the proportion

f (t − τ) =
∫ ∞

t−τ
λ (η)dη .

Then f (t − τ)N2(t) will be the number of predators that is active at time t − τ.
Their feeding rate is proportional to f (t − τ)N2(t)N1(τ) that is φ(t − τ) f (t −
τ)N2(t)N1(τ), measuring the effect of feeding through all previous time on the
chances of survival and the rate of reproduction at a subsequent time. Setting

φ(t − τ) f (t − τ)N2(t)N1(τ)dτ = F(t − τ)N2(t)N1(τ)dτ

and integrating over all previous time we obtain, as a positive term for the predators’
equation,

N2(t)
∫ t

t−τ
F(t − τ)N1(τ)dτ.
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Similar argument can be made for the preys and hence we arrive at the system of
integro-differential equations

dN1

dt
= N1(t)

[
ε1 − γ1N2(t)−

∫ t

t−τ
F1(t − τ)N1(τ)dτ

]

dN2

dt
= N2(t)

[− ε2 + γ2N1(t)−N2(t)
∫ t

t−T
F2(t − τ)N1(τ)dτ

]
.

Another aspect of importance for application of Volterra difference equations is their
usefulness in numerical approximations of Volterra integro-differential equations,
see [161] and the reference therein. This notion was briefly discussed in Chapter 1.

5.2 Formulation of Predator-Prey Discrete Models

In this section we obtain the Lotka-Volterra predator-prey model from its contin-
uous counterpart. Researchers have argued that discrete time models governed by
difference equations are more appropriate for describing the dynamics relationship
among populations than the continuous ones when the populations have nonover-
lapping generations. There is no unique way of deriving discrete time version of dy-
namical systems corresponding to continuous time formulations. One of the ways of
deriving difference equations modeling the dynamics of populations with nonover-
lapping generations is based on appropriate modifications of models with overlap-
ping generations. In this approach, differential equations with piecewise constant
arguments have been useful (see [170]). Thus, we consider the continuous Lotka-
Volterra predator-prey model given by (5.1.1) and use differential equations with
piecewise constant arguments to obtain a discrete analogue of it. We follow the
work given in [70] and [170]. That is, we assume that the average growth rates in
system (5.1.1) change at regular intervals of time. We can incorporate this aspect
in (5.1.1) and obtain the following modified system

dN1(t)
dt

1
N(t)

= (ε1 − γ1N2([t])) (5.2.1)

dN2(t)
dt

1
N2(t)

= (−ε2 + γ2N1([t]))

where t 	= 0,1,2, . . . , [t] denotes the integer part of t, t ∈ (0,∞). Equations of the
form (5.2.1) are known as differential equations with piecewise constant arguments
and they occupy a position midway between differential equations and difference
equations. By a solution of (5.2.1), we mean a function N = (N1,N2)

T which is
defined for t ∈ (0,∞) and has the properties that,
1. N is continuous on [0,∞).

2. The derivatives dN1(t)
dt , dN2(t)

dt exist at each point t ∈ (0,∞) with the exception of
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the points t ∈ {0,1,2, · · · ,},where left-sided derivatives exist.
3. System (5.2.1) is valid on each interval [k,k+ 1] with k = 0,1,2, · · ·
Next we integrate both sides of (5.2.1) over any interval [k,k+ 1), k = 0,1,2, · · · to
arrive at for k ≤ t ≤ k+ 1 k = 0,1,2, · · ·

N1(t) = N1(k)e
{[ε1−γ1N2(k)](t−k)} (5.2.2)

N2(t) = N2(k)e
{[−ε2+γ2N1(k)](t−k)}

Letting t → k+ 1, then system takes the form

{
N1(k+ 1) = N1(k)e{[ε1−γ1N2(k)]}

N2(k+ 1) = N2(k)e{[−ε2+γ2N1(k)]} (5.2.3)

where k = 0,1,2, · · ·.
General forms of discrete-generation host-parasite

{
P(k+ 1) = λP(k) f (P(k),H(k))

H(k+ 1) = cλP(k)(1− f (P(k),H(k))

have been used to model the interaction between host species (a plant, P(k)) and
a parasite species (a herbivore, H(k)). The term 1− f represents the probability of
being parasitized. Nicholson-Bailey [13] used one of the simplest version of the
above general form by considering

{
P(k+ 1) = λP(k)e−aH(k)

H(k+ 1) = cλP(k)(1− e−aH(k))

in which f = e−aH(k) is the proportion of hosts escaping parasitism, where a is the
mean encounters per host. Hence, 1− e−aH(k) is the probability that host will be
attacked. In a later study, Beddington et al. [15] considered a generalization of the
above model by studying

{
P(k+ 1) = λP(k)er(1−P(k)/Pmax)−aH(k)

H(k+ 1) = cλP(k)(1− e−aH(k))

where Pmax is the carrying capacity imposed by the environment for the host in the
absence of the parasite.
Following in the footsteps of Beddington et al. [15], Elaydi et al. [90] considered
the predator-prey model

{
x(n+ 1) = x(n)er(1− x(n)

K )−by(n))

y(n+ 1) = ey(n)(1− e−ay(n))
(5.2.4)

where x(n) ≥ 0 and y(n) ≥ 0 represent population densities of a prey and a preda-
tor, respectively, and a,b,e,K, and r are positive. The constant K is the carrying
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capacity and represents the maximum population size that can be supported by the
available limited resources and r is the growth rate. In [90] Elaydi et al. investi-
gated the stability and invariant manifolds and the stability of the coexisting fixed
point of model (5.2.4). Motivated by Elaydi et al. [90], in [10], Asheghi revisited
model (5.2.4) and analyzed the stability of feasible fixed points and the period-
doubling. In addition, the author studied the Neimark-Sacker bifurcation diagrams.
In 2014, Li and Xu [176] considered the discrete predator-prey model with infected
prey

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(n+1) = S(n)exp
{

r1(n)(1−S(n)− I(n))− a(n)Z(n)
1+b(n)(S(n)+ I(n))

− α(n)I(n)
S(n)+ I(n)

}

I(n+1) = I(n)exp
{

r2(n)(1−S(n)− I(n))− a(n)Z(n)
1+b(n)(S(n)+ I(n))

+
α(n)I(n)

S(n)+ I(n)
−m2(n)

}

Z(n+1) = Z(n)exp
{ a(n)(S(n)+ I(n))

1+b(n)(S(n)+ I(n)
−m3(n)

}

(5.2.5)

where S(n) and I(n) are the susceptible phytoplankton population and the infected
phytoplankton population, respectively, and Z(n) grazes on both the susceptible and
infected phytoplankton. The parameter α > 0 is the frequency-dependent transmis-
sions rate and the parameter m2 is the disease-induced mortality of infected prey.
The parameters r1 and r2 are the intrinsic growth rates of susceptible and infected
population, respectively. Rate m3 represents the natural mortality rate of zooplank-
ton. In addition, a and b are constants. For more on the biological meaning and
development of the model in the continuous case, we refer to [81] and [157]. Li and
Xu [176] assumed periodicity conditions on the coefficients and used the Continua-
tion theorem due to Gaines and Malvin [71] and showed the existence of a positive
periodic solution. Moreover, they effectively used Lyapunov functions and proved
the positive periodic solution is indeed globally asymptotically stable.
We remark that all the above models display positive solutions for positive initial
data.

5.3 Cone Theory and Positive Periodic Solutions

We begin the chapter by utilizing cone theoretic fixed point theorem to study the
existence of positive periodic solutions of the nonlinear nonautonomous system of
functional difference equations

x(n+ 1) = A(n)x(n)+ f (n,xn) (5.3.1)

where A(n) = diag[a1(n),a2(n), . . . ,ak(n)], a j is ω-periodic, f : Z×R
k → R

k is
continuous in x, and f (n,x) is ω-periodic in n and x, whenever x is ω-periodic.
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Most contents can be found in [149] and the references therein. Such results will be
applied to the infinite delay scalar Volterra discrete population model

N(n+ 1) = α(n)N(n)
[
1− 1

N0(n)

0

∑
s=−∞

B(s)N(n+ s)
]
, n ∈ Z (5.3.2)

which governs the growth of population N(n) of a single species whose members
compete among themselves for the limited amount of food that is available to sustain
the population. We emphasize that our conditions can only imply the existence of
positive and periodic solutions for model (5.4.1). We note that equation (5.3.2) is a
generalization of the known logistic model

N(n+ 1) = αN(n)
[
1− N(n)

N0

]
, (5.3.3)

where α is the intrinsic per capita growth rate and N0 is the total carrying ca-
pacity. For more biological information on equation (5.3.2), we refer the reader
to [57]. We remark that in (5.3.2), the term ∑0

s=−∞ B(s)N(n + s) is equivalent to
∑n

u=−∞ B(u− s))N(u). We chose to write (5.3.2) that way so that it can be put in the
form of x(n+ 1) = a(n)x(n)+ f (n,xn).
Let X be the set of all real ω-periodic sequences φ : Z→ R

k. Endowed with the
maximum norm ||φ || = max

θ∈Z ∑k
j=1 |φ j(θ )| where φ = (φ1,φ2, . . . ,φk)

t , X is a Ba-

nach space. Here t stands for the transpose. If x ∈X , then xn ∈X for any n ∈ Z is
defined by xn(θ ) = x(n+θ ) for θ ∈ Z.
The existence of multiple positive periodic solutions of nonlinear functional dif-
ferential equations has been studied extensively in recent years. Some appropriate
references would be [34] and [168]. We are particularly motivated by the work in
[88] on functional differential equations and the work of Raffoul in [67, 129], and
[151] on boundary value problems involving functional difference equations. When
working with boundary value problems whether in differential or difference equa-
tions, it is customary to display the desired solution in terms of a suitable Green’s
function and then apply cone theory (see [8, 45, 67, 78, 79, 80], and [118]). Since
our equation (5.3.1) is not the type of boundary value problem, we obtain a variation
of parameters formula and then try to find a lower and upper estimates for the ker-
nel inside the summation. Once those estimates are found we use Krasnoselskii’s
fixed point theorem [97] to show the existence of a positive periodic solution. In
[129], Raffoul studied the existence of periodic solutions of an equation similar to
equation (5.3.1) using Schauder’s Second fixed point theorem. Moreover, In [151],
Raffoul considered the scalar difference equation

x(n+ 1) = a(n)x(n)+ h(n) f (x(n− τ(n))) (5.3.4)

where a,h, and τ are ω-periodic for ω is an integer with ω ≥ 1. Under the as-
sumptions that a(n), f (x), and h(n) are nonnegative with 0 < a(n) < 1 for all
n ∈ [0,ω − 1], it was shown that (5.3.4) possesses a positive periodic solution. In
this work we extend (5.3.4) to systems with infinite delay and address the existence
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of positive periodic solutions of (5.3.1) in the case a(n) > 1. Let R+ = [0,+∞),
for each x = (x1,x2, . . . ,xk)

t ∈R
k, the norm of x is defined as |x|= ∑k

j=1 |x j|. Rk
+ =

{(x1,x2, . . . ,xk)
t ∈R

k : x j ≥ 0, j = 1,2, . . . ,k}. Also, we denote f = ( f1, f2, . . . , fk)
t ,

where t stands for transpose. Now we list the following conditions.

(H1) a(n) 	= 0 for all n ∈ [0,ω− 1] with ∏ω−1
s=0 a j(s) 	= 1 for j = 1,2, . . . ,k.

(H2) If 0 < a(n) < 1 for all n ∈ [0,ω − 1], then f j(n,φn) ≥ 0 for all n ∈ Z and
φ : Z→ R

n
+, j = 1,2, . . . ,k where R+ = [0,+∞)

(H3) If a(n)> 1 for all n ∈ [0,ω− 1], then f j(n,φn)≤ 0 for all n ∈ Z and φ : Z→
R

n
+, j = 1,2, . . . ,k where R+ = [0,+∞)

(H4) For any L > 0 and ε > 0, there exists δ > 0 such that
[φ ,ψ ∈X , ‖φ‖ ≤ L, ‖ψ‖ ≤ L, ‖φ −ψ‖< δ , 0 ≤ s ≤ ω ] imply

| f (s,φs)− f (s,ψs)|< ε. (5.3.5)

We begin by stating some preliminaries in the form of definitions and lemmas that
are essential to the proofs of our main results. We start with the following definition.

Definition 5.3.1. Let X be a Banach space and K be a closed, nonempty subset of
X . The set K is a cone if

(i) αu+βv ∈ K for all u,v ∈ K and all α,β ≥ 0
(ii) u,−u ∈ K imply u = 0.

We now state the Krasnoselskii’s fixed point theorem [97].

Theorem 5.3.1 (Krasnoselskii [97]). Let B be a Banach space, and let P be a
cone in B. Suppose Ω1 and Ω2 are open subsets of B such that 0 ∈Ω1 ⊂Ω 1 ⊂Ω2

and suppose that
T : P ∩ (Ω 2\Ω1)→P

is a completely continuous operator such that

(i) ‖Tu‖ ≤ ‖u‖, u ∈P ∩∂Ω1, and ‖Tu‖ ≥ ‖u‖, u ∈P ∩∂Ω2; or

(ii) ‖Tu‖ ≥ ‖u‖, u ∈P ∩∂Ω1, and ‖Tu‖ ≤ ‖u‖, u ∈P ∩∂Ω2.

Then T has a fixed point in P ∩ (Ω 2\Ω1).

For the next lemma we consider

x j(n+ 1) = a jx j(n)+ f j(n,xn), j = 1,2, . . . ,k. (5.3.6)

The proof of the next Lemma can be easily deduced from [129] and hence we
omit it.

Lemma 5.1 ([149]). Suppose (H1) hold. Then x j(n) ∈ X is a solution of equa-
tion (5.3.6) if and only if

x j(n) =
n+ω−1

∑
u=n

G j(n,u) f j(u,xu), j = 1,2, . . . ,k (5.3.7)
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where

G j(n,u) =
∏n+ω−1

s=u+1 a j(s)

1−∏n+ω−1
s=n a j(s)

, u ∈ [n,n+ω− 1], j = 1,2, . . . ,k. (5.3.8)

Set
G(n,u) = diag[G1(n,u),G2(n,u), . . . ,Gk(n,u)].

It is clear that G(n,u) = G(n+ω ,u+ω) for all (n,u) ∈ Z
2. Also, if either (H2) or

(H3) holds, then (5.3.8) implies that

G j(n,u) f j(u,φu)≥ 0

for (n,u) ∈ Z
2 and u ∈ Z, φ : Z→R

k
+. In defining the desired cone we observe that

if (H2) holds, then

∏ω−1
s=0 a j(s)

1−∏n+ω−1
s=n a j(s)

≤ |G j(n,u)| ≤
∏ω−1

s=0 a−1
j (s)

1−∏n+ω−1
s=n a j(s)

(5.3.9)

for all u ∈ [n,n+ω− 1]. Also, if (H3) holds, then

∏ω−1
s=0 a−1

j (s)
∣
∣
∣1−∏n+ω−1

s=n a j(s)
∣
∣
∣
≤ |G j(n,u)| ≤ ∏ω−1

s=0 a j(s)∣
∣
∣1−∏n+ω−1

s=n a j(s)
∣
∣
∣

(5.3.10)

for all u ∈ [n,n+ω− 1]. For all (n,s) ∈ Z
2, j = 1,2, . . . ,k, we define

σ2 := min
{
(
ω−1

∏
s=0

a j(s))
2

, j = 1,2, . . . ,n
}

and

σ3 := min
{
(
ω−1

∏
s=0

a−1
j (s))

2

, j = 1,2, . . . ,n
}
.

We note that if 0 < a(n)< 1 for all n ∈ [0,ω−1], then σ2 ∈ (0,1). Also, if a(n)> 1
for all n ∈ [0,ω − 1], then σ3 ∈ (0,1). Conditions (H2) and (H3) will have to be
handled separately. That is, we define two cones; namely, P2 and P3. Thus, for
each y ∈X set

P2 = {y ∈X : y(n)≥ 0,n ∈ Z,and y(n)≥ σ2‖y‖}

and
P3 = {y ∈X : y(n)≥ 0,n ∈ Z, and y(n)≥ σ3‖y‖}.

Define a mapping T : X →X by

(T x)(n) =
n+ω−1

∑
u=n

G(n,u) f (u,xu) (5.3.11)
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where G(n,u) is defined following (5.3.8). We denote

(Tx) =
(

T1x,T2x, . . . ,Tkx
)t
.

It is clear that (T x)(n+ω) = (T x)(n).

Lemma 5.2 ([149]). If (H1) and (H2) hold, then the operator TP2 ⊂P2. If (H1)
and (H3) hold, then TP3 ⊂P3.

Proof. Suppose (H1) and (H2) hold. Then for any x ∈P2 we have

(Tjx(n))≥ 0, j = 1,2, . . .k.

Also, for x ∈P2 by using (5.3.8)–(5.3.11) we have that

(Tjx)(n)≤
∏ω−1

s=0 a−1
j (s)

1−∏n+ω−1
s=n a j(s)

n+ω−1

∑
u=n

| f j(u,xu)|

and

‖Tjx‖= max
n∈[0,ω−1]

|Tjx(n)| ≤
∏ω−1

s=0 a−1
j (s)

1−∏n+ω−1
s=n a j(s)

n+ω−1

∑
u=n

| f j(u,xu)|.

Therefore,

(Tjx)(n) =
n+ω−1

∑
u=n

G j(n,u) f j(u,xu)

≥ ∏ω−1
s=0 a j(s)

1−∏n+ω−1
s=n a j(s)

n+ω−1

∑
u=n

| f j(u,xu)|

≥ (
ω−1

∏
s=0

a j(s))
2

‖Tjx‖ ≥ σ2‖Tjx‖.

That is, TP2 is contained in P2. The proof of the other part follows in the same
manner by simply using (5.3.10), and hence we omit it. This completes the proof.

To simplify notation we denote,

A2 = min
1≤ j≤k

∏ω−1
s=0 a j(s)

1−∏n+ω−1
s=n a j(s)

, (5.3.12)

B2 = max
1≤ j≤k

∏ω−1
s=0 a−1

j (s)

1−∏n+ω−1
s=n a j(s)

, (5.3.13)

A3 = min
1≤ j≤k

∏ω−1
s=0 a−1

j (s)
∣
∣
∣1−∏n+ω−1

s=n a j(s)
∣
∣
∣
, (5.3.14)
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and

B3 = max
1≤ j≤k

∏ω−1
s=0 a j(s)∣

∣
∣1−∏n+ω−1

s=n a j(s)
∣
∣
∣
. (5.3.15)

Lemma 5.3 ([149]). If (H1), (H2), and (H4) hold, then the operator T : P2 →P2
is completely continuous. Similarly, if (H1), (H3), and (H4) hold, then the operator
T : P3 →P3 is completely continuous.

Proof. Suppose (H1), (H2), and (H4) hold. First show that T is continuous. By (H4),
for any L> 0 and ε > 0, there exists a δ > 0 such that [φ ,ψ ∈X , ‖φ‖≤L, ‖ψ‖≤L,
‖φ −ψ‖< δ ] imply

max
0≤s≤ω−1

| f (s,φs)− f (s,ψs)|< ε
B2ω

where B2 is given by (5.3.13). If x, y ∈P2 with ‖x‖ ≤ L, ‖y‖ ≤ L, and ‖x−y‖< δ ,
then

|(T x)(n)− (Ty)(n)| ≤
n+ω−1

∑
u=n

|G(n,u)|| f (u,xu)− f (u,yu)|

≤ B2

ω−1

∑
u=0

| f (u,xu)− f (u,yu)|< ε

for all n ∈ [0,ω − 1], where |G(n,u)| = max1≤ j≤n |G j(n,u)|, j = 1,2, . . . ,k. This
yields ‖(Tx)− (Ty)‖ < ε . Thus, T is continuous. Next we show that T maps
bounded subsets into compact subsets. Let ε = 1. By (H4), for any μ > 0 there
exists δ > 0 such that [x, y ∈X , ‖x‖ ≤ μ , ‖y‖ ≤ μ , ‖x− y‖< δ ] imply

| f (s,xs)− f (s,ys)|< 1.

We choose a positive integer N so that δ > μ
N . For x ∈X , define xi(n) = ix(n)

N , for
i = 0,1,2, ....,N. For ||x|| ≤ μ ,

||xi − xi−1|| = max
n∈Z

∣∣
∣
ix(n)

N
− (i− 1)x(n)

N

∣∣
∣

≤ ||x||
N

≤ μ
N

< δ .

Thus, | f (s,xi)− f (s,xi−1)|< 1. As a consequence, we have

f (s,xs)− f (s,0) =
N

∑
i=1

(
f (s,xi)− f (s,xi−1)

)
,
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which implies that

| f (s,xs)| ≤
N

∑
i=1

| f (s,xi
s)− f (s,xi−1

s )|+ | f (s,0)|

< N + | f (s,0)|.

Thus, f maps bounded sets into bounded sets. It follows from the above inequality
and (5.3.11) that

||(T x)(n)|| ≤ B2

k

∑
j=1

( n+T−1

∑
u=n

| f j(u,xu)|
)

≤ B2ω(N + | f (s,0)|).

If we define S = {x ∈X : ||x|| ≤ μ} and Q = {(Tx)(n) : x ∈ S}, then S is a subset
of Rωk which is closed and bounded and thus compact. As T is continuous in x, it
maps compact sets into compact sets. Therefore, Q = T (S) is compact. The proof
for the other case is similar by simply invoking (5.3.15). This completes the proof.

Next, we state two theorems and two corollaries. Our theorems and corollaries are
stated in a way that unify both cases; 0 < a(n)< 1 and a(n)> 1 for all n∈ [0,ω−1].

Theorem 5.3.2 ([149]). Assume (H1).
(a) Suppose (H2) and (H4) hold and that there exist two positive numbers R1 and
R2 with R1 < R2 such that

sup
‖φ‖=R1,φ∈P2

| f (s,xs)| ≤ R1

ωB2
, (5.3.16)

and

inf
‖φ‖=R2,φ∈P2

| f (s,xs)| ≥ R2

ωA2
, (5.3.17)

where A2 and B2 are given by (5.3.12) and (5.3.13), respectively. Then, there exists
x ∈P2 which is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.
(b) Suppose (H3) and (H4) hold and that there exist two positive numbers R1 and
R2 with R1 < R2 such that

sup
‖φ‖=R1,φ∈P3

| f (s,xs)| ≤ R1

ωB3
, (5.3.18)

and

inf
‖φ‖=R2,φ∈P3

| f (s,xs)| ≥ R2

ωA3
, (5.3.19)

where A3 and B3 are given by (5.3.14) and (5.3.14), respectively. Then, there exists
x ∈P3 which is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.
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Proof. Suppose (H1), (H2), and (H4) hold. Let Ωξ = {x ∈P2|‖x‖ < ξ}. Let x ∈
P2 which satisfies ‖x‖= R1. in view of (5.3.16), we have

|(T x)(n))| ≤
n+ω−1

∑
u=n

|G(n,u)|| f (u,xu)|

≤ B2ω
R1

ωB2
= R1.

That is, ‖Tx‖ ≤ ‖x‖ for x ∈P2∩ ∂ΩR1 . let x ∈P2 which satisfies ‖x‖ = R2 we
have, in view of (5.3.17),

|(T x)(n)| ≥ A2

n+ω−1

∑
u=n

| f (u,xu)| ≥ A2ω
R2

ωA2
= R2.

That is, ‖Tx‖ ≥ ‖x‖ for x ∈P2∩ ∂ΩR2 . In view of Theorem 5.3.1, T has a fixed
point in P2∩ (Ω̄2 \Ω1). It follows from Lemma 5.2 that (5.3.1) has an ω-periodic
solution x with R1 ≤ ‖x‖ ≤ R2. The proof of (b) follows in a similar manner by
simply invoking conditions (5.3.18) and (5.3.19).

As a consequence of Theorem 5.3.2, we state a corollary which its proof we omit.

Corollary 5.1 ([149]). Assume that (H1) holds.
(a) Suppose (H2) and (H4) hold and

lim
φ∈P2,‖φ‖→0

| f (s,φs)|
‖φ‖ = 0, (5.3.20)

lim
φ∈P2,‖φ‖→∞

| f (s,φs)|
‖φ‖ = ∞. (5.3.21)

Then (5.3.1) has a positive periodic solution.
(b) Suppose (H3) and (H4) hold and

lim
φ∈P3,‖φ‖→0

| f (s,φs)|
‖φ‖ = 0, (5.3.22)

lim
φ∈P3,‖φ‖→∞

| f (s,φs)|
‖φ‖ = ∞. (5.3.23)

Then (5.3.1) has a positive periodic solution.

Theorem 5.3.3 ([149]). Suppose that (H1) holds.
(a) Suppose (H2) and (H4) hold and that there exist two positive numbers R1 and
R2 with R1 < R2 such that

inf
‖φ‖=R1,φ∈P2

| f (s,xs)| ≥ R1

ωB2
, (5.3.24)
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and

sup
‖φ‖=R2,φ∈P2

| f (s,xs)| ≤ R2

ωA2
, (5.3.25)

where A2 and B2 are given by (5.3.12) and (5.3.13), respectively. Then, there exists
x ∈P2 which is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.
(b) Suppose (H3) and (H4) hold and that there exist two positive numbers R1 and
R2 with R1 < R2 such that

inf
‖φ‖=R1,φ∈P3

| f (s,xs)| ≥ R1

ωB3
, (5.3.26)

and

sup
‖φ‖=R2,φ∈P3

| f (s,xs)| ≤ R2

ωA3
, (5.3.27)

where A3 and B3 are given by (5.3.14) and (5.3.15), respectively. Then, there exists
x ∈P3 which is a fixed point of T and satisfies R1 ≤ ‖x‖ ≤ R2.

The proof is similar to the proof of Theorem 5.3.2 and hence we omit it. As a
consequence of Theorem 5.3.3, we have the following corollary.

Corollary 5.2 ([149]). Assume that (H1) hold.
(a) Suppose (H2) and (H4) hold and

lim
φ∈P2,‖φ‖→0

| f (s,φs)|
‖φ‖ = ∞, (5.3.28)

lim
φ∈P2,‖φ‖→∞

| f (s,φs)|
‖φ‖ = 0. (5.3.29)

Then (5.3.1) has a positive periodic solution.

(b) Suppose (H3) and (H4) hold and

lim
φ∈P3,‖φ‖→0

| f (s,φs)|
‖φ‖ = ∞, (5.3.30)

lim
φ∈P3,‖φ‖→∞

| f (s,φs)|
‖φ‖ = 0. (5.3.31)

Then (5.3.1) has a positive periodic solution.

5.3.1 Applications to Infinite Delay Population Models

We apply the results from the previous section to the model (5.3.2) and show that
it admits the existence of a positive periodic solution. Thus, we consider the scalar
discrete model that governs the growth of population N(n) of a single species whose
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members compete among themselves for the limited amount of food that is available
to sustain the population. Thus, we consider the infinite delay Volterra scalar model

N(n+ 1) = α(n)N(n)
[
1− 1

N0(n)

0

∑
s=−∞

B(s)N(n+ s)
]
, n ∈ Z (5.3.32)

as described in the Introduction. We chose to write (5.3.32) that way so that it can
be put in the form of x(n+ 1) = a(n)x(n)+ f (n,xn).
Before we state our results in the form of a theorem, we assume that

(P1) α(n)> 1, N0(n)> 0 for all n ∈ Z with α(n), N0(n) are ω-periodic and
(P2) B(n) is nonnegative on (−∞,0]∩Z with ∑0

n=−∞ B(n)<∞.

Theorem 5.3.4 ([149]). Under assumptions (P1) and (P2), equation (5.3.32) has at
least one positive ω-periodic solution.

Proof. Let a(n) = α(n)N(n) and

f (n,xn) =−x(n)a(n)
N0(n)

0

∑
s=−∞

B(s)x(n+ s).

It is clear that f (n,xn) is ω-periodic whenever x is ω-periodic and (H1) and (H3)
hold since f (n,φn)≤ 0 for all (n,φ) ∈Z×(Z,R+). To verify (H4), we let x,y : Z→
R+ with ‖x‖ ≤ L, ‖y‖ ≤ L for some L > 0. Then

| f (n,xn)− f (n,yn)|

=
∣
∣
∣
x(n)a(n)

N0(n)

0

∑
s=−∞

B(s)x(n+ s)− y(n)a(n)
N0(n)

0

∑
s=−∞

B(s)y(n+ s)
∣
∣
∣

≤
∣
∣∣
x(n)a(n)

N0(n)

∣
∣∣

0

∑
s=−∞

B(s)|x(n+ s)− y(n+ s)|

+
∣
∣
∣
(x(n)− y(n))a(n)

N0(n)

∣
∣
∣

0

∑
s=−∞

B(s)|y(n+ s)|

≤ L‖a‖
N0∗

max
s∈Z−

|x(n+ s)− y(n+ s)|+ |x(n)− y(n)|‖a‖L
N0∗

,

where N0∗ =min{N0(s) : 0 ≤ s ≤ω−1}. For any ε > 0, choose δ = εN0∗/(2L‖a‖).
If ‖x− y‖< δ , then

| f (n,xn)− f (n,yn)|< L‖a‖δ/N0∗+ δ‖a‖L/N0∗ = 2L‖a‖δ/N0∗ = ε.
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This implies that (H4) holds. We now show that (5.3.22) and (5.3.23) hold. For
φ ∈P3, we have φ(n)≥ σ3‖φ‖ for all n ∈ [0,ω− 1]. This yields

| f (n,φ)|
‖φ‖ ≤ max

τ∈[0,ω−1]

a(τ)
N0(τ)

0

∑
s=−∞

B(s)‖φ‖→ 0

as ‖φ‖→ 0 and

| f (n,φ)|
‖φ‖ ≥ min

τ∈[0,ω−1]

a(τ)
N0(τ)

0

∑
s=−∞

B(s)σ3
2‖φ‖→+∞

as ‖φ‖→∞. Thus, (5.3.22) and (5.3.23) are satisfied. By (b) of Corollary 5.1, equa-
tion (5.3.32) has a positive ω-periodic solution. This completes the proof.

Next we consider the infinite delay Volterra discrete model

xi(n+ 1)) = xi(n)
[
ai(n)−

k

∑
j=1

bi j(n)x j(n)−
k

∑
j=1

n

∑
s=−∞

Ci j(n,s)gi j(x j(s))
]

(5.3.33)

where xi(n) is the population of the ith species, ai, bi j : Z→ R are ω-periodic, and
Ci j : Z×Z→R is ω-periodic. For more on such derivation we refer to [44].

Theorem 5.3.5 ([149]). Suppose that the following conditions hold for
i, j = 1,2, . . . ,k.

(i) ai(n)> 1, for all n ∈ [0,ω− 1], and ai(n) is ω-periodic,
(ii) bi j(n)≥ 0, Ci j(n,s)≥ 0 for all (n,s) ∈ Z

2,
(iii) gi j : R+ → R

+ is continuous in x and increasing with gi j(0) = 0,
(iv) bii(s) 	= 0, for s ∈ [0,ω− 1],
(v) Ci j(n+ω ,s+ω) =Ci j(n,s) for all (n,s) ∈ Z

2 with
maxn∈Z∑n

s=−∞ |Ci j(n,s)|<+∞.

Then equation (5.3.33) has a positive ω-periodic solution.

Proof. For x = (x1,x2, . . . ,xk)
T , define

fi(n,xn) =−xi(t)
k

∑
j=1

bi j(n)x j(n)−
k

∑
j=1

n

∑
s=−∞

Ci j(n,s)gi j(x j(s))

for i = 1,2, . . . ,k and set f = ( f1, f2, . . . , fk)
t . Then by some manipulation of con-

ditions (i)–(v), the conditions (H1) and (H2) are satisfied. Also, it is clear that f
satisfies (H4). Define

b∗ = max{‖bi j‖ : i, j = 1,2, ·, ·, ·,k},

C∗ = max
{

sup
n∈Z

n

∑
j=1

n

∑
s=−∞

|Ci j(n,s)| : i = 1,2, ·, ·, ·,k
}
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and

g∗(u) = max{gi j(u) : i, j = 1,2, ·, ·, ·,k}

Let x ∈P3. Since g is increasing in x, we arrive at

| fi(n,xn)| ≤ |xi(n)|
[
b∗‖x‖+

n

∑
j=1

n

∑
s=−∞

|Ci j(n,s)|gi j(‖x j‖)
]
.

Thus
| f (n,xn)| ≤ ‖x‖[b∗‖x‖+C∗g∗(‖x‖)],

which implies
| f (n,xs)|

‖x‖ ≤ [b∗‖x‖+C∗g∗(‖x‖)]→ 0

as ‖x‖→ 0. For x∈P3, xi(n)≥σ3‖xi‖ for all n∈Z. Also, from (ii), bi j(n),Ci j(n,s)
have the same sign. Thus, using condition (iii) we have

| fi(n,xn)|

=
n

∑
j=1

xi(n)|bi j(n)|x j(n)+
k

∑
j=1

n

∑
s=−∞

|Ci j(n,s)|gi j(x j(s))

≥ |bii(n)|xi(n)|2 ≥ σ3
2‖xi‖2|bii(n)|

and

| f (n,xs)| ≥ σ3
2

k

∑
i=1

‖xi‖2 min
1≤i≤k

|bii(n)| ≥ σ3
2

k
‖x‖2 min

1≤i≤k
|bii(n)|.

Here we have applied the inequality
(
∑k

i=1 ‖xi‖
)2 ≤ k∑k

i=1 ‖xi‖2. Thus,

| f (n,xs)|
‖x‖ →+∞ as ‖x‖→+∞.

By (b) of Corollary 5.1, equation (5.3.33) has a positive ω-periodic solution. This
completes the proof.

Theorem 5.3.6 ([149]). Suppose that the following conditions hold for i, j = 1,2, . . . ,k.

(i) 0 < ai(n)< 1, for all n ∈ [0,ω− 1], and ai(n) is ω-periodic,
(ii) bi j(n)≤ 0, Ci j(n,s)≤ 0 for all (n,s) ∈ Z

2,
(iii) gi j : R+ → R

+ is continuous in x and increasing with gi j(0) = 0,
(iv) bii(s) 	= 0, for s ∈ [0,ω− 1],
(v) Ci j(n+ω ,s+ω) =Ci j(n,s) for all (n,s) ∈ Z

2 with
maxn∈Z∑n

s=−∞ |Ci j(n,s)|<+∞.

Then equation (5.3.33) has a positive ω-periodic solution.

Proof. The proof follows from part (a) of Corollary 5.1.
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Remark 5.1. In the statements of Theorem 5.3.5 and Theorem 5.3.6 condition (iv)
can be replaced by

(iv∗)
k

∑
j=1

n

∑
s=−∞

|Ci j(n,s)| 	= 0 and gii(x)→+∞ as x →+∞.

5.4 Permanence of Multi-Species Competition Predation

The literature on nonautonomous continuous population models described by dif-
ferential equations is vast, see [165, 166, 167, 168, 169] and the references cited
therein. For example, Wen [169] considered the global attractivity of positive peri-
odic solution of multi-species ecological competition-predation system. Yang and
Xu [33] studied the global attractivity and existence of the periodic n-prey and m-
predator Lotka-Volterra system of differential equations. It is biologically and math-
ematically crucial to study the existence and stability of periodic solution. However,
a more basic and important biological question to ask is whether or not those in-
volved populations will be alive and well in the long run. In [174], Chen discussed
the permanence and global stability of nonautonomous Lotka-Volterra system with
multi-species predator-prey and deviating arguments by using comparison theorem
and constructing suitable Lyapunov functional. On the other hand, the problems
of permanence of time-delay systems have received considerable attention in the-
oretical ecology due to the fact that more realistic models should include some
of the past states of these systems. The dynamic behaviors of population mod-
els governed by difference equation have also been studied by many authors (see
[31, 50, 95, 126, 162, 164, 165, 174, 175], and [178] and the references therein).
This is a relatively new topic and the author believes this study should increase re-
search activities on the subject. In [126], Muroya studied the persistence and global
stability of delay discrete system for k-species,

xi(n+ 1) = xi(n)exp{ci − aixi(n)−∑l
k=1 aik(n)xk(n− τik)}.

Results of this section can be partially found in [152] and [165]. The Jacobian
method of Section 5.2 is not suitable for our study here. The aim of this study
is to investigate the permanent behavior of the following discrete (l +m)-species
Lotka-Volterra competition-predation system with several delays

xi(n+ 1) = xi(n)exp{ri(n)− ai(n)xi(n)−∑l
k=1 aik(n)xk(n− τik)

−∑m
k=1 eik(n)yk(n−ηik)},

y j(n+ 1) = y j(n)exp{−b j(n)− c j(n)y j(n)+∑l
k=1 d jk(n)xk(n− δ jk)

−∑m
k=1 c jk(n)yk(n− ξ jk)},

xi(θ ) = φi(θ )≥ 0, y j(θ ) = ψ j(θ )≥ 0, θ ∈ N[−τ,0] := {−τ,−τ+ 1, ...,−1,0},
(5.4.1)
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where i = 1,2, ..., l; j = 1,2, ...,m; τik, ηik, δ jk and ξ jk are nonnegative integers;
φi(0)> 0, ψ j(0)> 0;

τ = max{ max
1≤i,k≤l

τik, max
1≤i≤l; 1≤k≤m

ηik, max
1≤k≤l; 1≤ j≤m

δ jk, max
1≤ j,k≤m

ξ jk}> 0;

xi(n) is the density of species Xi at nth generation; y j(n) is the density of species
Yj at nth generation; ri(n) represents the intrinsic growth rate of the prey species
Xi at the nth generation; b j(n) represents the death rate of the predator species Yj

at the nth generation; aik(n) and c jk(n) measure the intensity of intraspecific com-
petition or interspecific action of prey species and predator species, respectively;
eik(n) and d jk(n) represent the influence of the (n−ηik)th and (n− δ jk)th genera-
tion of the predator and prey on the prey and predator population, respectively. For
more background of system (5.4.1), one could refer to [169] and [174]. It is clear
that model (5.4.1) has positive solutions for positive initial data. We note that the
model (5.4.1) generalizes the models in [31, 50], and [126].

Definition 5.4.1. System (5.4.1) is said to be permanent if there are positive con-
stants Mk and Lk, k = 1,2, such that for each positive solution

{x1(n), ...,xl(n),y1(n), ...,ym(n)}

of system (5.4.1) satisfies

L1 ≤ lim
n→∞

infxi(n)≤ lim
n→∞

supxi(n)≤ M1,

L2 ≤ lim
n→∞

infy j(n)≤ lim
n→∞

supy j(n)≤ M2,

for all i = 1,2, ..., l; j = 1,2, ...,m.

Throughout, we always assume {ri(n)}, {b j(n)}, {aik(n)}, {eik(n)}, {d jk(n)},
{c jk(n)}, {ai(n)} and {c j(n)} are bounded nonnegative sequences, and use the fol-
lowing notations for any bounded sequence {u(n)}

u = sup
n∈N

u(n), u = inf
n∈N

u(n).

In order to present our main result, we need some preliminaries. Let R
l+m
+ =

{(x1(n), ...,xl(n),y1(n), ...,ym(n))| xi(n) ≥ 0,y j(n) ≥ 0, i = 1,2, ..., l; j = 1, ...,m},
and let x(n) = (x1(n), ...,xl(n),y1(n), ...,ym(n)) ∈ R

l+m
+ , the notation x(n) > 0 de-

notes x(n) ∈ IntRl+m
+ . For ecological reasons, we consider system (5.4.1) only in

IntRl+m
+ . It is easy to obtain the following result.

Lemma 5.4 ([165]). IntRl+m
+ is positively invariant set of system (5.4.1).

Lemma 5.5 ([165]). Assume that {x(n)} satisfies x(n)> 0 and

x(n+ 1)≤ x(n)exp{r(n)(1− ax(n))}
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for n ∈ [n1,∞), where a is a positive constant. Then

limsup
n→∞

x(n)≤ 1
ar

exp(r− 1).

Lemma 5.6 ([165]). Assume that {x(n)} satisfies

x(n+ 1)≥ x(n)exp{r(n)(1− ax(n))},n ≥ N0,

limsupn→∞ x(n) ≤ K and x(N0) > 0, where a is a constant such that aK > 1 and
N0 ∈ N. Then

liminf
n→∞

x(n)≥ 1
a

exp{r(1− aK)}.
The main result will follow directly from the following two propositions.

Proposition 5.1 ([152]). For every solution {x1(n), ...,xl(n),y1(n), ...,ym(n)} of sys-
tem (5.4.1), we have

limsup
n→∞

xi(n)≤ Mi (i = 1,2, ..., l), limsup
n→∞

y j(n)≤Wj ( j = 1,2, ...,m),

where

Mi =
exp(ri − 1)

ai + aii exp(−riτii)
, Wj =

exp(∑l
k=1 d jkMk − bj − 1)

c j + c j j exp((b j −∑l
k=1 dkkMk)ξ j j)

.

Proof. First, we prove limsupn→∞ xi(n)≤ Mi. From the first equation of (5.4.1), we
have

xi(n+ 1)≤ xi(n)exp{ri(n)}.
It follows that

n−1

∏
s=n−τik

xi(s+ 1)≤
n−1

∏
s=n−τik

xi(s)exp{ri(s)},

that is

xi(n)≤ xi(n− τik)exp{
n−1

∑
s=n−τik

ri(s)}.

In other words,

xi(n− τik)≥ xi(n)exp{−
n−1

∑
s=n−τik

ri(s)},

and hence

xi(n+ 1) ≤ xi(n)exp{ri(n)− ai(n)xi(n)−
l

∑
k=1

aik(n)xk(n)exp{−
n−1

∑
s=n−τik

ri(s)}

≤ xi(n)exp{ri(n)− (ai(n)+ aii(n))exp{−
n−1

∑
s=n−τii

ri(s)}xi(n)}

≤ xi(n)exp{ri − (ai + aii)exp(−riτii)xi(n)}.
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It follows from Lemma 5.5 that

limsup
n→∞

xi(n)≤ Mi.

Next, we prove that limsupn→∞ y j(n)≤Wj. For sufficiently small ε > 0, there exists
sufficiently large n0 such that xi(n)≤Mi+ε for all n> n0. From the second equation
of (5.4.1), we have

y j(n+ 1) ≤ y j(n)exp{−b j(n)+
l

∑
k=1

d jk(n)xk(n− δ jk)}

≤ y j(n)exp{−b j(n)+
l

∑
k=1

d jk(n)(Mk + ε)}.

By a similar argument, we can verify that

y j(n− ξ jk)≤ y j(n)exp{
n−1

∑
s=n−ξ jk

(b j(s)−
l

∑
k=1

d jk(s)(Mk + ε))},

and hence

y j(n+ 1) ≤ y j(n)exp{−b j(n)+
l

∑
k=1

d jk(n)(Mk + ε))− c j(n)y j(n)

−
m

∑
k=1

c jk(n)yk(n)exp{
n−1

∑
s=n−ξ jk

(bk(s)−
l

∑
k=1

dkk(s)(Mk + ε))}}

≤ y j(n)exp{(−bj +
l

∑
k=1

d jk(Mk + ε))− (c j + c j j)exp{(bj

−
l

∑
k=1

dkk(Mk + ε))ξ j j}y j(n)}.

Therefore, by Lemma 5.5, we obtain

limsup
n→∞

y j(n)≤Wj.

The proof is complete.

Proposition 5.2 ([152]). Let {x1(n), ...,xl(n),y1(n), ...,ym(n)} denote any positive
solution of system (5.4.1). Assume

(H) min
1≤i≤l; 1≤ j≤m

{
(ai +aii)Mi

ri −∑l
k=1,k 	=i aikMk −∑m

k=1 eikWk
,

(c j + c j j)Wj

∑l
k=1 d jkmk −b j −∑m

k=1,k 	= j c jkWk

}

> 1.
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Then there exist positive constants mi and wj such that

liminf
n→∞

xi(n)≥ mi, liminf
n→∞

y j(n)≥ wj (i = 1,2, ..., l; j = 1,2, ...,m),

where

mi =
r1 −∑l

k=1 aikMk −∑m
k=1 eikWk

ai + aii
exp{(ri −

l

∑
k=1

aikMk)

×(1− (ai + aii)Mi

ri −∑l
k=1 aikMk −∑m

k=1 eikWk
)},

wj =
∑l

k=1 d jkmk − bj −∑m
k=1 c jkWk

c j + c j j
exp{(−bj +

l

∑
k=1

d jkmk −
m

∑
k=1

c jkWk)

×(1− (c j + c j j)Wj

∑l
k=1 d jkmk − bj −∑m

k=1 c jkWk
)}.

Proof. We first prove that liminfn→∞ xi(n)≥ mi. For any ε > 0, according to Propo-
sition 5.1, there exists a n1 ∈N such that xi(n− τ)≤ Mi + ε , y j(n− τ)≤Wj + ε for
all n ≥ n1. Thus, it follows from the first equation of system (5.4.1) that

xi(n+ 1) ≥ xi(n)exp{(ri(n)−
l

∑
k=1,k 	=i

aik(n)(Mk + ε)

−
m

∑
k=1

eik(n)(Wk + ε))− (ai(n)+ aii(n))xi(n)}

= xi(n)exp{(ri(n)−
l

∑
k=1,k 	=i

aik(n)(Mk + ε)−
m

∑
k=1

eik(n)(Wk + ε))

×(1− ai(n)+ aii(n)

ri(n)−∑l
k=1,k 	=i aik(n)(Mk + ε)−∑m

k=1 eik(n)(Wk + ε)
xi(n))}

≥ xi(n)exp{(ri(n)−
l

∑
k=1,k 	=i

aik(n)(Mk + ε)−
m

∑
k=1

eik(n)(Wk + ε))

×(1− ai(n)+ aii(n)

ri −∑l
k=1,k 	=i aik(Mk + ε)−∑m

k=1 eik(Wk + ε)
xi(n))}.

By lemma 5.6 and condition (H), we obtain

liminf
n→∞

xi(n)≥ mi.
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From the second equation of (5.4.1), we have

y j(n+ 1) ≥ y j(n)exp{−b j(n)+
l

∑
k=1

d jk(n)mk

−
m

∑
k=1,k 	= j

c jk(n)(Wk + ε)− (c j(n)+ c j j(n))y j(n)}

= y j(n)exp{(−b j(n)+
l

∑
k=1

d jk(n)mk −
m

∑
k=1,k 	= j

c jk(n)(Wk + ε))

×(1− c j(n)+ c j j(n)

∑l
k=1 d jk(n)mk − b j(n)−∑m

k=1,k 	= j c jk(n)(Wk + ε)
y j(n)}

≥ y j(n)exp{(−b j(n)+
l

∑
k=1

d jk(n)mk −
m

∑
k=1,k 	= j

c jk(n)(Wk + ε))

×(1− c j(n)+ c j j(n)

∑l
k=1 d jkmk − bj −∑m

k=1,k 	= j c jk(Wk + ε)
y j(n)}.

By Lemma 5.6 and condition (H), we obtain liminfn→∞ y j(n)≥ wj. This completes
the proof.

Now, we state our main results of this section, which its proof is a direct conse-
quence of Propositions 5.1 and 5.2.

Theorem 5.4.1 ([152]). Assume (H) holds. Then system (5.4.1) is permanent.

Now, let us consider the special case of system (5.4.1), i.e., ai(n) ≡ c j(n) ≡ 0,
τik ≡ 0, ηis ≡ 0, δ jk ≡ 0 and ξ js ≡ 0 (i,k = 1,2, ..., l; j,s = 1,2, ...,m), in this case,
system (5.4.1) can be written as

xi(n+ 1) = xi(n)exp{ri(n)−∑l
k=1 aik(n)xk(n)−∑m

k=1 eik(n)yk(n)},
y j(n+ 1) = y j(n)exp{−b j(n)+∑l

k=1 d jk(n)xk(n)−∑m
k=1 c jk(n)yk(n)}.

(5.4.2)

As a corollary of Theorem 5.4.1, we have

Corollary 5.3 ([152]). Let {x1(n), ...,xl(n),y1(n), ...,ym(n)} denote any positive so-
lution of system (5.4.2). Assume

min
1≤i≤l; 1≤ j≤m

{
aiiM′

i

ri −∑l
k=1,k 	=i aikM′

k −∑m
k=1 eikW ′

k

,
c j jW ′

j

∑l
k=1 d jkm′

k −b j −∑m
k=1,k 	= j c jkW ′

k

}

> 1
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holds. Then there exist positive constants M′
i , W ′

j , m′
i and w′

j such that

m′
i ≤ lim inf

n→∞
xi(n)≤ lim sup

n→∞
xi(n)≤ M′

i (i = 1,2, ..., l),

w′
j ≤ lim inf

n→∞
y j(n)≤ lim sup

n→∞
y j(n)≤W ′

j ( j = 1,2, ...,m),

where

M′
i =

exp(ri − 1)
aii

, W ′
j =

exp(∑l
k=1 d jkM′

k − bj − 1)

c j j
,

m′
i =

r1 −∑l
k=1 aikM′

k −∑m
k=1 eikW ′

k

aii
exp{(ri −

l

∑
k=1

aikM′
k)

×(1− aiiM′
i

ri −∑l
k=1 aikM′

k −∑m
k=1 eikW ′

k

)},

w′
j =

∑l
k=1 d jkm′

k − bj −∑m
k=1 c jkW ′

k

c j j
exp{(−bj +

l

∑
k=1

d jkm′
k −

m

∑
k=1

c jkW
′
k)

×(1− c j jW ′
j

∑l
k=1 d jkm′

k − bj −∑m
k=1 c jkW ′

k

)}.

Finally, we give a suitable example to illustrate the feasibility of Theorem 5.4.1.

Example 5.1. We consider the following system:

x(n+ 1) = x(n)exp{1− x(n− 1)− 1
60 (3+ sinn)y1(n)},

y1(n+ 1) = y1(n)exp{−1+ 2
9 (8+ cosn)x(n)− y1(n− 1)− 1

80(3+ sinn)y2(n)},
y2(n+ 1) = y2(n)exp{−1− cosn+ 2

9 (8+ cosn)x(n)− y2(n− 1)}.

It is easy to verify that the system satisfies the condition (H). Therefore, by Theo-
rem 5.4.1 the system is permanent.

5.5 Open Problems

Open Problem 1.
In this section we consider the Lotka-Volterra predator-prey model given by Elaydi
et al. [90] and extend it to predator-prey model with ratio dependence. Let x and
y represent population densities of a prey and a predator, respectively. In [70], Fan
and Wang discretized a continuous model with ratio dependence and obtained the
Lotka-Volterra discrete predator-prey model with ratio dependence
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x(n+ 1) = x(n)exp
{

a(n)− b(n)x(n)− c(n)y(n)
m(n)y(n)+ x(n)

}

y(n+ 1) = y(n)exp
{− d(n)+

f (n)x(n)
m(n)y(n)+ x(n)

}
(5.5.1)

We refer to [70] for the specific interpretation of the coefficients. In [70] the authors
proved the existence of positive periodic solution of (5.5.1) by using Coincidence
Theory or Degree Theory.
We propose the reader uses the idea of [176] and show the positive periodic solu-
tion is actually globally asymptotically stable by constructing a suitable Lyapunov
function.



Chapter 6
Exponential and lp-Stability in Volterra
Equations

This chapter is devoted primarily to the exponential and lp-stability of Volterra dif-
ference equations. Lyapunov functionals are the main tools in the analysis. It is
pointed out that in the case of exponential stability, Lyapunov functionals are hard
to extend to vector Volterra difference equations or to Volterra difference equations
with infinite delay. In addition, we use nonstandard discretization scheme due to
Mickens [122] and apply them to continuous Volterra integro-differential equa-
tions. We will show that under the discretization scheme the stability of the zero
solution of the continuous dynamical system is preserved. Also, under the same
discretization, using a combination of Lyapunov functionals, Laplace transforms,
and z-transforms, we show that the boundedness of solutions of the continuous dy-
namical system is preserved. We end the chapter with a brief section introducing
semigroup, which should stir up some curiosity in the application of semigroup to
Volterra difference equations. The chapter concludes with multiple open problems.
The work of this chapter heavily depends on the materials in [9, 51, 59, 76, 91],
and [98].

6.1 Exponential Stability

We consider the scalar linear difference equation with multiple delays

x(t + 1) = a(t)x(t)+
t−1

∑
s=t−r

b(t,s)x(s), t ≥ 0, (6.1.1)

where r ∈ Z
+, a : Z+ → R and b : Z+× [−r,∞)→ R. We will use Lyapunov func-

tionals and obtain some inequalities regarding the solutions of (6.1.1) from which
we can deduce exponential asymptotic stability of the zero solution. Also, we will
provide a criteria for the unboundedness of solutions and the instability of the zero
solution of (6.1.1) by means of Lyapunov type functionals.

© Springer Nature Switzerland AG 2018
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Consider the kth-order scalar difference equation

x(t + k)+ p1x(t + k− 1)+ p2x(t + k− 2)+ · · ·+ pkx(t) = 0, (6.1.2)

where the pi’s are real numbers. It is well known that the zero solution of (6.1.2) is
asymptotically stable if and only if |λ |< 1 for every characteristic root λ of (6.1.2).
There are no easy criteria to test for exponential stability of the zero solution of
equations that are similar to (6.1.2) for variable coefficients. This itself highlights
the importance of the creativity of constructing a suitable Lyapunov functional that
leads to the exponential stability. When using Lyapunov functionals, one faces the
difficulties of relating the constructed Lyapunov functional back to the solution x so
that stability can be deduced. This task is tedious and we did overcome it. The au-
thors have done an extensive literature search and could not find any work that dealt
with exponential stability of Volterra equations of the form of (6.1.1). This research
offers easily verifiable conditions that guarantee exponential stability. Moreover, we
give criteria for the instability of the zero solution. Most importantly, our results
will hold for |a(t)| ≥ 1. We will illustrate our theory with several examples and
numerical simulations. It is scarce to find results concerning the use of Lyapunov
functionals in the stability of finite delay difference equations due to the unforeseen
difficulties in constructing such functions. This section intends to fill some of the
gap and moreover, we will compare the results obtained in this section to known
ones where other methods are used, such as operator theory.
In Chapter 2, we looked at the system of functional difference equation of the form

x(n+ 1) = G(n,xn), x ∈ R
k (6.1.3)

where G : Z+ ×R → R is continuous in x. Let x be any solution of (6.1.3). Quite
often when using Lyapunov functional to study system (6.1.3) we encounter pair of
inequalities in the form of

W1(x(n))≤V (n,x(·)) =W2(x(n))+
n−1

∑
s=0

K(n,s)W3(x(s)),

�V (n,x(·))≤−W4(x(n))+F(n)

where V is a Lyapunov functional bounded below, x is the unknown solution of
the functional difference equation, and K, F , and Wi, i = 1,2,3,4 are scalar positive
functions. The wedge W1 is mandatory in order to relate the solutions x back to V .
Hence, identifying such a W1 is not an easy job, as we shall see later on in this sec-
tion. It is even more difficult when using Lyapunov functionals to obtain exponential
stability, since it requires that along the solutions of (6.1.3) we have for some α > 0

�V (n,x(·))≤−αV (n,x(·)).

The above inequality presents us with formidable challenges as maybe seen later in
the section. However, a simple but clever rewriting of the difference equation points
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us in the right direction in constructing the appropriate Lyapunov functional, as we
shall see from (6.1.5).
Let ψ : [−h,0]→ (−∞,∞) be a given bounded initial function with

||ψ ||= max
−h≤s≤0

|ψ(s)|.

It should cause no confusion to denote the norm of a functionϕ : [−h,∞)→ (−∞,∞)
with

||ϕ ||= sup
−h≤s<∞

|ϕ(s)|.

The notation xt means that xt(τ) = x(t+τ),τ ∈ [−h,0] as long as x(t+τ) is defined.
Thus, xt is a function mapping an interval [−h,0] into R. We say x(t) ≡ x(t, t0,ψ)
is a solution of (6.1.1) if x(t) satisfies (6.1.1) for t ≥ t0 and xt0 = x(t0 + s) = ψ(s),
s ∈ [−h,0].
In preparation for our main results, we let

A(t,s) =
r

∑
u=t−s

b(u+ s,s). (6.1.4)

By noting that
A(t, t − r− 1) = 0,

we have that (6.1.1) is equivalent to

�x(t) =
(
a(t)+A(t + 1, t)− 1

)
x(t)−�t

t−1

∑
s=t−r−1

A(t,s)x(s). (6.1.5)

In [138], the author used the same method and studied the exponential stability and
instability of the zero solution of

x(t + 1) = a(t)x(t)− b(t)x(t − h).

One of the novelty of rewriting (6.1.1) in the form of (6.1.5) is that it allows us to
obtain stability results concerning the totally delayed Volterra difference equation

x(t + 1) =
t−1

∑
s=t−r

b(t,s)x(s), t ≥ 0. (6.1.6)

We have the following definition.

Definition 6.1.1. The zero solution of (6.1.1) is said to be exponentially stable if
any solution x(t, t0,ψ) of (6.1.1) satisfies

|x(t, t0,ψ)| ≤C
(
||ψ ||, t0

)
ζ γ(t−t0), for all t ≥ t0,
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where ζ is constant with 0 < ζ < 1, C : R+×Z
+ → R

+, and γ is a positive con-
stant. The zero solution of (6.1.1) is said to be uniformly exponentially stable if C is
independent of t0.

For simplicity we let
Q(t) = a(t)+A(t+ 1, t)− 1.

Assume
�tA

2(t,z)≤ 0, for all t + s+ 1 ≤ z ≤ t − 1. (6.1.7)

Lemma 6.1 ([98]). Let A(t,s) be given by (6.1.4) and that for δ > 0 the inequality

− δ
(δ + 1)r

≤ Q(t)≤−rδA2(t + 1, t)−Q2(t) (6.1.8)

holds. If

V (t) =

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]2

+ δ
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z), (6.1.9)

then along the solutions of (6.1.1) we have

�V (t)≤ Q(t)V (t).

Proof. First we note that due to condition (6.1.8), Q(t) < 0 for all t ≥ 0. Also, we
use the fact that if u(t) is a sequence, then �u2(t) = u(t + 1)�u(t)+ u(t)�u(t).
Let x(t) = x(t, t0,ψ) be a solution of (6.1.1) and define V (t) by (6.1.9). Then along
solutions of (6.1.5) we have

�V (t) =

[

x(t + 1)+
t

∑
s=t−r

A(t + 1,s)x(s)

]

�t

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]

+

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]

�t

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]

+ δ�t

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z). (6.1.10)

We note that

x(t + 1)+
t

∑
s=t−r

A(t + 1,s)x(s) = (Q(t)+ 1)x(t)−�t

t−1

∑
s=t−r−1

A(t,s)x(s)
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+
t

∑
s=t−r

A(t + 1,s)x(s)

= (Q(t)+ 1)x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

= (Q(t)+ 1)x(t)+
t−1

∑
s=t−r

A(t,s)x(s),

since A(t, t − r− 1) = 0. With this in mind, (6.1.10) reduces to

�V (t) =

[

(Q(t)+ 1)x(t)+
t−1

∑
s=t−r

A(t,s)x(s)

]

Q(t)x(t)

+

[

x(t)+
t−1

∑
s=t−r

A(t,s)x(s)

]

Q(t)x(t)

+ δ�t

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

= Q(t)V (t)+
(
Q2(t)+Q(t))

)
x2(t)

− δQ(t)
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

+ δ�t

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

− Q(t)

(
t−1

∑
s=t−r

A(t,s)x(s)

)2

. (6.1.11)

Also, using (6.1.4), we arrive at

�t

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z) =
−1

∑
s=−r

t

∑
z=t+s+1

A2(t + 1,z)x2(z)

−
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

=
−1

∑
s=−r

[
A2(t + 1, t)x2(t)+

t−1

∑
z=t+s+1

A2(t + 1,z)x2(z)

−
t−1

∑
z=t+s+1

A2(t,z)x2(z)−A2(t, t + s)x2(t + s)
]
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=
−1

∑
s=−r

(
A2(t + 1, t)x2(t)−A2(t, t + s)x2(t + s)

)

+
−2

∑
s=−r

t−1

∑
z=t+s+1

�tA
2(t,z)x2(z)

= rA2(t + 1, t)x2(t)−
−1

∑
s=−r

A2(t, t + s)x2(t + s)

+
−2

∑
s=−r

t−1

∑
z=t+s+1

�tA
2(t,z)x2(z)

≤ rA2(t + 1, t)x2(t)

−
−1

∑
s=−r

A2(t, t + s)x2(t + s). (6.1.12)

With the aid of Hölder’s inequality, we have

(
t−1

∑
s=t−r

A(t,s)x(s)

)2

≤ r
t−1

∑
s=t−r

A2(t,s))x2(s). (6.1.13)

Also,

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)≤ r
t−1

∑
s=t−r

A2(t,s)x2(s). (6.1.14)

By invoking (6.1.8) and substituting expressions (6.1.12)–(6.1.14) into (6.1.11), we
obtain

�V(t) ≤ Q(t)V (t)+
(
Q2(t)+Q(t)+ rδA2(t + 1, t)

)
x2(t)

+ [−(δ + 1
)
rQ(t)− δ ]

t−1

∑
s=t−h

A2(t,s)x2(s)

≤ Q(t)V (t). (6.1.15)

This completes the proof.

Theorem 6.1.1 ([98]). Assume the hypothesis of Lemma 6.1 holds and suppose there
exists a number α < 1 such that 0 < a(t) + A(t + 1, t)) ≤ α. Then any solution
x(t) = x(t, t0,ψ) of (6.1.1) satisfies the exponential inequality

|x(t)| ≤
√√
√
√r+ δ

δ
V (t0)

t−1

∏
s=t0

(
a(s)+A(s+ 1,s)

)
(6.1.16)

for t ≥ t0.
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Proof. First we note that condition (6.1.8) implies that there exists some positive
number α < 1 such that |a(t)+ A(t + 1, t))| < α. Now by changing the order of
summation we have

δ
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z) = δ
t−1

∑
z=t−r

z−1

∑
s=−r

A2(t,z)x2(z)

= δ
t−1

∑
z=t−r

A2(t,z)x2(z)(z− t + r+ 1)

≥ δ
t−1

∑
z=t−r

A2(t,z)x2(z),

where we have used the fact that t − h ≤ z ≤ t − 1 =⇒ 1 ≤ z− t + h+ 1≤ h. Also

(
t−1

∑
z=t−r

A(t,s)x(s)

)2

≤ r
t−1

∑
z=t−r

A2(t,s)x2(s),

and hence,

δ
−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)≥ δ
r

(
t−1

∑
z=t−r

A(t,z)x(z)

)2

.

Let V (t) be given by (6.1.9). Then

V (t) =
[
x(t)+

t−1

∑
s=t−r−1

A(t,s)x(s)
]2
+ δ

−1

∑
s=−r

t−1

∑
z=t+s

A2(t,z)x2(z)

≥ [
x(t)+

t−1

∑
s=t−r−1

A(t,s)x(s)
]2
+

δ
r

(
t−1

∑
z=t−r

A(t,z)x(z)

)2

≥ δ
r+ δ

x2(t)+

[√
r

r+ δ
x(t)+

√
r+ δ

r

t−1

∑
z=t−r

A(t,z)x(z)

]2

≥ δ
r+ δ

x2(t).

Consequently,

δ
r+ δ

x2(t)≤V (t).

From (6.1.15) we get

V (t)≤V (t0)
t−1

∏
s=t0

(
a(s)+A(s+ 1,s)

)
.
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Thus we arrive at

|x(t)| ≤
√√
√
√r+ δ

δ
V (t0)

t−1

∏
s=t0

(
a(s)+A(s+ 1,s)

)

for t ≥ t0. This completes the proof.

Corollary 6.1 ([98]). Assume the hypothesis of Theorem 6.1.1 holds. Then the zero
solution of (6.1.1) is exponentially stable.

Proof. From inequality (6.1.16) we have that

|x(t)| ≤
√√
√
√ r+ δ

δ
V (t0)

t−1

∏
s=t0

(
a(s)+A(s+ 1,s)

)

≤
√

r+ δ
δ

V (t0)αt−t0

for t ≥ t0. The proof is complete since α ∈ (0,1).

Now we state a corollary regarding the exponential stability of the zero solution
of (6.1.6).

Corollary 6.2 ([98]). Assume the hypothesis of Theorem 6.1.1 holds with Q(t) =
A(t + 1, t)− 1. Then the zero solution of (6.1.6) is exponentially stable.

Remark 6.1. If for a positive constant M we have

V (t0)≤ M, for all t0 ≥ 0,

then the zero solution of (6.1.1) is uniformly exponentially stable. This follows from
the exponential inequality (6.1.16).

6.2 Criterion for Instability

In this section we use a nonnegative definite Lyapunov functional and obtain criteria
that can be easily applied to test for instability of the zero solution of (6.1.1).

Theorem 6.2.1 ([98]). Let H > r be a constant. Assume Q(t)> 0 such that

Q2(t)+Q(t)−HA2(t + 1, t)≥ 0. (6.2.1)

If

V (t) =

[

x(t)+
t−1

∑
s=t−r−1

A(t,s)x(s)

]2
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− H
t−1

∑
s=t−r−1

A2(t,s)x2(s), (6.2.2)

then along the solutions of (6.1.1) we have

�V (t)≥ Q(t)V (t).

Proof. Let x(t) = x(t, t0,ψ) be a solution of (6.1.1) and assume V (t) is given
by (6.2.2). Since the calculation is similar to the one in Lemma 6.1 we have that

�V (t) = Q(t)V (t)+
(
Q2(t)+Q(t)−HA2(t + 1, t)

)
x2(t)

+ Q(t)(H − r)

(
t−1

∑
s=t−r−1

A2(t,s)x2(s)

)2

≥ Q(t)V (t), (6.2.3)

where we have used
(

t−1

∑
s=t−r

A(t,s)x(s)

)2

≤ r
t−1

∑
s=t−r

A2(t,s)x2(s)

and (6.2.1). This completes the proof.

We remark that condition (6.2.1) is satisfied for

Q(t)≥ −1+
√

1+ 4HA2(t + 1, t)
2

.

Theorem 6.2.2 ([98]). Suppose the hypothesis of Theorem 6.2.1 holds. Then all
solutions of (6.1.1) are unbounded and its zero solution is unstable, provided that

∞

∏
(
a(s)+A(s+ 1,s)

)
= ∞. (6.2.4)

Proof. From (6.2.3) we have

V (t)≥V (t0)
t−1

∏
s=t0

(
a(s)+A(s+ 1,s)

)
. (6.2.5)

Let V (t) be given by (6.2.2). Then

V (t) = x2(t)+ 2x(t)
t−1

∑
t−r−1

A(t,s)x(s)+

[
t−1

∑
t−r−1

A(t,s)x(s)

]2

− H
t−1

∑
t−r−1

A2(t,s)x2(s). (6.2.6)
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Let β = H − r. Then from

( √
r

√
β

a−
√

β√
r

b

)2

≥ 0,

we have

2ab ≤ r
β

a2 +
β
r

b2.

With this in mind we arrive at

2x(t)
t−1

∑
t−r−1

A(t,s)x(s) ≤ 2 |x(t)|
∣
∣
∣
∣∣

t−1

∑
t−r−1

A(t,s)x(s)

∣
∣
∣
∣∣

≤ r
β

x2(t)+
β
r

[
t−1

∑
t−r−1

A(t,s)x(s)

]2

≤ r
β

x2(t)+
β
r

r
t−1

∑
t−r

A2(t,s)x2(s).

A substitution of the above inequality into (6.2.6) yields

V (t) ≤ x2(t)+
r
β

x2(t)+ (β + r−H)
t−1

∑
t−r−1

A2(t,s)x2(s)

=
β + r
β

x2(t)

=
H

H − r
x2(t).

Using inequality (6.2.5), we get

|x(t)| ≥
√

H − r
H

V 1/2(t)

=

√
H − r

H
V 1/2(t0)

(
t−1

∏
s=t0

(
a(s)++A(s+ 1,s)

)1
2

.

This completes the proof.

We have the following corollary regarding the unboundedness and instability of
(6.1.6).

Corollary 6.3 ([98]). Suppose the hypothesis of Theorem 6.2.1 holds with Q(t) =
A(t + 1, t)− 1. Then all solutions of (6.1.6) are unbounded and its zero solution is
unstable, provided that

∞

∏
(
A(s+ 1,s)

)
= ∞.
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6.2.1 Applications and Numerical Evidence

In this section we provide examples that illustrate our theoretical results in two
instances: when the coefficients a(t) and b(t,s) are constants, and when they are
functions.

First, if a(t) = a and b(t,s) = b (a,b ∈ R) we have A(t,s) =
r

∑
u=t−s

b. Then A(t,s) =

b(r+1− t+ s). Hence, �tA
2(t,s) = b2(r− t + s)2 −b2(r+1− t+ s)2 ≤ 0 and thus

condition (6.1.7) holds. Also A(t + 1, t) = br, and hence condition (6.1.8) becomes

− δ
(δ + 1)r

≤ a+ br− 1≤−[δb2r3 +(a+ br− 1)2] . (6.2.7)

It is obvious from (6.2.7) that when a = 1, b has to be negative.
Next we give four examples where the emphasis is on |a| ≥ 1.

Example 6.1 ([98]). Let a= r = 1,b=−0.3 and δ = 0.5. Then one can easily verify
that (6.2.7) is satisfied. Hence the zero solution of the delay difference equation

x(t + 1) = x(t)− 0.3x(t− 1) (6.2.8)

is exponentially stable.

Example 6.2 ([98]). Let a = 1.2,b = −0.3,r = 1, and δ = 0.5. Then one can eas-
ily verify that (6.2.7) is satisfied. Hence the zero solution of the delay difference
equation

x(t + 1) = 1.2x(t)− 0.3x(t− 1) (6.2.9)

is exponentially stable as illustrated in Figure 6.1.

Example 6.3 ([98]). Let a = 1.29,b = −0.6,r = 1, and δ = 0.5. With these val-
ues (6.2.7) is satisfied, and therefore the zero solution of the delay difference equa-
tion

x(t + 1) = 1.29x(t)− 0.6x(t− 1)

is exponentially stable as shown in Figure 6.2.

Example 6.4 ([98]). a = 1.125,b = −0.15,r = 2, and δ = 2
3 . Then one can easily

verify that (6.2.7) is satisfied. Hence the zero solution of the delay difference equa-
tion

x(t + 1) = 1.125x(t)− 0.15
(
x(t − 1)+ x(t− 2)

)

is exponentially stable as shown in Figure 6.3.

It is worth mentioning that in both papers [87] and [136], in which fixed point theory
was used, it was assumed that

t−1

∏
s=0

a(s)→ 0, as t → ∞
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Fig. 6.1 Trajectories of (6.1.1) when a(t) and b(t, s) are constant. Figure 6.1 refers to Example 6.2
where a = 1.2,b =−0.3, and r = 1 with initial condition x(0) =−10 and x(1) = 10.3. Figure 6.2
refers to Example 6.3 where a = 1.29,b = −0.6, and r = 1 with initial condition x(0) =−10 and
x(1) = 10.3. Figure 6.3 refers to Example 6.4 where a = 1.125,b = −0.6, and r = 2 with initial
condition x(0) = 15,x(1) = 2, and x(3) =−10.

for the asymptotic stability.

Example 6.5 ([98]). Let a = 1.3,b = −0.2,r = 1 and H = 1.1. Then Q(t) = 0.1 >

0. Moreover Q(t) ≥ −1+
√

1+ 4HA2(t + 1, t)
2

= 0.0422. Thus conditions (6.2.1)

and (6.2.4) are satisfied and the zero solution of

x(t + 1) = 1.3x(t)− 0.2x(t− 1) (6.2.10)

is unstable. Actually, all its solutions become unbounded for large t. Figure 6.2
shows a trajectory for the above equation with initial condition x(0) = −10 and
x(1) =−1.3.
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Fig. 6.2 Trajectories of (6.1.1) when a(t) and b(t, s) are constant. This graph corresponds to Ex-
ample 6.5 where a = 1.3,b =−0.2, and r = 1 with initial condition x(0) =−10 and x(1) =−1.3.

Remark 6.2. When a(t) and b(t,s) are constant the solution x(t) of the delay differ-
ence equation (6.1.1) is the same as the sequence (xn)n∈N0 defined
recursively as

xn+r+1 = axn+r + b(xn+r−1 + · · ·+ xn) ,n ∈ N0, (6.2.11)

and for which the general solution can be obtained analytically. For r = 1 in par-
ticular, the general solution to (6.2.11) is easily calculated. For instance, the exact
solution to (6.2.8) in Example 6.1 is

x(t) =

(√
30

10

)t
⎛

⎝x(0)cos(tθ )+
10x(1)√

30
− x(0)cosθ

sinθ
sin(tθ )

⎞

⎠ ,

where θ = arctan
(√

5
5

)
. Since

∣∣
∣
√

30
10

∣∣
∣< 1 we see that lim

t→+∞
|x(t)|= 0 with an expo-

nential convergence. The exact solution to (6.2.9) in Example 6.2 is

x(t) =
1
2

[(

x(0)+ 10
x(1)− 6x(0)

10√
6

)(
6+

√
6

10

)t

+

(

x(0)− 10
x(1)− 6x(0)

10√
6

)(
6−√

6
10

)t]

.

Since
∣
∣
∣ 6±√

6
10

∣
∣
∣< 1, we see that the solution x(t) of Example 6.2 converges exponen-

tially to zero. Similar calculations can be done for Examples 6.3 and 6.4. Finally,
the exact solution to (6.2.10) in Example 6.5 is
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x(t) =
1
2

[(

x(0)+ 20
x(1)− 13x(0)

20√
89

)(
13+

√
89

20

)t

+

(

x(0)− 20
x(1)− 13x(0)

20√
89

)(
13−√

89
20

)t]

.

Since
∣∣
∣ 13+

√
89

20

∣∣
∣> 1, we see that lim

t→+∞
|x(t)|=+∞.

We now give two examples that illustrate the exponentially stable and unstable case
when a(t) and b(t,s) are functions. We corroborate our results with numerical sim-
ulations.

Example 6.6 ([98]). Let a(t) = d2t+1 + 2
3 and b(t,s) = −dt+s for d ∈ R. Then

A(t,s) = −d2s
r

∑
u=t−s

du, and therefore A(t + 1, t) = −d2t
r

∑
u=1

du = −d2t+1 for r = 1.

We can show that �tA
2(t,z) ≤ 0 for all t + s+ 1 ≤ z ≤ t − 1. If we take r = 1 and

δ = 1, we obtain Q(t) = −1
3

. With these choices we see that the left inequality

of condition (6.1.8) is trivially satisfied. To obtain the right inequality, we need to

choose d such that

(
d2(d4)t +

1
9

)
≤ −Q(t) =

1
3

for t large enough. It is there-

fore sufficient to choose d ∈ (0,1). In that case, lim
t→+∞

(d4)t = 0 which implies that

the right inequality of condition (6.1.8) will eventually be satisfied. Note that con-

dition (6.1.8) is satisfied for all t ≥ 0 when d ∈ (0,
√

2
3 ]. With these choices for the

parameters d,δ , and r, we can conclude that the zero solution of the delay difference
equation

x(t + 1) =

(
d2t+1 +

2
3

)
x(t)− d2t+1x(t − 1)

is exponentially stable. We plotted two of its trajectories in Figure 6.3.

Example 6.7 ([98]). Let a(t) = d2t+1 + 1.1 and b(t,s) = −dt+s. Then from Exam-
ple 6.6 we have A(t + 1, t) = −d2t+1 when r = 1. In that case choosing H = 1
yields Q(t) = 0.1 > 0. With these choices we see that condition (6.2.1) is satisfied
if d ∈ (0,1) and hence the zero solution of the delay difference equation

x(t + 1) =
(
d2t+1 + 1.1

)
x(t)− d2t+1x(t − 1)

is unstable as illustrated in Figure 6.4. In fact, the zero solution is unstable for all
choices of a(t) = d2t+1 +ν with ν > 1. We note that with these choices of a(t) and
b(t,s) we have

∞

∏
(
a(s)+A(s+ 1,s)

)
=

∞

∏ν =+∞,

and hence (6.2.4) is verified.
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Fig. 6.3 Trajectories of (6.1.1) when a(t) = d2t+1 + 2
3 and b(t, s) = −dt+s. These plots refer to

Example 6.6 with r = 1. The initial condition was taken to be x(0) = −1 and x(1) = 0.21. In
Figure 6.3(a) we plotted the trajectory obtained with d = 2

3 , and in Figure 6.3(b) we plotted the
trajectory with d = 2.99

3 . In the latter case, since condition (6.1.8) is verified only after a certain
value of t , the first few terms of the trajectory x(t) are not converging to zero until condition (6.1.8)
is satisfied.
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Fig. 6.4 Trajectories of (6.1.1) when a(t) = d2t+1 + 1.1 and b(t, s) = −dt+s. This graph corre-
sponds to Example 6.7 with r = 1 and initial condition x(0) =−1 and x(1) = 0.21.

Next we compare our results to existing ones. Let a = 1.2,b1 = −0.2, b2 =
−0.088,h∗ = 2, and δ = 0.5. Then one can easily verify that (6.1.8) is satisfied.
Hence the zero solution of the difference equation with multiple delays

x(t + 1) = 1.2x(t)− 0.2x(t− 1)− 0.088x(t− 2). (6.2.12)

is exponentially stable.
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It is worth mentioning that in both papers [87] and [136] it was assumed that

t−1

∏
s=0

a(s)→ 0, as t → ∞

for the asymptotic stability. Of course our a = 1.2 does not satisfy such a condition,
and yet we concluded exponential stability. Let a = 1.2,b = −0.3,h = 1, and δ =
0.5. Then one can easily verify that (6.1.8) is satisfied. Hence the zero solution of
the delay difference equation

x(t + 1) = 1.2x(t)− 0.3x(t− 1) (6.2.13)

is exponentially stable.
Moreover the above condition of [87] and [136] cannot be satisfied since our a =
1.2. Next we compare our results with the results obtained in [125] by El-Morshedy.
Hence, we begin with the statement of the following.

Lemma 6.2 ([125]). If there exists λ ∈ (0,1) such that

∣
∣

N

∏
j=0

a(n− j)+ b(n)
∣
∣+

N

∑
s=1

∣
∣

s−1

∏
j=0

a(n− j)
∣
∣ |b(n− s)| ≤ λ , (6.2.14)

for large n, then the zero solution of

x(n+ 1) = a(n)x(n)+ b(n)x(n−N) (6.2.15)

is globally exponentially stable.

It can be easily seen that condition (6.2.14) cannot be satisfied for the data given in
the above (6.2.12). Next we state two major results from [125], by Berezansky and
Braverman, so we can compare with equation (6.2.12) and (6.2.13).

Lemma 6.3 ([16]). Let 0< γ < 1 and
m

∑
l=2

|al(n)|+ |1−a1(n)| ≤ γ for n large enough.

Then the equation

x(n+ 1)− x(n) =−a1(n)x(n)−
m

∑
l=2

al(n)x(gl(n)) (6.2.16)

is exponentially stable. Here n−T ≤ gl(n)≤ n for some integer T > 0.

Lemma 6.4 ([16]). Suppose that for some γ ∈ (0,1) the following inequality is sat-
isfied for n large enough:

m

∑
k=2

|ak(n)|
n−1

∑
j=gk(n)

m

∑
l=1

|al( j)|+ |1−
m

∑
k=1

ak(n)| ≤ γ. (6.2.17)

Then (6.2.16) is exponentially stable.
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In the spirit of (6.2.16) we rewrite (6.2.13) as

x(t + 1)− x(n) = .2x(t)− 0.3x(t− 1).

Then the condition in Lemma 6.3 is equivalent to

|a2(n)|+ |1− a1(n)|= 0.3+ |1+ 0.2|> 1,

is not satisfied. Also, condition (6.2.17) is equivalent to

|a2(n)||a1(n)|+ |1− a1(n)|= 0.3(0.2)+ |1+ 0.2|> 1,

is not satisfied. Thus, we have demonstrated that Lyapunov functionals yield better
results as seen from the improvement over the results of [16] and [125]. For more
comparison with existing literature, we have the following theorem by Berezansky,
Braverman, and Karabash.

Theorem 6.2.3 ([17]). Consider the two delays difference equation

x(n+ 1)− x(n) =−a0x(n)− a1x(n− h1)− a2x(n− h2), h1, h2 > 0. (6.2.18)

Suppose at least one of the following conditions hold:
1) 1 > a0 > 0, |a1|+ |a2|< a0;

2) 0 < a0 + a1 + a2 < 1, |a1|h1 + |a2|h2 <
a0 + a1 + a2

|a0|+ |a1|+ |a2| ;

3) 0 < a0 + a2 < 1, |a2|h2 <
a0 + a2 −|a|

|a0|+ |a1|+ |a2| .
Then Equation (6.2.18) is exponentially stable.

The next theorem is due to Cooke and Győri.

Theorem 6.2.4 ([42]). The multiple delays difference equation

x(n+ 1)− x(n) =−
N

∑
k=1

akx(n− hk), ak ≥ 0, hk ≥ 0, (6.2.19)

is asymptotically stable if
N

∑
k=1

akhk < 1. (6.2.20)

The next theorem is due to Elaydi (1994) and Kocić and Laddas (1993).

Theorem 6.2.5 ([63, 94]). The multiple delays difference equation

x(n+ 1)− x(n) = a0(n)x(n)−
N

∑
k=1

ak(n)x(gk(n)), gk(n)≤ n (6.2.21)
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is asymptotically stable if

N

∑
k=1

|ak(n)|=
{

a0(n)− ε for 0 < a0(n)< 1
2− a0(n)− ε for 1 ≤ a0(n)< 2

(6.2.22)

The next theorem is due to Hartung and Győri.

Theorem 6.2.6 ([77]). The multiple delays difference equation

x(n+ 1)− x(n) =−
N

∑
k=1

akx(gk(n)), ak ≥ 0, gk(n)≤ n, (6.2.23)

is exponentially stable if

lim sup
n→∞

(n− gk(n))< ∞, (6.2.24)

and
N

∑
k=1

ak lim sup
n→∞

(n− gk(n))< 1+
1
e
−

N

∑
k=1

ak. (6.2.25)

We remark that Theorems 6.2.4 and 6.2.5 only give results regarding asymptotic
stability.
Consider the difference equation in Example 6.4, where we have shown its zero
solution is exponentially stable.

x(n+ 1)− x(n) =−(−.125)x(n)− 0.15x(n−1)−0.15x(n−2). (6.2.26)

Then a0 = −.125, a1 = 0.15, and, a1 = 0.15. It is clear that 1) of Theorem 6.2.3
cannot hold since our a0 is negative. Similarly, condition (6.2.22) cannot hold since
it requires that a0 > 0. Notice that Theorems 6.2.4 and 6.2.6 are not applicable to the
results of this section since the coefficients (6.1.1) depend on time. In Example 6.6
we showed the zero solution is exponentially stable. Also we remark that our theo-
rems do not require sign conditions on the coefficients and the fact that if we rewrite
the equations of Theorems 6.2.4, 6.2.5, and 6.2.6, in the form of

x(n+ 1) = (a0 + 1)x(n)+ a1x(n− h1)+ a2x(n− h2)

then their first coefficient, a0 + 1 > 1, unlike our theorems that are applicable to
|a0 + 1|> 1 as it was demonstrated in the examples.
In general, it is a major problem to find an appropriate Lyapunov functional and
hence, the dependence of the quality of the corresponding results on such functional.
However, once a suitable Lyapunov functional is found, investigators may continue
for decades deriving more and more information from that Lyapunov functional. It
is a common knowledge among researchers that stability and boundedness results
go hand in hand with the type of the Lyapunov functional that is being used. To
illustrate our concern, we consider the delay difference equation
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x(t + 1) = a(t)x(t)+ b(t)x(t− τ)+ p(t), t ∈ Z
+, (6.2.27)

where a,b, p : Z+ → R, τ is a positive integer. We have the following theorem.

Theorem 6.2.7. Assume
|a(t)|< 1, for all t ∈ Z (6.2.28)

and there is a δ > 0 such that

|b(t)|+ δ < 1, (6.2.29)

and
|a(t)| ≤ δ , and |p(t)| ≤ K, for some positive constant K. (6.2.30)

Then all solutions of (6.2.27) are bounded. If p(t) = 0 for all t, then the zero solution
of (6.2.27) is (UAS).

Proof. Consider the Lyapunov functional

V (t,x(·)) = |x(t)|+ δ
t−1

∑
s=t−τ

|x(s)|.

Then along solutions of (6.2.27) we have

�V = |x(t + 1)|− |x(t)|+ δ
t

∑
s=t+1−τ

|x(s)|− δ
t−1

∑
s=t−τ

|x(s)|

≤ |a(t)||x(t)|− |x(t)|+ |b(t)||x(t− τ)|+ δ
t

∑
s=t+1−τ

|x(s)|− δ
t−1

∑
s=t−τ

|x(s)|+ |p(t)|

=
(|a(t)|+ δ − 1

)|x(t)|+ (|b(t)|− δ
)|x(t − τ)|+ |p(t)|

≤ (|a(t)|+ δ − 1
)|x(t)|+ |p(t)|

≤ −γ|x(t)|+ |p(t)|, for some positive constant γ.

The results follow from either [133] or Theorem 2.2.4.

It is evident from Example 6.2 that Theorem 6.2.7 does not give any result concern-
ing the exponential stability of the single delay difference equation

x(t + 1) = 1.2x(t)− 0.3x(t− 1).

This illustrates the uncertainty we face when using Lyapunov functionals. On the
other hand, it is tricky to construct a Lyapunov functional that deals with multiple
delays.
As we indicated before, there is always a price to pay. By using Lyapunov function-
als, our method relaxed the stringent conditions on the size of the coefficients. On
the other hand, it puts a severe demand on the size of the delay h. The next theo-
rem, which is due to Clark [35], does exactly the opposite; however, it asks for the
coefficients to be constants.
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Theorem 6.2.8 ([35]). Suppose the coefficients a and b of (6.2.15) are constants.
Then Equation (6.2.15) is asymptotically stable provided that

|a|+ |b|< 1.

6.3 Vector Equation

In this section we try to extend the concept of exponential stability of finite delay
scalar Volterra equation to the finite delay vector Volterra equation

x(t + 1) = Px(t)+
t−1

∑
s=t−r

C(t,s)g(x(s)), (6.3.1)

where r is a positive integer, P is a constant n×n matrix, and C is an n×n matrix of
functions that are defined on −r ≤ t ≤ s <∞, where t,s ∈ [−r,∞)∩Z. The nonlinear
function g : Rn → R

n is continuous in x. Throughout this paper it is understood that
if x ∈R

n, then |x| is taken to be the Euclidean norm. Obtaining exponential stability
through the method of Lyapunov functional V requires that along the solutions, we
have �V (t,x)≤−αV (t,x), something that is almost impossible to obtain in vector
equations. Materials of this section can be found in [51] and the references therein.
Let U = (u)i j be an n× n matrix. Then we define the norm |U | to be

|U |= max
1≤ j≤n

n

∑
i=1

|ui j|.

It should cause no confusion to denote the norm of a sequence function ϕ : [−r,∞)∩
Z→ R

n with
||ϕ ||= sup

−r≤s<∞
|ϕ(s)|.

The notation xt means that xt(τ) = x(t + τ),τ ∈ [−r,0]∩Z as long as x(t + τ) is
defined. Thus, xt is a function mapping an interval [−r,0]∩Z into R

n. We say x(t)≡
x(t, t0,ψ) is a solution of (6.3.1) if x(t) satisfies (6.3.1) for t ≥ t0 and xt0 = x(t0 +
s) = ψ(s), s ∈ [−r,0]∩Z. Throughout this paper it is to be understood that when
a function is written without its argument, then the argument is t. We begin with a
stability definition. For t0 ≥ 0 we define

Et0 = [−r, t0]∩Z.

Let C(t) denote the set of sequences φ : [−r,∞)∩Z → R
n and ‖φ‖ = sup{|φ(s)| :

s ∈ [−r, t]∩Z}.

Definition 6.3.1. The zero solution of (6.3.1) is stable if for each ε > 0 and each
t0 ≥−r, there exists a δ = δ (ε, t0)> 0 such that [φ ∈ Et0 →R

n,φ ∈C(t) : ‖φ‖< δ ]
implies |x(t, t0,φ)| < ε for all t0 ≥ 0.
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In order to be able to handle the calculations for�V (t) along the solutions of (6.3.1),
we let

A(t,s) :=
r

∑
u=t−s

C(u+ s,s), t,s ∈ [0, ∞)∩Z}.

Clearly A(t, t − r− 1) = 0, and as a consequence, one can easily verify that (6.3.1)
is equivalent to the new system

�x(t) = Qx(t)+A(t + 1, t)g(x(t))−�t

t−1

∑
s=t−r−1

A(t,s)g(x(s)), (6.3.2)

where the matrix Q is given by Q = P− I and I is the identity n× n matrix.

Remark 6.3. Writing (6.3.1) in the form of (6.3.2) allows us to obtain stability result
regarding the nonlinear Volterra difference equation

x(t + 1) =
t−1

∑
s=t−r

C(t,s)g(x(s)). (6.3.3)

This is remarkable since (6.3.1) is considered as the perturbed form of x(t + 1) =
Px(t), which implies that the stability of the zero solution of (6.3.1) depends on
the stability of linear part; that is, one must require that the magnitude of all the
eigenvalues of the matrix A be inside the unit circle.

Before we state and prove our next theorem, we assume there exists a positive def-
inite symmetric and constant n× n matrix D such that for positive constants λ ,μ1,
and μ2 we have

PT DQ+QT D =−μ1I. (6.3.4)

Due to the nonlinearity of the function g, we require that

xT (PT DA(t + 1, t)+DA(t+ 1, t)
)
g(x)≤−μ2|x|2 if x 	= 0, (6.3.5)

and
|g(x)| ≤ λ |x|. (6.3.6)

It is clear that conditions (6.3.5) and (6.3.6) imply that g(0) = 0 and hence x = 0 is
a solution for system (6.3.1). We note that since D is a positive definite symmetric
matrix, there exists a positive constant k such that

k|x|2 ≤ xT Dx, for all x. (6.3.7)

If W (t) and Z(t) are two sequences, then �W (t)Z(t) =W (t +1)�Z(t)+
(�W (t)

)

Z(t).

Theorem 6.3.1 ([51]). Let (6.3.4)–(6.3.6) hold, and suppose there are constants γ >
0 and α > 0 so that

− μ1 − 2μ2 + γrλ 2|A(t + 1, t)|+ (λ |AT (t + 1, t)D|+ |QTD|)
t−1

∑
s=t−r

|A(t,s)| ≤ −α,

(6.3.8)
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− γ+λ |AT (t + 1, t)D|+ |QT D| ≤ 0, (6.3.9)

and

1−λ
t−1

∑
s=t−r−1

|A(t,s)|> 0 (6.3.10)

then the zero solution of (6.3.1) is stable.

Proof. Define the Lyapunov functional V (t) =V (t,x) by

V (t) =
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

D
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

+γ
−1

∑
s=−r

t−1

∑
z=t+s

|A(t,z)||g(x(z))|2. (6.3.11)

First we note that the right side of (6.3.11) is scalar. Let x(t) = x(t, t0,ψ) be a so-
lution of (6.3.1) and define V (t) by (6.3.11). Then along solutions of (6.3.1) we
have

�V(t) = (x(t + 1)+
t

∑
s=t−r

A(t + 1,s)g(x(s))
)T

D

× �
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

+ �
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

× D
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

+ γr|A(t + 1, t)||g(x(t))|2 − γ
−1

∑
s=−r

|A(t, t + s)||g(x(t + s))|2.

Using (6.3.2) one can easily show that

x(t + 1)+
t

∑
s=t−r

A(t + 1,s)g(x(s)) = Px(t)+
t−1

∑
s=t−r

A(t,s)g(x(s)).

With this in mind �V becomes

�V (t) = (Px(t)+
t−1

∑
s=t−r

A(t,s)g(x(s))
)T

D
(

Qx(t)+A(t+ 1, t)g(x(t))
)

+
(

Qx(t)+A(t+ 1, t)g(x(t))
)T

D
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

+ γrλ 2|A(t + 1, t)||g(x(t))|2 − γ
−1

∑
s=−r

|A(t, t + s)||g(x(t + s))|2.
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After rearranging terms, the above expression simplifies to

�V (t) = xT (t)
(
PT DQ+QT D

)
x(t)+ xT (t)PT DA(t + 1, t))g(x(t))

+
( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DQx(t)

+
( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DA(t + 1, t)g(x(t))

+ xT (t)QT D
t−1

∑
s=t−r−1

A(t,s)g(x(s))+ gT (x(t))AT (t + 1, t)Dx(t)

+ gT (x(t))AT (t + 1, t)D
t−1

∑
s=t−r−1

A(t,s)g(x(s))+ γr|A(t + 1, t)||g(x(t))|2

− γ
−1

∑
s=−r

|A(t, t + s)||g(x(t + s))|2. (6.3.12)

Next we try to simplify (6.3.12) by combining likewise terms. We begin by noting
that gT (x)AT (t + 1, t)Dx =

[
xT DA(t + 1, t))g(x)

]T
, and hence we have

xT PT DA(t + 1, t))g(x) + gT (x)AT (t + 1, t)Dx

= xT (PT DA(t + 1, t)+DA(t+ 1, t)
)
g(x).

( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DQx(t) + xT (t)QT D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

= xT (t)QT D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

+
[( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DQx(t)
]T

= 2xT (t)QT D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

≤ 2|xT (t)||QT D|
t−1

∑
s=t−r

|A(t,s)||g(x(s))|

≤ |QT D|
t−1

∑
s=t−r

|A(t,s)|(|x(t)|2 + |g(x(s))|2),
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where we have used the inequality 2ab ≤ a2 + b2. Similarly,

t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DA(t + 1, t)g(x(t))

+ gT (x(t))AT (t + 1, t)D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

= gT (x(t))AT (t + 1, t)D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

+
[( t−1

∑
s=t−r

A(t,s)g(x(s))
)T

DA(t + 1, t)g(x(t))
]T

= 2gT (x(t))AT (t + 1, t)D
t−1

∑
s=t−r−1

A(t,s)g(x(s))

≤ 2λ |x(t)||AT (t + 1, t)D|
t−1

∑
s=t−r

|A(t,s)||g(x(s))|

≤ λ |AT (t + 1, t)D|
t−1

∑
s=t−r

|A(t,s)|(|x(t)|2 + |g(x(s))|2).

Let u = t + s, then

γ
−1

∑
s=−r

|A(t, t + s)||g(x(t + s))|2 =−γ
t−1

∑
s=t−r

|A(t,s)||g(x(s))|2.

By substituting the above four simplified expressions into (6.3.12) yields

�V (t) ≤
[
− μ1 − μ2 + γrλ 2|A(t + 1, t)|

+
(
λ |AT (t + 1, t)D|+ |QTD|)

t−1

∑
t−r

|A(t,s)|
]
|x(t)|2

+
[
− γ+λ |AT (t + 1, t)D|+ |QTD|

] t−1

∑
t−r

|A(t,s)||g(x(s))|2.

≤ −α|x(t)|2. (6.3.13)

Let ε > 0 be given, we will find δ > 0 so that |x(t, t0,φ)|< ε as long as [φ ∈ Et0 →
R : ‖φ‖< δ ]. Let

L2 = |D|
(

1+λ
t0−1

∑
t0−r

|A(t0,s)|
)2

+λ 2ν
−1

∑
s=−r

t0−1

∑
z=t0+s

|A(t0,z)|.
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By (6.3.13) we have V is decreasing and hence for t ≥ t0 ≥ 0 we have that

V (t,x) ≤ V (t0,φ)

≤ |D|(φ(t0)+
t0−1

∑
t0−r

A(t0,s)g(φ(s))
)2

+ νλ 2
−1

∑
s=−r

t0−1

∑
z=t0+s

|A(t0,z)||φ(z)|2

= δ 2 |D|
(

1+λ
t0−1

∑
t0−r

|A(t0,s)|
)2

+ νλ 2 δ 2
−1

∑
s=−r

t0−1

∑
z=t0+s

|A(t0,z)|

≤ δ 2L2. (6.3.14)

By (6.3.11), we have

V (t,x) ≥
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

× D
(

x(t)+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

≥ k2
(
|x|− ∣∣

t−1

∑
s=t−r−1

A(t,s)g(x(s))
∣
∣
)2

. (6.3.15)

Combining the two inequalities (6.3.14) and (6.3.15) we arrive at

|x(t)| ≤ δL
k

+λ
t−1

∑
s=t−r−1

|A(t,s)||x(s)|.

So as long as |x(t)|< ε , we have

|x(t)|< δL
k

+ ελ
t−1

∑
s=t−r−1

|A(t,s)|, for all t ≥ t0.

Thus, we have from the above inequality

|x(t)|< ε for δ <
k
L

(
1−λ

t−1

∑
s=t−r−1

|A(t,s)|)ε.

Note that by (6.3.10), the above inequality regarding δ is valid. This completes the
proof.

We have the following corollary.
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Corollary 6.4 ([51]). Assume all the conditions of Theorem 6.3.1 hold. Let x(t) be
any solution of (6.3.1). Then |x(t)|2 ∈ l

(
[t0,∞)∩Z

)
.

Proof. We know from Theorem 6.3.1 that the zero solution is stable. Thus, for the
same δ of stability, we take |x(t, t0,φ)| < 1. Since V is decreasing, we have by
summing (6.3.13) from t0 to t − 1 and using (6.3.14) that,

V (t,x)≤V (t0,φ) ≤ δ 2L2 −α
t−1

∑
t0

|x(s)|2.

Since,

V (t,x)≥
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

D
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)
,

we have that

(
x+

t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

D
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

≤ δ 2L2 −α
t−1

∑
t0

|x(s)|2. (6.3.16)

Also, using Schwarz inequality one obtains

( t−1

∑
s=t−r−1

|A(t,s)||g(x(s))|
)2

=
( t−1

∑
s=t−r−1

|A(t,s)|1/2|A(t,s)|1/2|g(x(s))|
)2

≤ λ 2
t−1

∑
s=t−r−1

|A(t,s)|
t−1

∑
s=t−r−1

|A(t,s)||x(s)|2.

As ∑t−1
s=t−r−1 |A(t,s)| is bounded by (6.3.10) and |x|2 < 1, we have ∑t−1

s=t−r−1 |A(t,s)|
|x(s)|2 is bounded and hence ∑t−1

s=t−r−1 |A(t,s)||g(x(s))| is bounded. Therefore,
from (6.3.16), we arrive at

α
t−1

∑
s=t0

|x(s)|2 ≤ δ 2L2 −
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)T

× D
(

x+
t−1

∑
s=t−r−1

A(t,s)g(x(s))
)

≤ δ 2L2 + |D|
(
|x|+

t−1

∑
s=t−r−1

A(t,s)g(x(s))|
)2 ≤ K,

from which we deduce that |x(t)|2 ∈ l
(
[t0,∞)∩Z

)
.
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Due to our previous remark, it is straightforward to extend Theorem 6.3.1 and Corol-
lary 6.4 to (6.3.3) by setting the coefficient matrix P = 0.

Theorem 6.3.2 ([51]). Let (6.3.4) and (6.3.5) hold for P = 0 matrix. Assume (6.3.6)
and suppose there are constants γ > 0 and α > 0 so that

−μ1 − μ2 + γrλ 2|A(t + 1, t)|+ (λ |AT (t + 1, t)D|

+ |D|)
t−1

∑
t−r

|A(t,s)| ≤ −α,

−γ+λ |AT (t + 1, t)D|+ |D| ≤ 0,

and

1−λ
t−1

∑
s=t−r−1

|A(t,s)|> 0

then the zero solution of (6.3.3) is stable and |x(t)|2 ∈ l
(
[t0,∞)∩Z

)
.

Proof. The proof is immediate consequence of Theorem 6.3.1 and Corollary 6.4 by
taking the matrix P to be the zero matrix which implies that Q = I.

Next, we resort to fundamental matrix solution to characterize solutions of (6.3.1)
and then compare both results. We begin by considering the homogenous system,

x(t + 1) = Ax(t) (6.3.17)

where A = (ai j) is constant n× n nonsingular matrix. Then if Φ(t) is a matrix that
is nonsingular for all t ≥ t0 and satisfies (6.3.17), then it is said to be a fundamental
matrix for (6.3.17). Also, it is known that if all eigenvalues of A reside inside the unit
circle, then there exist positive constants l and η ∈ (0,1) such that |Φ(t)Φ−1(t0)| ≤
lηt−t0 . For more on Linearization of systems of the form of (6.3.17), we refer the
reader to [57]. Suppose the function g is Lipschitz. That is, there exists a positive
constant L such that

|g(x)− g(y)| ≤ L|x− y| (6.3.18)

for all x and y. Then (6.3.18) along with g(0) = 0 imply that |g(x)| ≤ L|x|.
Theorem 6.3.3 ([51]). Assume all eigenvalues of A of system (6.3.17) reside inside
the unit circle. Also, assume (6.3.18) along with g(0) = 0. In addition we ask that
for some positive constant R

∞

∑
s=−r

|C(u,s)| ≤ R, (6.3.19)

then the zero solution of (6.3.1) is exponentially stable provided that RL < 1−η
l .

Proof. Let Φ(t) be the fundamental matrix for (6.3.17). For a given initial function
φ : [−r,∞)∩Z→R

n, by using the variation of parameters, we have that
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x(t) =Φ(t)Φ−1(t0)φ(t0)+
t−1

∑
u=t0

Φ(t)Φ−1(u+ 1)
u−1

∑
s=u−r

C(u,s)g(x(s)). (6.3.20)

Then x(t) given by (6.3.20) is a solution of (6.3.1) (see [57]). Hence, for t ≥ t0 we
have

|x(t)| ≤ lηt−t0 |φ(t0)|+RLlηt−1
t−1

∑
u=t0

η−u|x(u)|.

The rest of the proof follows along the lines of Theorem 4.35 of [57], by invoking
Gronwall’s inequality (see Corollary 1.1).

Theorem 6.3.3 gives stronger type of stability since it requires the zero solution
of (6.3.17) to be exponentially stable. We end this section with an example.

Example 6.8. Let P =

(
1/2 0

0 1/2

)
and C(t,s) =

(
1/3 0

0 1/3

)
,

then A(t,s) =

( 1
3(r− t + s+ 1) 0

0 1
3 (r− t + s+ 1)

)

and A(t + 1, t) =

( 1
3 r 0
0 1

3 r

)
.

From PT DQ+QT D =−μ1I, we obtain

D =

( 4
3μ1 0

0 4
3μ1

)
. Let g(x) =

⎛

⎜
⎝

−9μ2
8μ1r x1

−9μ2
8μ1r x2

⎞

⎟
⎠ .

Then
xT (PT DA(t + 1, t)+DA(t+ 1, t)

)
g(x) =−μ2

(
x2

1 + x2
2

)
.

Hence (6.3.5) is satisfied. By letting 9μ2
8rμ1

≤ λ < 3
r(r+1) we have that |g(x)| ≤ λ |x| .

For the sake of verifying (6.3.10), we note that

|A(t,s)| ≤ 1
3
|r− t + s+ 1| ≤ r

3
, for s ∈ [t − r, t − 1].

Thus,
t−1

∑
s=t−r−1

|A(t,s)| ≤
t−1

∑
s=t−r−1

r
3
≤ r(r+ 1)

3
.

Thus, 1−λ ∑t−1
s=t−r−1 |A(t,s)|> 0 for λ <

3
r(r+ 1)

. Left to verify conditions (6.3.8)

and (6.3.9). As before, by simple calculations one can easily show that (6.3.8)
and (6.3.9) correspond to

− μ1 − 2μ2 + γrλ 2 r
3
+

4λ rμ1

9
+

2
3
μ1(

r
3
)≤−α, (6.3.21)

and

− γ+
4λ rμ1

9
+

2
3
μ1 ≤ 0, (6.3.22)
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respectively. Now inequalities (6.3.21) and (6.3.22) can be satisfied by the choice of
appropriate μ1,μ2, and r. Thus we have shown that the zero solution of

x(t + 1) =

(
1/2 0

0 1/2

)
x(t)−

t−1

∑
s=t−r

(
1/3 0

0 1/3

)
⎛

⎜
⎝

−9μ2
8μ1r x1

−9μ2
8μ1r x2

⎞

⎟
⎠

is stable by invoking Theorem 6.3.1.

Next we consider the nonlinear Volterra difference equation

y(n+ 1) = f (y(n))+
n

∑
s=0

C(n,s)h(y(s))+ g(n) (6.3.23)

where f and h are k × 1 vector functions that are continuous in x and g is k × 1
vector sequence. In addition C is k× k matrix functions on Z

+ and Z
+×Z

+. Note
that (6.3.23) has no delay. We are mainly interested in the Uniform boundedness on
the solutions of (6.3.23) and its exponential stability when g(n) = 0 for all n ∈ Z

+.
We make the assumptions that for positive constants λ1,λ2, and M that

| f (y)| ≤ λ1|y|, |h(y)| ≤ λ2|y|, and |g| ≤ M. (6.3.24)

If A = (ai j) is a k× k real matrix, then we define the norm of A by

|A|= max
1≤i≤k

{
k

∑
j=1

|ai j|}.

Similarly, for x ∈ R
k, |x| denotes the maximum norm of x. In the next theorem we

construct a Lyapunov functional to obtain uniform boundedness and the exponential
stability of the zero solution.

Theorem 6.3.4. Assume (6.3.24). Also, we assume that

n−1

∑
s=0

∞

∑
j=n

|C( j,s)| < ∞, (6.3.25)

λ1 +λ2|C(n,n)|+K
∞

∑
j=n

|C( j,n)| ≤ 1−α, (6.3.26)

|C(n,s)| ≥ λ
∞

∑
j=n

|C( j,s)| where λ =
Kα
ε

, (6.3.27)

where ε,α , and K are positive constants with α ∈ (0,1) and K = ε+λ2. Then every
solution y(n) of (6.3.23) is uniformly bounded and lim

x→∞
sup |y(n)| ≤ M

α . Moreover, if

g(n) = 0 for all n ∈ Z
+, then the zero solution of (6.3.23) is exponentially stable.
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Proof. Let’s begin by defining the Lyapunov functional V by

V (n) = |y(n)|+K
n−1

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|. (6.3.28)

Then using (6.3.28) we have along the solutions of (6.3.23) that

�V (n) = |y(n+ 1)|− |y(n)|+K

(
n

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|−
n−1

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|
)

.

Or

�V (n) = (|y(n+ 1)|− |y(n)|)+K

(
∞

∑
j=n

|C( j,n)||y(n)|−
n−1

∑
s=0

|C(n,s)||y(s)|
)

.

Substitute y(n+ 1) and use (6.3.26) to obtain

�V (n)≤
(

| f (y(n))|+ |g(n)|+
n

∑
s=0

|C(n,s)||h(y(s))|− |y(n)|
)

+K

(
∞

∑
j=n

|C( j,n)||y(n)|−
n−1

∑
s=0

|C(n,s)||y(s)|
)

.

Or

�V (n)≤
(

λ1|(y(n))|+M+λ2

n

∑
s=0

|C(n,s)||(y(s))|− |y(n)|
)

+K

(
∞

∑
j=n

|C( j,n)||y(n)|−
n−1

∑
s=0

|C(n,s)||y(s)|
)

.

After simplification we arrive at

�V (n)≤
(

λ1 − 1+λ2|C(n,n)|+K
∞

∑
j=n

|C( j,n)|
)

|y(n)|

+M+
n−1

∑
s=0

(λ2 −K)|C(n,s)||y(s)|,

which reduces to

�V (n)≤−α|y(n)|+M+(λ2 −K)
n−1

∑
s=0

|C(n,s)||y(s)|.

Using (6.3.27) we get

�V (n)≤−α

(

|y(n)|− M
α

− λ (λ2 −K)

α

n−1

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|
)

.
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Now use the fact that λ := αK
ε and ε := K −λ2 ⇒− λ (λ2−K)

α = K to simplify to

�V (n) ≤ −α

(

|y(n)|+K
n−1

∑
s=0

∞

∑
j=n

|C( j,s)||y(s)|
)

+M

= −αV (n)+M.

Now, by applying the variations of parameters formula we get:

V (n)≤ (1−α)nV (0)+M
n−1

∑
s=0

(1−α)(n−s−1),

which simplifies to

V (n)≤ (1−α)nV (0)+
M
α
.

Using (6.3.28) we arrive at

|y(n)| ≤ (1−α)n|y(0)|+ M
α

(6.3.29)

≤ |y(0)|+ M
α
.

Hence we have uniform boundedness. If g(n) = 0 for all n ∈ Z
+, then from (6.3.29)

we have
|y(n)| ≤ (1−α)n|y(0)|,

which implies the exponential stability. This completes the proof.
For the next theorem we consider the scalar Volterra difference equation

x(n+ 1) = μ(n)x(n)+
n−1

∑
s=0

h(n,s)x(s)+ f (n), (6.3.30)

and show, under suitable conditions, all its solutions are uniformly bounded and its
zero solution is uniformly exponentially stable when f (n) is identically zero. We
assume the existence of an initial sequence φ : Z+ → [0,∞), that is bounded and
||φ ||= max

0≤s≤n0
|φ(s)|, n0 ≥ 0.

Theorem 6.3.5 (Raffoul). Suppose there is a scalar sequence α : Z+ → [0,∞). As-
sume there are positive constants a > 1 and b such that

α(s)a−b(n−s−1)−
n−1

∑
u=s

a−b(n−s−1)|h(u,s)|> 0, (6.3.31)

|μ(n)|+ |α(n)|− |h(n,n)|− 1≤−(1− a−b), (6.3.32)
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and for some positive constant M

n−1

∑
s=0

(1− a−b)(n−s−1)| f (s)| ≤ M, f or 0 ≤ n < ∞.

(i) If

max
n≥n0

n

∑
s=0

(
α(s)a−b(n−s−1)−

n

∑
u=s

a−b(n−s−1)|h(u,s)|
)
< ∞

then all solutions of (6.3.30) are uniformly bounded and its zero solution is uni-
formly exponentially stable when f (n) is identically zero.

(ii) If for every n0 ≥ 0, there is a constant M(n0) depending on n0 such that

n0−1

∑
s=0

α(s)a−b(n0−s−1)−
n0−1

∑
u=s

a−b(n0−s−1)|h(u,s)|< M(n0),

then all solutions of (6.3.30) are bounded and its zero solution is exponentially
stable when f (n) is identically zero.

Proof. Consider the Lyapunov functional

V (n,x) = |x(n)|

+
n−1

∑
s=0

[
α(s)a−b(n−s−1)−

n−1

∑
u=s

a−b(n−u−1)|h(u,s)|]|x(s)|. (6.3.33)

Then along the solutions of (6.3.30) we have

�V (n,x) ≤ |μ(n)||x(n)|+
n−1

∑
s=0

|h(n,s)||x(s)|+ | f (n)|

+
n

∑
s=0

[
α(s)a−b(n−s)−

n

∑
u=s

a−b(n−u)|h(u,s)|]|x(s)|

−
n−1

∑
s=0

[
α(s)a−b(n−s−1)−

n−1

∑
u=s

a−b(n−u−1)|h(u,s)|]|x(s)|.

Next we try to simplify �V (n,x).

n

∑
s=0

[
α(s)a−b(n−s)−

n

∑
u=s

a−b(n−u)|h(u,s)|]|x(s)|

=
n

∑
s=0

[
α(s)a−b(n−s)−

n−1

∑
u=s

a−b(n−u)|h(u,s)|− |h(n,s)|]|x(s)|

=
n−1

∑
s=0

[
α(s)a−b(n−s)−

n−1

∑
u=s

a−b(n−u)|h(u,s)|− |h(n,s)|]|x(s)|
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+ α(n)|x(n)|− |h(n,n)||x(n)|

= a−b
n−1

∑
s=0

[
α(s)a−b(n−s−1)−

n−1

∑
u=s

a−b(n−u−1)|h(u,s)|]|x(s)|

−
n−1

∑
s=0

|h(n,s)||x(s)|+α(n)|x(n)|− |h(n,n)||x(n)|.

Substituting the above expression into (6.3.34) and making use of (6.3.32) yield

�V (n,x) ≤ [|μ(n)|+ |α(n)|− |h(n,n)|− 1
]|x(n)|

− (1− a−b)
n−1

∑
s=0

[
α(s)a−b(n−s−1)−

n−1

∑
u=s

a−b(n−u−1)|h(u,s)|]|x(s)|+ | f (n)|

≤ −(1− a−b)
[
|x(n)|

+
n−1

∑
s=0

[
α(s)a−b(n−s)−

n−1

∑
u=s

a−b(n−u)|h(u,s)|]|x(s)|+ | f (n)|

= −(1− a−b)V (n,x)+ | f (n)|. (6.3.34)

Set β = (1− a−b) ∈ (0,1) and apply the variation of parameters formula to get

V (n,x(n)) ≤ (1−β )n−n0V (n0,φ)+
n−1

∑
s=n0

(1−α)(n−s−1)| f (s)|

≤ (1−β )n−n0||φ ||
[
1+

+
n0−1

∑
s=0

[
α(s)a−b(n0−s−1)−

n0−1

∑
u=s

a−b(n0−u−1)|h(u,s)|
]

+
n−1

∑
s=n0

(1−α)(n−s−1)| f (s)|. (6.3.35)

The results readily follow from (6.3.35) and the fact that |x(n)| ≤V (n,x). This com-
pletes the proof.

6.4 z-Transform and Lyapunov Functionals

Next we use combination of Lyapunov functionals and z-transform to obtain bound-
edness and stability of Equation (6.3.23).

We assume the existence of a sequence ϕ(n) such that

ϕ(n)≥ 0, �ϕ(n)≤ 0 and
∞

∑
n=0

ϕ(n)< ∞. (6.4.1)
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Lemma 6.5. Assume (6.4.1) and if

H(n) = β (n)+λ
n−1

∑
s=0

ϕ(n− s− 1)|β (s)|, (6.4.2)

�H(n) =−αβ (n) β (0) = 1, (6.4.3)

where β (n) and H(n) are scalar sequences, then

β (n)+
n−1

∑
s=0

{α+λϕ(n− s− 1)}β (s) = 1 for all n = 1,2,3, . . ., (6.4.4)

β (n)> 0 for all n = 1,2,3, . . ., (6.4.5)
∞

∑
n=0

β (n)< ∞, (6.4.6)

and

β̃ (z) =

[

1+
α

z− 1
+λ

ϕ̃
z

]−1(
z

z− 1

)

, (6.4.7)

where β̃ (z), ϕ̃(z) are Z-transforms of β and ϕ .

Proof. By (6.4.3) we obtain

H(n) = H(0)−α
n−1

∑
s=0

β (s),

and hence

H(n) = H(0)−α
n−1

∑
s=0

β (s)

= β (n)+
n−1

∑
s=0

{α+λϕ(n− s− 1)}β (s).

Since β (0) = H(0), we have (6.4.4). The proof of (6.4.5) follows by an induction
argument on (6.4.4) and by noting that the summation term is positive and β (0) = 1.
For the proof of (6.4.6) we sum (6.4.3) from s = 0 to s = n− 1 and get

α
n−1

∑
s=0

β (s) = H(0)−H(n).

Since β (n)> 0 ∀n ≥ 0, we have that H is monotonically decreasing. Therefore

0 <
n−1

∑
s=0

β (s)<
H(0)
α

for every n,
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which proves (6.4.6). Left to prove (6.4.7). The z-transforms of ϕ and β exist for
some |z|> d, where d > 0. Therefore, replacing n by n+1 in equation (6.4.4) gives

β (n+ 1)+
n

∑
s=0

{α+λϕ(n− s)}β (s) = 1.

Taking the z-transform of both sides and using the fact that β (0) = 1 give

zβ̃ (z)− zβ (0)+α
z

z− 1
β̃ (z)+λϕ̃(z)β̃ (z) =

z
z− 1

,

or {

z+α
z

z− 1
+λϕ̃(z)

}

β̃ (z) =
z2

z− 1
.

Since z > 0 we can divide through by z and get,
{

1+α
1

z− 1
+

λϕ̃(z)
z

}

β̃ (z) =
z

z− 1
.

Finally solving for β̃(z) gives

β̃ (z) =

{

1+α
1

z− 1
+

λϕ̃(z)
z

}−1(
z

z− 1

)

,

which proves (6.4.7).

Theorem 6.4.1. Assume the hypothesis of Lemma 6.5. Assume there is λ > 0 such
that

λ�ϕ(n− s− 1)+λ2|C(n,s)| ≤ 0 for 0 ≤ s < n for n ∈ Z
+, (6.4.8)

and
λ1 +λ2|C(n,n)|+λϕ(0)≤ 1−α, (6.4.9)

where α ∈ (0,1), then for every solution y(n) of (6.3.23), |y(n)| is uniformly
bounded and

lim
n→∞

sup |y(n)| ≤ M
α
.

Proof. Define the Lyapunov functional V by

V (n)≡ |y(n)|+λ
n−1

∑
s=0

ϕ(n− s− 1)|y(s)|, n ≥ 0. (6.4.10)

Then, using (6.4.10) we have along the solutions of (6.3.23) that

�V(n) = |y(n+ 1)|+λ
n

∑
s=0

ϕ(n− s)|y(s)|− |y(n)|−λ
n−1

∑
s=0

ϕ(n− s− 1)|y(s)|,
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which simplifies to

�V (n) =
{
|y(n+ 1)|− |y(n)|

}

+ λ

{
n

∑
s=0

ϕ(n− s) ‖ y(s) ‖ −
n−1

∑
s=0

ϕ(n− s− 1) ‖ y(s) ‖
}

=
{
|y(n+ 1)|− |y(n)|

}

+ λ

{
n−1

∑
s=0

�nϕ(n− s− 1)|y(s)|+ϕ(0)|y(n)|
}

.

Along the solutions of (6.3.23) we have

�V (n) ≤
{
| f (y(n))|+ |g(n)|+

n

∑
s=0

|C(n,s)||h(y(s))|− |y(n)|
}

+ λ
{n−1

∑
s=0

�nϕ(n− s− 1)|y(s)|+ϕ(0)|y(n)|
}

≤
{
λ1|y(n)|+M+λ2

n

∑
s=0

|C(n,s)||y(s)|− |y(n)|
}

+ λ
{n−1

∑
s=0

�nϕ(n− s− 1)|y(s)|+ϕ(0)|y(n)|
}
.

After some algebra, we arrive at the simplified expression,

�V(n) ≤
{
[λ1 +λ2|C(n,n)|− 1+λϕ(0)]

}
|y(n)|+M

+
{n−1

∑
s=0

[λ2|C(n,s)|+λ�nϕ(n− s− 1)]|y(s)|
}
.

Using (6.4.8) and (6.4.9) we arrive at

�V (n)≤−α|y(n)|+M, M > 0 (6.4.11)

Due to (6.4.11), there is a nonnegative sequence η(n) : Z+ → R such that

�V(n) =−α|y(n)|+M−η(n).

Since η is a linear combination of functions of exponential order, η is also of expo-
nential order and so we can take Z transform and have

zṼ (z)− zV(0)− Ṽ(z) =−α|ỹ(z)|+M
z

z− 1
− η̃(z).
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We solve for Ṽ and get

Ṽ (z) =
z

z− 1
V (0)− α

z− 1
|ỹ(z)|+M

z
(z− 1)2 − η̃(z)

z− 1
.

To derive the second expression for Ṽ , use the fact that

Z

[
n−1

∑
s=0

x(n− s− 1)g(s)

]

=
1
z

x̃(z)g̃(z).

Taking the Z-transform in (6.4.10) we arrive at

Ṽ (z) =

{

1+λ
ϕ̃(z)

z

}

|ỹ(z)|.

Substituting it into

Ṽ (z) =
z

z− 1
V (0)− α

z− 1
|ỹ(z)|+M

z
(z− 1)2 −

η̃(z)
z− 1

gives

z
z− 1

V (0)− α
z− 1

|ỹ(z)|+M
z

(z− 1)2 −
η̃(z)
z− 1

= |ỹ(z)|+λ
ϕ̃(z)|ỹ(z)|

z
.

Solving for |ỹ| gives

|ỹ(z)| =
[

M
1

(z− 1)
+V(0)− η̃(z)

z

]{
α

z− 1
+ 1+λ

ϕ̃(z)
z

}−1(
z

z− 1

)

=

[

M
1

(z− 1)
+V(0)− η̃(z)

z

]

β̃ (z)

=

[

M
1

(z− 1)
β̃(z)+V (0)β̃ (z)− η̃(z)

z
β̃(z)

]

. (6.4.12)

Taking the z inverse in (6.4.12) gives

|y(n)| = V (0)β (n)−Mβ (n)+M
n

∑
s=0

β (s)−
n−1

∑
s=0

η(n− s− 1)β (s)

= V (0)β (n)+M
n−1

∑
s=0

β (s)−
n−1

∑
s=0

η(n− s− 1)β (s)

≤ V (0)β (n)+M
n−1

∑
s=0

β (s).
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Since β (n) is bounded, there exists a positive constant R such that β (n)≤ R for all
n ≥ 0. Hence, the above inequality gives

|y(n)| ≤V (0)R+
M
α
.

This shows that all solutions y(n) of (6.3.23) are uniformly bounded.
Note that since ∑∞

n=0β (n)<∞, we have that β (n)→ 0, as n → ∞ and hence

lim
n→∞

sup |y(n)| ≤ M
∞

∑
n=0

β (n)≤ M
α
.

This completes the proof.

We end the section with the following example.

Example 6.9. Let

f (y(n)) :=

(
1

16
√

2

)[ |y1(n)|
1+|y1(n)||y2(n)|
1+|y2(n)|

]

h(y(n)) :=

(
y1(n)

0

)

C(n,s) :=
1

2(n+4−s)

[
1 0
0 1

2

]

and

g(n) := cos
(nπ

4

)[1
0

]
.

Then we have, | f (y(n))| ≤ 1
16

|y(n)|, |h(y(n))| ≤ |y(n)|, |C(n,s) ≤ 1

2(n+4−s)
and

|g(n)| ≤ 1. Let

Let φ(n) =
1

2(n+3)

and define the Lyapunov functional V by

V (n) = |y(n)|+λ
n−1

∑
s=0

φ(n− s− 1)|y(s)|.

Then we have λ = 1
2 , λ1 = 1

16 , and λ2 = 1. Then all conditions of Theorem 6.4.1
are satisfied since �φ(n) ≤ 0, λ�φ(n− s− 1)+ λ2|C(n,s)| ≤ 0. Moreover, con-
dition (6.4.9) is satisfied for α = 13

16 . Thus, by Theorem 6.4.1 all solutions are uni-
formly bounded and satisfy

lim
x→∞

sup |y(n)| ≤ M
α

=
16
13

.
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6.5 lp-Stability

In this section we state the definition of lp-stability and prove theorems under which
it occurs. We begin by considering the nonautonomous nonlinear discrete system

x(n+ 1) = G(n,x(s); 0 ≤ s ≤ n)
de f
= G(n,x(·)) (6.5.1)

where G : Z+×R
k → R

k is continuous in x and G(n,0) = 0. Let C(n) denote the
set of functions φ : [0,n]→R and ‖φ‖= sup{|φ(s)| : 0 ≤ s ≤ n}.
We say that x(n) = x(n,n0,φ) is a solution of (6.5.1) with a bounded initial function
φ : [0,n0]→R

k if it satisfies (6.5.1) for n > n0 and x( j) = φ( j) for j ≤ n0.

Definition 6.5.1. The zero solution of (6.5.1) is stable (S) if for each ε > 0, there is
a δ = δ (n0,ε) > 0 such that [n0 ≥ 0,φ ∈ C(n0), ‖φ‖ < δ ] imply |x(n,n0,φ)| < ε
for all n ≥ n0. It is uniformly stable (US) if it is stable and δ is independent of n0. It
is asymptotically stable (AS) if it is (S) and |x(n,n0,φ)| → 0, as n → ∞.

Definition 6.5.2. The zero solution of system (6.5.1) is said to be lp-stable if it is

stable and if
∞

∑
n=n0

||x(n,n0,φ)||p < ∞ for positive p.

We have the following elementary theorem.

Theorem 6.5.1. If the zero solution of (6.5.1) is exponentially stable, then it is also
lp-stable.

Proof. Since the zero solution of (6.5.1) is exponentially stable, we have by the
above definition that

∞

∑
n=n0

||x(n,n0,φ)|| ≤ [C
(||φ ||,n0

)
]p

∞

∑
n=n0

apη(n−n0)

= [C
(||φ ||,n0

)
]pa−n0 pη

∞

∑
n=n0

apηn

= [C
(||φ ||,n0

)
]p/(1− apη),

which is finite. This completes the proof.

We caution that lp-stability is not uniform with respect to p, as the next example
shows. Also, it shows that (AS) does not imply lp-stability for all p. In Chapter 1,
we considered the difference equation

x(n+ 1) =
n

n+ 1
x(n), x(n0) = x0 	= 0, n0 ≥ 1
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and showed its solution is given by

x(n) := x(n,n0,x0) =
x0n0

n
.

Clearly the zero solution is (US) and (AS). However, for n0 = n, we have

x(2n,n,x0) =
x0n
2n

→ x0

2
	= 0

which implies that the zero solution is not (UAS). Moreover,

∞

∑
n=n0

||x(n,n0,x0)||p ≤
∞

∑
n=n0

|(x0n0

n
)|p = |x0|p(n0)

p
∞

∑
n=n0

(
1
n
)p,

which diverges for 0 < p ≤ 1 and converges for p > 1.
The next example shows that asymptotic stability does not necessarily imply lp-
stability for any p > 0. Let g : [0,∞)→ (0,∞) with limn→∞ g(n) = ∞. Consider the
nonautonomous difference equation

x(n+ 1) =
[
g(n)/g(n+ 1)

]
x(n), x(n0) = x0, (6.5.2)

which has the solution x(n,n0,x0) =
g(n0)
g(n) x0. It is obvious that as n →∞ the solution

tends to zero, for fixed initial n0 and the zero solution is indeed asymptotically
stable. On the other hand

∞

∑
n=n0

||x(n,n0,x0)||p = [g(n0)x0]
p

∞

∑
n=n0

( 1
g(n)

)p
, (6.5.3)

which may not converge for any p > 0. For example, if we take

g(n) = log(n+ 2),

then from (6.5.3) we have

∞

∑
n=n0

||x(n,n0,x0)||p = [log(n0 + 2)]p||x0||p
∞

∑
n=n0

( 1
log(n+ 2)

)p
,

which is known to diverge for all p ≥ 0.
The next theorem relates lp-stability to Lyapunov functionals.

Theorem 6.5.2. If there exists a positive definite V (see Definition 1.2.1) and along
the solutions of (6.5.1), V satisfies �V ≤ −c||x||p, for some positive constants c
and p, then the zero solution of (6.5.1) is lp-stable.

Proof. Set the solution x(n) := x(n,n0,φ). The hypothesis of the theorem implies
the zero solution is stable. Thus, for n ≥ n0 there is a positive constant M such that
||x(n,n0,φ)|| ≤ M. For n ≥ n0 we set
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L(n) =V (n,x(n)+ c
n−1

∑
s=n0

||x(s)||p.

Then for all n ≥ n0 we have

�L(n) = �V (n,x)+ ||x||p
≤ −c||x||p + c||x||p = 0.

Therefore, L(n) is decreasing and hence 0 ≤ L(n)≤ L(n0) =V (n0,φ), n ≥ n0. This

implies that 0 ≤ L(n) =V (n,x)+ c
n−1

∑
s=n0

||x(s)||p ≤V (n0,φ), n ≥ n0 so that

0 ≤V (n,x)≤−c
n−1

∑
s=n0

||x(s)||p +V(n0,φ).

As a consequence,

n−1

∑
s=n0

||x(s,n0,φ)||p ≤V (n0,φ)/c, n ≥ n0.

Letting n → ∞ on both sides of the above inequality gives

∞

∑
n=n0

||x(n,n0,φ)||p ≤V (n0,φ)/c < ∞.

This completes the proof.

In the next two examples we show that the lp-stability depends on the type of Lya-
punov functional that is being used. Moreover, there will be a price to pay if you
want to obtain lp-stability for higher values of p.

Example 6.10. Consider the scalar Volterra difference equation

x(n+ 1) = a(n)x(n)+
n−1

∑
s=0

b(n,s) f (s,x(s)) (6.5.4)

with f being continuous and there exists a constant λ1 such that f (n,x)| ≤ λ1|x|.
Assume there exists a positive α such that

|a(n)|+λ
∞

∑
s=n+1

|b(s,n)|+λ1|b(n,n)|− 1≤−α, (6.5.5)

and for some positive constant λ which is to be specified later, we have

λ1 ≤ λ , (6.5.6)

then the zero solution of (6.5.4) is l1-stable.
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Proof. Define the Lyapunov functional V by

V (n,x) = |x(n)|+λ
n−1

∑
j=0

∞

∑
s=n

|b(s, j)||x( j)|.

We have along the solutions of (6.5.4) that

�V (t) ≤ (|a(n)|+λ
∞

∑
s=n+1

|b(s,n)|+λ1|b(n,n)|− 1
)|x(n)|

+(λ1 −λ )
n−1

∑
s=0

|b(n,s)||x(s)|

≤ −α|x(n)|.

This implies the zero solution is stable and l1-stable by Theorem 6.5.2. This com-
pletes the proof.

Example 6.11. Consider (6.5.4) and assume f is continuous with | f (n,x)| ≤ λ1x2.
Assume there exists a positive constant α such that

a2(n)+λ
∞

∑
s=n+1

|b(s,n)|+λ1|a(n)|
n

∑
s=0

|b(n,s)|− 1 ≤−α, (6.5.7)

and for some positive constant λ which is to be specified later, we have

λ1|a(n)|+λ 2
1

n−1

∑
s=0

|b(n,s)|−λ ≤ 0. (6.5.8)

Then the zero solution of (6.5.4) is l2-stable.

Proof. define the Lyapunov functional V by

V (n,x) = x2(n)+λ
n−1

∑
j=0

∞

∑
s=n

|b(s, j)|x2( j).

We have along the solutions of (6.5.4) that

�V (t) =
(
a(n)x(n)+

n−1

∑
s=0

b(n,s) f (s,x(s))
)2 − x2(n)

+ λx2(n)
∞

∑
s=n+1

|b(s,n)|−λ
n−1

∑
s=0

|b(n,s)|x2(s)− x2(n)

≤ a2(n)x2(n)+ 2λ1|a(n)||x(n)|
n−1

∑
s=0

|b(n,s)||x(s)|+ (
n−1

∑
s=0

b(n,s) f (s,x(s)))2

+ λx2(n)
∞

∑
s=n+1

|b(s,n)|−λ
n−1

∑
s=0

|b(n,s)|x2(s)− x2(n).
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As a consequence of 2zw ≤ z2 +w2, for any real numbers z and w we have

2λ1|a(n)||x(n)|
n−1

∑
s=0

|b(n,s)||x(s)| ≤ λ1|a(n)|
n−1

∑
s=0

|b(n,s)|(x2(n)+ x2(s)).

Also, using Schwartz inequality we obtain

( n−1

∑
s=0

b(n,s) f (s,x(s))
)2

=
n−1

∑
s=0

|b(n,s)|1/2|b(n,s)|1/2| f (s,x(s))|

≤
n−1

∑
s=0

|b(n,s)|
n−1

∑
s=0

|b(n,s)| f 2(s,x(s))

≤ λ 2
1

n−1

∑
s=0

|b(n,s)|
n−1

∑
s=0

|b(n,s)|x2(s).

Putting all together, we get

�V (t) ≤
(

a2(n)+λ
∞

∑
s=n+1

|b(s,n)|+λ1|a(n)|
n

∑
s=0

|b(n,s)|− 1
)

x2(n)

+
(
λ1|a(n)|+λ 2

1

n−1

∑
s=0

|b(n,s)|−λ
)n−1

∑
s=0

|b(n,s)|x2

≤ −αx2(n).

This implies the zero solution is stable and l2-stable by Theorem 6.5.2. This com-
pletes the proof.

A quick comparison of (6.5.5) with (6.5.7) and (6.5.6) with (6.5.8) reveals that
the conditions for the l2-stability are more stringent than of the conditions for l1-
stability.

6.6 Discretization Scheme Preserving Stability and Boundedness

In Chapter 1, we briefly discussed the notion that Volterra discrete equations play
major role in numerical solutions of Volterra integro-differential equations. In this
section we apply a nonstandard discretization scheme due to Mickens (see [119])
to a Volterra integro-differential equation, to form a Volterra discrete system. By
displaying suitable Lyapunov functionals, one for the Volterra integro-differential
equation and another for the Volterra discrete system, we will show that under the
same conditions on some of the coefficients, the stability of the zero solution and
boundedness of solutions are preserved in both systems.
This section is intended to give a brief introduction to the subject of discretization,
although by no means, should it be considered a complete study of the subject. The
author is not claiming that the discretization scheme used here is the most general
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nor it is the most efficient. The sole purpose of this section is to introduce the reader
to the effectiveness of Lyapunov functionals when dealing with preserving the qual-
itative behaviors of solutions. However, this section should set the stage for future
research in preserving the characteristics of Volterra integro-differential equations
when nonstandard discretization schemes are used in obtaining the corresponding
Volterra discrete systems. For comprehensive treatment of the subject of nonstan-
dard discretization we refer to [119] and [120].
For motivational purpose, consider the differential equation

x′(t) = ax(t), for some constant a < 0, (6.6.1)

which has the solution x(t) = ea(t−t0) and x(t)→ 0as t → ∞.
On the other hand, if we consider the difference equation

x(t + 1) = ax(t), x(t0) = x0, (6.6.2)

then the unique solution of (6.6.2) is

x(t) = x0at−t0

and
x(t)→ 0as t → ∞

provided that |a| < 1. We see that the stability is not preserved. Applying the ap-
proximations

x′(t) =
x(t + h)− x(t)

h
, x(t) =

x(t + h)+ x(t)
2

(6.6.3)

to equation (6.6.1) we have the analogous discrete system

x(n+ 1) =
2+ ah
2− ah

x(n), (6.6.4)

where x(n + 1) = x(t + h) and x(n) = x(t). All solutions x(n) of (6.6.4) satisfy
x(n)→ 0as n → ∞, provided that

∣∣
∣
2+ ah
2− ah

∣∣
∣< 1. (6.6.5)

Clearly, inequality (6.6.5) is satisfied for a < 0 and 0 < h < 1. Thus, we see that the
discretization scheme defined by (6.6.3) preserved the stability of the zero solution.
It is noted that the result holds under the restriction that the step-size �t = h satisfies
the restriction

0 < h < 1. (6.6.6)

Restriction (6.6.6) is a direct consequence of how we discretize equation (6.6.1). To
ease the restriction given by (6.6.6), we use a nonstandard discretization scheme due
to Mickens [122]; that is we let
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x′(t) =
x(t + h)− x(t)

Φ(a,h)
, Φ(a,h) =

eah − 1
a

. (6.6.7)

We note that this scheme holds for all h> 0. For more on the use of nonstandard dis-
cretization, we refer the reader to [119, 120, 121, 122]. Under discretization (6.6.7),
equation (6.6.1) becomes

x(n+ 1) = (1+ aΦ(a,h))x(n) = eahx(n). (6.6.8)

Since a < 0, we have that eah < 1, and hence all solutions of (6.6.8) go to zero
asymptotically without any restriction on the step-size h. Thus, we see that the dis-
cretization scheme defined by (6.6.7) preserved the stability of the zero solution.

Definition 6.6.1. A resulting difference equation is said to be consistent with respect
to property P under a given discretization scheme with its continuous counterpart if
they both exhibit property P under equivalent conditions.

Based on Definition 6.6.1, we see that (6.6.5) is consistent with respect to asymptotic
stability with (6.6.1) under discretization (6.6.3) provided that (6.6.6) holds. The
same is true for (6.6.7) but without further restriction on the size h.
Next we discuss the stability, uniform asymptotic stability, and exponential stability
of Volterra integro-differential equations and their corresponding discrete systems
with respect to certain discretization schemes. Consider the scalar Volterra integro-
differential equation

x′(t) = ax(t)+
∫ t

0
B(t,s) f (s,x(s))ds, t ≥ 0. (6.6.9)

We assume f (t,x) is continuous in x and t and satisfy

| f (t,x)| ≤ γ |x|, (6.6.10)

where γ is a positive constant. The kernel B : R2 → R is continuous in both argu-
ments. By considering the discretization scheme (6.6.3) for

x′(t) = ax(t)

and by approximating the integral term with

∫ t

0
B(t,s) f (s,x(s)) ds = h

t

∑
s=0

B(t,s) f (s,x(s)), (6.6.11)

we arrive at the corresponding discrete Volterra equation,

x(n+ 1) =
2+ ah
2− ah

x(n)+
2h2

2− ah

n

∑
s=0

B(n,s) f (s,x(s)), n ≥ 0, (6.6.12)



298 6 Exponential and lp-Stability in Volterra Equations

where x(n+ 1) = x(t + h), x(n) = x(t) and 0 < h < 1. Similarly by considering
discretizations (6.6.7) and (6.6.11) we arrive at the corresponding discrete Volterra
equation,

x(n+ 1) = eahx(n)+ hΦ(a,h)
n

∑
s=0

B(n,s) f (s,x(s)), n ≥ 0, (6.6.13)

The study of Volterra discrete systems is important since they play a major role in
the fields of numerical analysis, control theory, and computer science. Thus, finding
a discretization scheme under which Equation (6.6.12) is consistent with (6.6.9) is
important. Throughout this section it is assumed that the step size h satisfies 0< h<
1. In preparation for the next theorem we make the following assumptions.

|B(t,s)| is monotonically decreasing in t (6.6.14)

and there exists a constant α > 0 such that ∀t ≥ 0

a+ γ
∫ ∞

t
|B(u, t)|du ≤−α. (6.6.15)

Theorem 6.6.1. Assume conditions (6.6.14) and (6.6.15) hold. Then (6.6.13) is
consistent with respect to uniform asymptotic stability under the discretization
scheme (6.6.7) and (6.6.11) with its continuous counterpart (6.6.9).

Proof. Define the Lyapunov functional V by

V (t) = |x(t)|+ γ
∫ t

0

∫ ∞

t
|B(u,s)||x(s)|du ds.

Then by making use of (6.6.15), we have along the solutions (6.6.9) that

V ′(t) =
x(t)
|x(t)|x

′(t)+ γ
∫ ∞

t
|B(u, t)||x(t)|du− γ

∫ t

0
|B(t,s)||x(s)|ds

≤ a|x(t)|+ γ
∫ t

0
|B(t,s)||x(s)|ds

+ γ
∫ ∞

t
|B(u, t)||x(t)|du− γ

∫ t

0
|B(t,s)||x(s)|ds

≤
[
a+ γ

∫ ∞

t
|B(u, t)|du

]
|x(t)|

≤ −α|x(t)|.

Then by Theorem 2.6.1 of [22], the zero solution of (6.6.9) is (UAS). Now we turn
our attention to (6.6.12). Define V by

V (n) = |x(n)|+ γhΦ(a,h)
n−1

∑
s=0

∞

∑
u=n

|B(u,s)||x(s)|.
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It can be easily shown that along the solutions of (6.6.13)

�V (n) ≤
[
eah + γhΦ(a,h)

∞

∑
u=n

|B(u,n)| − 1
]
|x(n)|.

Due to condition (6.6.15) there exists a positive constant β such that

γ
∫ ∞

t
|B(u, t)|du ≤ β .

We can choose h small enough so that the above inequality combined with (6.6.14)
and the fact that a < 0 to imply that there exists a positive constant η such that

eah + γhΦ(a,h)
∞

∑
u=n

|B(u,n)| − 1 ≤−η .

Therefore,
�V (n)≤−η |x(n)|.

By setting α = 0 in Theorem 2.2.4 we have the zero solution of (6.6.13) is (UAS).
The proof is complete.

In Theorem 6.6.1 we showed that the discretization scheme given by (6.6.3) and (6.6.11)
preserved the uniform asymptotic stability of the zero solutions of Equations (6.6.9)
and (6.6.12). In the next theorem we will show that the discretization scheme given
by (6.6.3) and (6.6.11) preserves the exponential asymptotic stability of the zero
solutions of Equations (6.6.9) and (6.6.12) under more stringent conditions on the
kernel B(t,s). For the next theorem we make the following assumptions.

|B(t,s)| is monotonically decreasing in t and s. (6.6.16)

Suppose there exist constants k > 1 and α > 0 such that

a+ γ k
∫ ∞

t
|B(u, t)|du ≤−α < 0 (6.6.17)

where k = 1+ ε for some ε > 0. Suppose

|B(t,s)| ≥ λ
∫ ∞

t
|B(u,s)|du (6.6.18)

where λ ≥ kα
ε > 0, 0 ≤ s < t ≤ u < ∞, and

γ
∫ t0

0

∫ ∞

t0
|B(u,s)|du ds ≤ ρ < ∞ for all t0 ≥ 0. (6.6.19)

Remark 6.4. Due to conditions (6.6.16) and (6.6.17) there exists a positive constant
β such that
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γ k
∫ ∞

t
|B(u, t)| du ≤ β .

Similarly, by conditions (6.6.16) and (6.6.19) there is a constant such that

hΦ(a,h)γk
n0−1

∑
s=0

∞

∑
j=n0

|B( j,s)| ≤ Γ1.

Finally, as a consequence of (6.6.16) and (6.6.18) we have

|B(n,s)| ≥ λ
∞

∑
j=n

|B( j,s)|.

Theorem 6.6.2 ([91]). Assume conditions (6.6.16)–(6.6.19) hold. Then (6.6.13) is
consistent with respect to uniform exponential stability under the discretization
scheme (6.6.3) and (6.6.11) with its continuous counterpart (6.6.9).

Proof. Define

V (t,x) = |x(t)|+ k
∫ t

0

∫ ∞

t
|B(u,s)|du| f (s,x(s))|ds. (6.6.20)

Let V ′(t,x) = d
dt V (t,x(t)). Then along the solutions of (6.6.9) we have,

V ′(t,x) =
x(t)
|x(t)|x

′(t)+ k
∫ ∞

t
|B(u, t)|du| f (t,x(t))|− k

∫ t

0
|B(t,s)|| f (s,x(s))|ds

≤ a|x(t)|+
∫ t

0
|B(t,s)|| f (s,x(s))|ds

+k
∫ ∞

t
|B(u, t)|du| f (t,x(t))|− k

∫ t

0
|B(t,s)|| f (s,x(s))|ds

≤
[
a+ k

∫ ∞

t
|B(u, t)|duγ

]
|x(t)|+(1− k)

∫ t

0
|B(t,s)|| f (s,x(s))|ds

≤ −α|x(t)|− ε
∫ t

0
|B(t,s)|| f (s,x(s))|ds

≤ −α|x(t)|− ελ
∫ t

0

∫ ∞

t
|B(u,s)|du| f (s,x(s))|ds

≤ −α
[
|x(t)|+ k

∫ t

0

∫ ∞

t
|B(u,s)|du| f (s,x(s))|ds

]

≤ −αV (t,x). (6.6.21)

Hence inequality (6.6.21) yields

V (t,x)≤V (t0,φ(.))e−α(t−t0).

As a consequence, we have

|x(t)| ≤ V (t0,φ(.))e−α(t−t0) for t ≥ t0
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≤ ‖φ‖
[
1+ kγ

∫ t0

0

∫ ∞

t0
|B(u,s)|du ds

]
e−α(t−t0) for t ≥ t0.

Hence, the zero solution of (6.6.9) is uniformly exponentially stable.

Remark 6.5. Suppose ρ(t0) is a constant depending on t0. If condition (6.6.19) is
substituted with

∫ t0

0

∫ ∞

t0
|B(u,s)|duγ(s)ds ≤ ρ(t0), for t0 ≥ 0,

then a slight modification of the proceeding paragraph shows that the zero solution
of (6.6.9) is exponentially stable.
To show the zero solution of (6.6.12) is uniformly exponentially stable, we define
V (n) =V (n,x) by

V (n) = |x(n)|+ khΦ(a,h)
n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|.

Then along solutions of (6.6.12), we have

�V (n) = |x(n+ 1)|− |x(n)|+ khΦ(a,h)
n

∑
s=0

∞

∑
j=n+1

|B( j,s)|| f (s,x(s))|

−khΦ(a,h)
n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|

=
∣
∣
∣eahx(n)+ hΦ(a,h)

n

∑
s=0

B(n,s) f (s,x(s))
∣
∣
∣

−|x(n)|+ khΦ(a,h)
n

∑
s=0

[ ∞

∑
j=n

|B( j,s)|| f (s,x(s))|

−|B(n,s)|| f (s,x(s))|
]
− khΦ(a,h)

n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|

≤
[

eah + γkhΦ(a,h)
∞

∑
j=n

|B( j,n)|− 1
]
|x(n)|

+hΦ(a,h)(1− k)
n−1

∑
s=0

|B(n,s)|| f (s,x(s))|.

Let α be defined by (6.6.17). Then by (6.6.16) and (6.6.17), we can choose an
appropriate h so that

eah + γkhΦ(a,h)
∞

∑
j=n

|B( j,n)|− 1 ≤−α.
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As a consequence,

�V(n) ≤ −α|x(n)|+ hΦ(a,h)(1− k)
n−1

∑
s=0

|B(n,s)|| f (s,x(s))|

≤ −α|x(n)|− ελhΦ(a,h)
n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|

≤ −α
[
|x(n)|+ hΦ(a,h)k

n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|
]

= −αV (n).

The above inequality implies that

V (n)≤ (1−α)n−n0V (n0), n ≥ n0 ≥ 0.

Or

|x(n)| ≤ (1−α)n−n0V (n0)

≤ ||φ ||
[
1+ hΦ(a,h)

n0−1

∑
s=0

∞

∑
j=n0

|B( j,s)|
]
(1−α)n−n0, n ≥ n0 ≥ 0.

This completes the proof.

Now we turn our attention to the preservation of boundedness. Consider the Volterra
linear integro-differential equation

x′(t) = ax(t)+
∫ t

0
B(t,s)x(s)ds+ g(t), t ≥ 0 (6.6.22)

and its analogous discrete Volterra equation, under discretizations (6.6.7) and
(6.6.11)

x(n+ 1) = eahx(n)+ hΦ(a,h)
n

∑
s=0

B(n,s)x(s)+ hΦ(a,h)g(n), n ≥ 0 (6.6.23)

where a,B are as defined before and g is continuous and uniformly bounded. Thus,
there exists a positive constant M such that

hΦ(a,h)|g(t)| ≤ M, for all t ≥ 0. (6.6.24)

Theorem 6.6.3. Suppose there is a continuous function ψ : [0,∞) → [0,∞) with

ψ ′ ≤ 0 for t ≥ 0,
∫ t

0
ψ(u)du < ∞, and ∂

∂ t ψ(t − s)+ |B(t,s)| ≤ 0 for 0 ≤ s < t < ∞,

where |B(t, t)| is uniformly bounded. If for t ≥ 0, a+ψ(0)≤−α < 0, for some pos-
itive constant α , then (6.6.23) is consistent with respect to boundedness under the
discretization scheme (6.6.7) and (6.6.11) with its continuous counterpart (6.6.22).
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Proof. Define a Lyapunov functional

V (t,x) = |x(t)|+
∫ t

0
ψ(t − s)|x(s)|ds.

Along the solutions of (6.6.22) we have,

V ′(t,x) =
x(t)
|x(t)|x

′(t)+ψ(0)|x(t)|+
∫ t

0

∂
∂ t

ψ(t − s)|x(s)|ds

≤ a|x(t)|+
∫ t

0
|B(t,s)||x(s)|ds

+ |g(t)|+ψ(0)|x(t)|+
∫ t

0

∂
∂ t

ψ(t − s)|x(s)|ds

≤ [a+ψ(0)]|x(t)|+M+

∫ t

0

[ ∂
∂ t

ψ(t − s)+ |B(t,s)|
]
|x(s)|ds

≤ −α|x(t)|+M.

By ([23], pp. 109–111) we have all solutions of (6.6.22) are bounded. With respect
to (6.6.23) we consider the Lyapunov functional

V (n) = |x(n)|+ hΦ(a,h)
n−1

∑
s=0

ψ(n− s− 1)|x(s)|.

Then along solutions of (6.6.23), we have

�V (n) ≤
[
eah + hΦ(a,h)

(|B(n,n)|+ψ(0)
)− 1

]
|x(n)|

+hΦ(a,h)
n−1

∑
s=0

[
�nψ(n− s− 1)+ |B(n,s)|

]
|x(s)|+ |g(n)|.

Due to condition ∂
∂ t ψ(t − s)+ |B(t,s)| ≤ 0 for 0 ≤ s < t <∞, we have �nψ(n− s−

1)+ |B(n,s)| ≤ 0 for 0 ≤ s < n < ∞.
Also, due to condition a+ψ(0)≤−α < 0 we have a < 0. Moreover, since |B(t, t)|
is uniformly bounded we arrive at the fact that we can choose h small enough so
that

eah + hΦ(a,h)
(|B(n,n)|+ψ(0)

)− 1 ≤−α,

for some positive constant α. As a consequence,

�V (n) ≤ −α|x(n)|+M.

By Theorem 2.1.1 we have all solutions of (6.6.23) are bounded. Thus, (6.6.23)
is consistent with respect to boundedness under the discretization scheme (6.6.7)
and (6.6.11) with its continuous counterpart (6.6.22).
Next we state the following corollaries using discretization (6.6.3).
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Corollary 6.5 ([91]). Assume conditions (6.6.14) and (6.6.15) hold. Then (6.6.12)
is consistent with respect to uniform asymptotic stability under the discretization
scheme (6.6.3) and (6.6.11) with its continuous counterpart (6.6.9).

The proof follows along the lines of the proof of Theorem 6.6.1 by taking

V (n) = |x(n)|+ γ
2h2

2− ah

n−1

∑
s=0

∞

∑
u=n

|B(u,s)||x(s)|.

Corollary 6.6 ([91]). Assume conditions (6.6.16)–(6.6.19) hold. Then (6.6.12) is
consistent with respect to uniform exponential stability under the discretization
scheme (6.6.3) and (6.6.11) with its continuous counterpart (6.6.9).

The proof follows along the lines of the proof of Theorem 6.6.2 by taking

V (n) = |x(n)|+ 2h2

2− ah
k

n−1

∑
s=0

∞

∑
j=n

|B( j,s)|| f (s,x(s))|.

For the next corollary we consider (6.6.22) and its analogous discrete Volterra dif-
ference equation

x(n+ 1) =
2+ ah
2− ah

x(n)+
2h2

2− ah

n

∑
s=0

B(n,s)x(s)+ g(n), n ≥ 0 (6.6.25)

under discretization scheme (6.6.3) and (6.6.11).

Corollary 6.7 ([91]). Suppose there is a continuous function ψ : [0,∞)→ [0,∞) with

ψ ′ ≤ 0 for t ≥ 0,
∫ t

0
ψ(u)du < ∞, and ∂

∂ t ψ(t − s)+ |B(t,s)| ≤ 0 for 0 ≤ s < t < ∞,

where |B(t, t)| is uniformly bounded. If for t ≥ 0, a+ψ(0)≤−α < 0, for some pos-
itive constant α , then (6.6.25) is consistent with respect to boundedness under the
discretization scheme (6.6.3) and (6.6.11) with its continuous counterpart (6.6.22).

The proof follows along the lines of the proof of Theorem 6.6.3 by taking

V (n) = |x(n)|+ 2h2

2− ah

n−1

∑
s=0

ψ(n− s− 1)|x(s)|.

6.7 Semigroup

We end the book with a brief introduction of the concept of semigroup. The notion
of semigroup falls under the umbrella of fixed point theory. In continuous dynam-
ical systems, including partial differential equations, semigroup has been the main
tools in studying boundedness, uniform exponential stability, strong stability, weak
stability, almost weak stability, the existence of weak solutions, and almost periodic
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solutions. The theory of semigroup has been well developed for continuous dynam-
ical systems, which is not the case for discrete dynamical systems. This section is
only intended to raise curiosity about the subject of semigroup and how it can be
effectively used to qualitatively study solutions of discrete dynamical systems, and
in particular, Volterra difference equations.
Let X be a Banach space and B(X) the Banach algebra of all linear and bounded
operators acting on X .

Definition 6.7.1. The subset T = {T (n)}n∈Z of B(X) is called discrete semigroup
if it satisfies the following conditions:
(i) T (0) = I, where I is the identity operator on X .
(ii) T (n+m) = T (n)T (m), for all n,m ∈ Z

+.

Definition 6.7.2. A linear operator A is called the generator of semigroup T if

lim
s→1

T (s)x−T (1)x
s− 1

, x ∈ D(A),

where the domain D(A) of A is the set of all x ∈ X for which the above limit exists.

Next we consider the discrete initial value problem

x(t + 1) = Ax(t), x(t0) = x0 ∈ D(A), t ≥ t0, t, t0 ∈ Z
+, (6.7.1)

where A is the generator of T. By [76] the initial value problem (6.7.1) has the
unique solution

x(t) = T (t − t0)x0. (6.7.2)

Denote the norms in X and B(X) by ‖·‖. We have the following theorems. First, for
concise definitions and terminology regarding stability and boundedness we refer to
[76].

Theorem 6.7.1 ([76]). The following statements are equivalent:
(i) Equation (6.7.1) is stable;
(ii) {T (t) : t ∈ Z} is bounded;
(iii) Equation (6.7.1) is uniformly stable.

Theorem 6.7.2 ([76]). The following statements are equivalent:
(i) Equation (6.7.1) is asymptotically stable;
(ii) limt→∞ ||T (t)x||= 0, for every x ∈ X;
(iii) Equation (6.7.1) is globally asymptotically stable;
(iv) Equation (6.7.1) is uniformly asymptotically stable.

Next we turn our attention to using semigroup in Volterra difference equations.
Thus, we consider the linear convolution Volterra difference equations with infinite
delays

x(n+ 1) =
n

∑
s=−∞

C(n− s)x(s), n ≥ n0 ≥ 0, n,n0 ∈ Z
+, (6.7.3)
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and

x(n+ 1) =
n

∑
s=−∞

{C(n− s)+G(n,s)}x(s), n ≥ n0 ≥ 0, n,n0 ∈ Z
+. (6.7.4)

Our intention is to write (6.7.3) as a functional difference equation so that semigroup
can be used to derive conditions that relate solutions of (6.7.3) and (6.7.4). Let γ be
a positive constant. Define the set

Bγ = {ϕ : Z− → C
k : sup

t∈Z−
|ϕ(t)|eγt < ∞},

where C is the set of complex numbers. Then Bγ is a Banach space when endowed
with the norm

||ϕ ||= sup
t∈Z−

|ϕ(t)|eγt < ∞, ϕ ∈ Bγ .

As we have done before, for xn ∈ Bγ , we set

xn(s) = x(n+ s), s ∈ Z
+.

Then we may write (6.7.3) as

x(n+ 1) = L(xn), (6.7.5)

where L(·) : Bγ →C
k is a functional given by

L(ϕ) =
∞

∑
j=0

C( j)ϕ(− j), ϕ ∈ Bγ .

Let T (n) denote the solution of (6.7.5). Then T (n)ϕ = xn(ϕ), for ϕ ∈ Bγ . Moreover,
we denote by x(·,ϕ) the solution of (6.7.5) satisfying x(s,ϕ) = ϕ(s), for s ∈ Z

−.
Then it can be easily shown that T (n) is a bounded linear operator on Bγ and satisfies
the semigroup property

T (n+m) = T (n)T (m).

We have the following theorems.

Theorem 6.7.3 ([59]). Suppose system (6.7.5) possesses an ordinary dichotomy
with dichotomy constant M (see [59]). Assume

∞

∑
n=0

|C(n)|eγn < ∞ and
n

∑
s=−∞

sup
n≥n0

|G(n,s)|eγ(n−s) < ∞, (6.7.6)

∞

∑
s=n0

n0−1

∑
j=−∞

|G(s, j)|eγ(n0− j) +
∞

∑
s=n0

s

∑
j=n0

|G(s, j) < 1/M. (6.7.7)

Then for any bounded solution x(n) of (6.7.3) on [n0,∞) there exists a unique
bounded solution y(n) of (6.7.4) on [n0,∞) such that
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y(n) = x(n)+
n−1

∑
s=n0

T (n− s− 1)PE0
( s

∑
j=−∞

|G(s, j)y( j)
)

−
∞

∑
s=n

T (n− s− 1)(I−P)E0
( s

∑
j=−∞

|G(s, j)y( j)
)
, n ≥ n0, (6.7.8)

where E0(t) = I if t = 0 and E0(t) = 0 (matrix) if t 	= 0.

Theorem 6.7.4 ([59]). Assume (6.7.6) and (6.7.7) Suppose system (6.7.5) possesses
an ordinary dichotomy with dichotomy constant M and related projection P (see
[59]) such that

||T (n)P|| ≤ Man for some a,0 < a < 1.

Then there is a one-to-one correspondence between bounded solutions x(n) of (6.7.3)
on [n0,∞) and bounded solutions y(n) of (6.7.4) on [n0,∞), and the asymptotic re-
lation

y(n) = x(n)+ o(1) (n → ∞)

holds.

Naturally, the resolvent operator that was developed in Chapter 1, Section 1.3, might
be used to define a semigroup for Volterra difference equations. To see this, we
consider Volterra difference equation of convolution type

x(n+ 1) = Ax(n)+
n

∑
s=0

B(n− s)x(s) (6.7.9)

for all integers n ≥ 0 and for integers, 0 ≤ s ≤ n, where A,B are k× k matrix func-
tions, and x is a k × 1 unknown vector. Then, we saw that the resolvent matrix
equation of (6.7.9) takes the form

R(n+ 1) = AR(n)+
n

∑
u=0

B(n− u)R(u), R(0) = I, n ∈ Z
+. (6.7.10)

Let A and B(·) be closed operators in X . Hence D(A) endowed with the graph norm
|x| = ||x||+ ||Ax|| is a Banach space denoted by Y. Next we use the resolvent op-
erator to define the solution of the nonhomogenous Volterra difference equation of
convolution type

x(n+ 1) = Ax(n)+
n

∑
s=0

B(n− s)x(s)+ f (n), (6.7.11)

where f is a k× 1 given vector. First, we have the following definition.
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Definition 6.7.3. R(·) is a resolvent of (6.7.11) if R(n) ∈ B(X) for n ∈ Z
+ and

satisfies

1. R(0) = I (the identity operator on X).
2. R(n) ∈B(Y ) for n ∈ Z

+ and for y ∈ Y , we have

R(n+ 1)y = AR(n)y+
n

∑
u=0

B(n− u)R(u)y

= R(n)Ay+
n

∑
u=0

R(n− u)B(u)y. (6.7.12)

We note that item 2. of Definition 6.7.3 is needed for (ii) of Definition 6.7.1. Suppose
R(n) is the resolvent operator of (6.7.11). Then, it can be easily shown using the
results of Section 1.3 that the solution of (6.7.11) is given by

x(n) = R(n)x0 +
n

∑
u=0

R(n− u− 1) f (u), n ∈ Z
+. (6.7.13)

Now, one can use the concept of the resolvent operator given by (6.7.12) to obtain
various results concerning the qualitative analysis of solutions of Volterra difference
equations.
It is worth noting, however, that using the resolvent operator in Volterra difference
equations to define a semigroup and obtain a meaningful result is in dire need for
further development.

6.8 Open Problems

Open Problem 1
Prove a parallel theorem to Theorem 6.3.5 by considering (6.3.30) as a vector equa-
tion.

Open Problem 2
Extend Theorem 6.3.5 to the delay Volterra difference equation

x(n+ 1) = μ(n)x(n)+
n−1

∑
s=n−h

h(n,s)x(s)+ f (n),

where h is a positive integer.

Open Problem 3 (Extremely Hard)
Extend the results of Section 6.1 to the following Volterra difference equations

x(n+ 1) = Px(n)+
n−1

∑
s=−∞

H(n,s)g(x(s)), (vector)
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x(n+ 1) = a(n)x(n)+
n−1

∑
s=−∞

h(n,s)g(x(s)), (scalar)

and

x(n+ 1) = Px(n)+
n−1

∑
s=n−h

H(n,s)g(x(s)), (vector)

where h is a positive integer.
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vey: stability and boundedness of Volterra difference equations, Nonlinear
Anal., 53 (2003), no. 7–8, pp. 861–928.

97. Krasnoselskii, M.A., Positive solutions of operator Equations, Noordhoff,
Groningen, (1964).



References 317

98. Kublik, C., and Raffoul, Y., Lyapunov functionals that lead to exponential sta-
bility and instability in finite delay Volterra difference equations, Acta Mathe-
matica Vietnamica October 17, (2014) pp. 77–89.

99. Lakshmikantham, L., and Trigiante, D., Theory of difference equations: Nu-
merical methods and applications, Academic Press, New York, 1991.

100. Lauwerier, H., Mathematical models of epidemics, Math. Centrum, Amster-
dam, 1981.

101. Liao, X.Y., and Cheng, S.S., Convergent and divergent solutions of a discrete
nonautonomous Lotka-Volterra Model, Tamkang J. Math. 36(2005) 337–344.

102. Liao, X.Y., and Raffoul, Y.N. Asymptotic behavior of positive solutions of sec-
ond order nonlinear difference systems, Nonlinear Studies, 14 (2007), no. 4,
pp. 311–318.

103. Liao, X.Y., Li, W.T. and Raffoul, Y.N., Boundedness in nonlinear functional
difference equations via non-negative definite Lyapunov functionals with ap-
plications to Volterra discrete systems, J. Nonlinear studies, 13(1)(2006) 1–14.

104. Liao, X.Y., Zhou, S.F., and Ouyang, Z., On a stoichiometric two predators on
one prey discrete model, Appl. Math. Lett. 20 (2007) 272–278.

105. Liao, X.Y., Zhu, Y., and Chen, F., On Asymptotic stability of delay-difference
systems, Appl. Math. Comput. 176 (2006) 759–767.

106. Linh, N., and Phat, V., Exponential stability of nonlinear time-varying dif-
ferential equations and applications, Electronic Journal of Differential Equa-
tions, 34 (2001), 1–13.

107. Li, W.T., and Raffoul Y., Classification and existence of positive solutions of
systems of Volterra nonlinear difference equations, Appl. Math. Comput., 155
(2004), no. 2, pp. 469–478.

108. Liley, D.T.J., and Cadusch, P.J., A continuum theory of electro-cortical activ-
ity, Neurocomputing 1999; 26–27: 795–800.

109. Lubich, C., On the stability of linear multistep methods for Volterra integro-
differential equations, IMA J. Numer. Anal., 10 (1983), pp. 439–465.

110. Lyapunov, A.M., The general problem of the stability of motion, (Russian)
Math. Soc. of Kharkov; English Translation, International Journal of Control,
55 (1992), 531–773.

111. Maroun, M., and Raffoul, Y., Periodic Solutions in Nonlinear neutral differ-
ence equations with Functional Delay, J. Korean Math. Soc. 42 (2005), No. 2,
255–268.

112. Matsunaga, H., and Hajiri, C.,Exact stability sets for a linear difference sys-
tems with diagonal delay, J. Math. Anal. 369 (2010) 616–622.

113. Medina, R., The asymptotic behavior of the solutions of a Volterra difference
equations, Comput. Math. Appl., 181 (1994), no. 1, pp. 19–26.

114. Medina, R., Solvability of discrete Volterra equations in weighted spaces, Dy-
namic Systems and Appl. 5(1996), 407–422.

115. Medina, R., Stability results for nonlinear difference equations, Nonlinear
Studies, Vol. 6, No. 1, 1999.

116. Medina, R., Asymptotic equivalence of Volterra difference systems, Intl. Jou.
of Diff. Eqns. and Appl. Vol. 1 No.1(2000), 53–64.



318 References

117. Medina, R., Asymptotic behavior of Volterra difference equations, Computers
and Mathematics with Applications, 41, (2001) 679–687.

118. Merdivenci, F., Two positive solutions of a boundary value problem for dif-
ference equations, Journal of Difference Equations and Application 1 (1995),
263–270.

119. Mickens, R., A note on a discretization scheme for Volterra integro-differential
equations that preserves stability and boundedness, Journal of Difference
Equations and Application 13, No.6, (2007), 547–550.

120. Mickens, R., Difference Equations: Theory and Applications , 1990, (New
York, NY: Chapman and Hall).

121. Mickens, R., Nonstandard Finite Difference Models of Differential Equations,
1994, (Singapore: World Scientific).

122. Mickens, R., A nonstandard finite-difference scheme for the Lotka-Volterra
system, Applied Numerical Mathematics, 45, 2003, 309–314.

123. Miller, R., K., Nonlinear Volterra Integral Equations, Benjamin, New York,
(1971).

124. Mohler, R., Rajkumar, V., and Zakrzewski, R.,Nonlinear time-series-based
adaptive control applications, Decision and Control 1991. Proceedings of the
30th IEEE Conference on, pp. 2917–2919 vol.3, 1991.

125. Morshedy, E., New explicit global asymptotic stability criteria for higher order
difference equations, J. Math. Anal. Appl. Vol. 336, no.1 324 (2007) 262–276.

126. Muroya, Y., Persistence and global stability in discrete models of Lotka-
Volterra type, J. Math. Anal. Appl. 330 (2007) 24–33.

127. Radin, M., and Raffoul, Y., Existence and uniqueness of asymptotically con-
stant or periodic solutions in delayed population models, Journal of Difference
Equations and Applications, Volume 20, Issue 5–6, 2014, pp. 706–716.

128. Raffoul, Y., Boundedness and Periodicity of Volterra Systems of Difference
Equations, Journal of Difference Equations and Applications, 1998, Vol. 4,
pp. 381–393.

129. Raffoul, Y., Periodic solutions for scalar and vector nonlinear difference equa-
tions, Panamer. Math. J., 9(1999), 97–111.

130. Raffoul, Y., Periodic solutions for nonlinear Volterra difference equations with
Infinite delay, Journal of Nonlinear Differential Equations, 5(1999), 25–33.

131. Raffoul, Y., T-Periodic solutions and a priori bound , Mathematical and Com-
puter Modeling, 32(2000), 643–652.

132. Raffoul, Y., Positive periodic solutions of nonlinear functional difference
equations, Electron. J. Diff. Eqns., 55(2002), 1–8.

133. Raffoul, Y., General theorems for stability and boundedness for nonlinear
functional discrete systems, J. Math. Analy. Appl., 279 (2003), pp. 639–650.

134. Raffoul, Y., Stability in neutral nonlinear differential equations with func-
tional delays using fixed point theory, Mathematical and Computer Modelling,
40(2004), 691–700.

135. Raffoul, Y., Periodicity in General Delay Nonlinear Difference Equations Us-
ing fixed point Theory, Journal of Difference Equations and Applications,
(2004). Vol. 10, pp.1229–1242.



References 319

136. Raffoul, Y., Stability and periodicity in discrete delay equations, J. Math. Anal.
Appl. 324 (2006) 1356–1362.

137. Raffoul, Y., Periodicity in nonlinears systems with infinite delay, Advances of
Dynamical Systems and Applications, Vol. 3. No. 1 (2008), pp. 185–194.

138. Raffoul, Y., Inequalities that lead to exponential stability and instability in
delay difference equations, Journal of Inequalities in Pure and Applied Math-
ematics, Vol. 10, iss.3, art, 70, 2009.

139. Raffoul, Y., Discrete population models with asymptotically constant or peri-
odic solutions International Journal of Difference Equations, Volume 6, Num-
ber 2, pp. 143–152 (2012).

140. Raffoul, Y., Stability in functional difference equations using fixed point the-
ory, Communications of the Korean Mathematical Society 29 (1), (2014),
195–204.

141. Raffoul, Y., Necessary and sufficient conditions for uniform bounded-
ness In functional difference equations, EPAM, Volume 2, Issue 2, 2016,
Pages 171–180.

142. Raffoul, Y., Fixed point theory in Volterra summation equations, preprint.
143. Raffoul, Y., Total and asymptotic stability in linear Volterra integro-

differential equations with nonlinear perturbation, preprint.
144. Raffoul, Y., Lyapunov-Razumikhin conditions that leads to stability and

boundedness of functional difference equations of Volterra difference type,
preprint.

145. Raffoul, Y., Uniform asymptotic stability and boundedness in functional finite
delays difference equations, preprint.

146. Raffoul, Y., Stability in functional difference equations with applications to
infinite delay Volterra difference equations, preprint.

147. Raffoul, Y., Li, W.L., and Liao, X.Y., Boundedness in nonlinear functional
difference equations via non-negative Lyapunov functionals with applications
to Volterra discrete systems, Nonlinear Studies, 13(2006), No. 1, 1–13.

148. Raffoul, Y., Liao, X.Y., and Zhou, S., On the discrete-time multi-species
competition-predation system with several delays, Appl. Math. Lett. 21 (2008),
No. 1, 15, pp.15–22.

149. Raffoul, Y., and Tisdell, C., Positive periodic solutions of functional discrete
systems and with applications to population models, Advances in Difference
Equations Vol.3 (2005), pp. 369–380.

150. Raffoul, Y., and Yankson, E., Existence of bounded solutions for Almost-
Linear Volterra difference equations using fixed point theory and Lyapunov
Functionals Nonlinear Studies, Vol 21, No (2014) pp. 663–674.

151. Raffoul, Y., Positive periodic solutions of nonlinear functional difference
equations, Electronic Journal of Differential equations, Vol. 2002(2002), No.
55, pp. 1–8.

152. Raffoul, Y., Liao, X. Y., and Shengfan, Z., On the discrete-time multi-species
competition-predation system with several delays, Appl. Math. Lett. 21 (2008),
No. 1, 15, pp.15–22.



320 References

153. Robinson, P.A., Rennie, C.J., and Wright, J.J., Propagation and stability of
waves of electrical activity in the cerebral cortex, Phys Rev E 1997; 56: 826–
840.

154. Roger, L., A Nonstandard discretization method for Lotka-Volterra models
that preserves periodic solutions, Journal of Difference Equations and Ap-
plications, (8), Volume 11, 2005, pp 721–733.

155. Saito, Y., Ma, M., and Hara, T., A necessary and sufficient condition for per-
manence of a Lotka-Volterra discrete system with delays, J. Math. Anal. Appl.
256(2001) 162–174.

156. Schaefer, H., Uber die Method der a priori Scranken, Math Ann. 129(1955),
45–416.

157. Scheffer, M., Fish nutrient interplay determines algal biomass: a minimal
model, Oikos 62 (1991), 271–282.

158. Scud, M.F., Vito Volterra and theoretical ecology, Theoretical Population Bi-
ology 2, l-23 (1971).

159. Smart, D.R. Fixed Point Theorems, Cambridge University Press, London,
1980.

160. Smith, M. J., and Wisten, M.B. A continuous day-to-day traffic assignment
model and the existence of a continuous dynamic user equilibrium, Annals of
Operations Research. (1995). 60 (1): 59–79. doi:10.1007/BF02031940.

161. Song, Y., and Baker, C., Qualitative behavior of numerical approximations to
Volterra integro-differential equations, Journal of Computational and Applied
Mathematics 172 (2004) 101–115.

162. Tang, X. H., and Zou, X., Global attractivity of nonautonomous Lotka-Volterra
competition system without instantaneous negative feedback, J. Diff. Equ.
192(2003) 502–535.

163. Taniguchi, T.,Asymptotic behavior of solutions of nonautonomous difference
equations, J. Math. Anal. Appl. 184(2006) 342–347.

164. Yang, P., and Xu, R., Global attractivity of the periodic Lotka-Volterra system,
J. Math. Anal. Appl. 233(1999) 221–232.

165. Yang, X., Uniform persistence and periodic solutions for a discrete predator-
prey system with delays, J. Math. Anal. Appl. 316(2006) 161–177.

166. Yankson, E., Stability in discrete equations with variable delays, Electron. J.
Qual. Theory Differ. Equ. 2009, No. 8, 1–7.

167. Yankson, E., Stability of Volterra difference delay equations, Electron. J. Qual.
Theory Differ. Equ. 2006, No. 20, 1–14.

168. Yin, W., Eigenvalue problems for functional differential equations, Journal of
Nonlinear Differential Equations, 3 (1997), 74–82.

169. Wen, X., Global attractivity of positive solution of multispecies ecological
competition-predator delay system (Chinese), Acta Math. Sinica, 45(1)(2002)
83–92.

170. Wiener, J., Differential equations with piecewise constant delays, Trends in
Theory and Practice of Nonlinear Differential Equations: Proc. Int. Conf., Ar-
lington/Tex. 1982. Lecture Notes in Pure and Appl. Math. 90, Dekker, New
York, 1984, pp. 547–552.



References 321

171. Wilson, H.R., and Cowan, J.D., Excitatory and inhibitory interactions in lo-
calized populations of model neurons, Biophys J 1972; 12: 1–24.

172. Wilson, H.R., and Cowan, J.D., A mathematical theory of the functional dy-
namics of cortical and thalamic nervous tissue, Kybernetik 1973; 13: 55–80.

173. Wilson, H.R., and Liley, D.T.J., Simulation of the EEG: dynamic changes in
synaptic efficiency, cerebral rhythms, and dissipative and generative activity
in cortex, Biol Cybern 1999; 81: 131–147.

174. Xu, R., Chaplain, M., and Chen, L., Global asymptotic stability in n-species
nonautonomous Lotka-Volterra competitive systems with infinite delays, Appl.
Math. Comput. 130(2002) 295–309.

175. Xu, R., and Chen, L., Persistence and global stability for a delayed nonau-
tonomous predator-prey system without dominating instantaneous negative
feedback, J. Math. Anal. Appl. 262(2001) 50–61.

176. Xu, C., and Li, P., Dynamics in a discrete predator-prey system with infected
prey, Mathematics Bohemica, Vol. 139 (2014), No. 3, 511–534.

177. Zhang, B., Asymptotic criteria and integrability properties of the resolvent of
Volterra and functional equations, Funkcialaj Ekvacioj, 40(1997), 355–351.

178. Zhou, Z., and Zou, X., Stable periodic solutions in a discrete periodic Logistic
equation, Appl. Math. Lett. 16(2003) 165–171.

179. Zhu, J., and Liu, X., Existence of positive solutions of nonlinear difference
equations, Nonlinear Oscillations, 9 (2006), no. 1, pp. 34–45.

180. Zhang, B., and Vandewalle, S., General linear methods for Volterra integro-
differential equations with memory, SIAM J. Sci. Comput., 27 (2006), no. 6,
pp. 2010–2031.

181. Zhang, S., Stability of infinite delay difference systems, Nonlinear Analysis,
Method & Applications, (1994) Vol. 22, No. 9, pp. 1121–1129.

182. Zhang, S., and Chen, M.P., A new Razumikhin theorem for delay difference
equations, Computers Math. Applic. (1998) Vol. 36, No. 10–12, pp. 405–412.

183. Zhang, S., Stability of neutral delay difference systems, Computers Math. Ap-
plic. (2001) Vol. 42, pp. 291–299.

184. Zhao, M., Xuan, Z., and Li, C., Dynamics of a discrete-time predator-prey
system, Advances in Difference Equations (2016) 191.



Index

Symbols
l2-stable, 294, 295

A
A priori bound, 163, 166–170, 173, 182, 196,

200, 201, 203, 318
Ascoli-Arzelà, 97
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