
SCINFER: Refinement-Based Verification
of Software Countermeasures Against

Side-Channel Attacks

Jun Zhang1, Pengfei Gao1, Fu Song1(B),
and Chao Wang2

1 ShanghaiTech University, Shanghai, China
songfu@shanghaitech.edu.cn

2 University of Southern California,
Los Angeles, CA, USA

Abstract. Power side-channel attacks, capable of deducing secret using statisti-
cal analysis techniques, have become a serious threat to devices in cyber-physical
systems and the Internet of things. Random masking is a widely used counter-
measure for removing the statistical dependence between secret data and side-
channel leaks. Although there are techniques for verifying whether software code
has been perfectly masked, they are limited in accuracy and scalability. To bridge
this gap, we propose a refinement-based method for verifying masking counter-
measures. Our method is more accurate than prior syntactic type inference based
approaches and more scalable than prior model-counting based approaches using
SAT or SMT solvers. Indeed, it can be viewed as a gradual refinement of a set
of semantic type inference rules for reasoning about distribution types. These
rules are kept abstract initially to allow fast deduction, and then made concrete
when the abstract version is not able to resolve the verification problem. We have
implemented our method in a tool and evaluated it on cryptographic benchmarks
including AES and MAC-Keccak. The results show that our method significantly
outperforms state-of-the-art techniques in terms of both accuracy and scalability.

1 Introduction

Cryptographic algorithms are widely used in embedded computing devices, including
SmartCards, to form the backbone of their security mechanisms. In general, security is
established by assuming that the adversary has access to the input and output, but not
internals, of the implementation. Unfortunately, in practice, attackers may recover cryp-
tographic keys by analyzing physical information leaked through side channels. These
so-called side-channel attacks exploit the statistical dependence between secret data
and non-functional properties of a computing device such as the execution time [38],
power consumption [39] and electromagnetic radiation [49]. Among them, differential
power analysis (DPA) is an extremely popular and effective class of attacks [30,42].

This work was supported primarily by the National Natural Science Foundation of China
(NSFC) grants 61532019 and 61761136011. Chao Wang was supported by the U.S. National
Science Foundation (NSF) grant CNS-1617203.

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 157–177, 2018.
https://doi.org/10.1007/978-3-319-96142-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96142-2_12&domain=pdf

158 J. Zhang et al.

SCINFER

Type
inference
approach

SMT-based
approach

SMT
SolverDDG

input
next
ICR failed formula

SAT/UNSAT
/Unknownproved secure

proved (not) secure

Fig. 1. Overview of SCInfer, where “ICR” denotes the intermediate computation result.

To thwart DPA attacks, masking has been proposed to break the statistical depen-
dence between secret data and side-channel leaks through randomization. Although
various masked implementations have been proposed, e.g., for AES or its non-linear
components (S-boxes) [15,37,51,52], checking if they are correct is always tedious
and error-prone. Indeed, there are published implementations [51,52] later shown to be
incorrect [21,22]. Therefore, formally verifying these countermeasures is important.

Previously, there are two types of verification methods for masking countermea-
sures [54]: one is type inference based [10,44] and the other is model counting
based [26,27]. Type inference based methods [10,44] are fast and sound, meaning they
can quickly prove the computation is leakage free, e.g., if the result is syntactically inde-
pendent of the secret data or has been masked by random variables not used elsewhere.
However, syntactic type inference is not complete in that it may report false positives.
In contrast, model counting based methods [26,27] are sound and complete: they check
if the computation is statistically independent of the secret [15]. However, due to the
inherent complexity of model counting, they can be extremely slow in practice.

The aforementioned gap, in terms of both accuracy and scalability, has not been
bridged by more recent approaches [6,13,47]. For example, Barthe et al. [6] proposed
some inference rules to prove masking countermeasures based on the observation that
certain operators (e.g., XOR) are invertible: in the absence of such operators, purely
algebraic laws can be used to normalize expressions of computation results to apply the
rules of invertible functions. This normalization is applied to each expression once, as it
is costly. Ouahma et al. [47] introduced a linear-time algorithm based on finer-grained
syntactical inference rules. A similar idea was explored by Bisi et al. [13] for analyzing
higher-order masking: like in [6,47], however, the method is not complete, and does not
consider non-linear operators which are common in cryptographic software.

Our Contribution.We propose a refinement based approach, named SCInfer, to bridge
the gap between prior techniques which are either fast but inaccurate or accurate but
slow. Figure 1 depicts the overall flow, where the input consists of the program and a
set of variables marked as public, private, or random. We first transform the program
to an intermediate representation: the data dependency graph (DDG). Then, we tra-
verse the DDG in a topological order to infer a distribution type for each intermediate
computation result. Next, we check if all intermediate computation results are perfectly
masked according to their types. If any of them cannot be resolved in this way, we
invoke an SMT solver based refinement procedure, which leverages either satisfiabil-
ity (SAT) solving or model counting (SAT#) to prove leakage freedom. In both cases,

SCInfer: Refinement-Based Verification of Software Countermeasures 159

the result is fed back to improve the type system. Finally, based on the refined type
inference rules, we continue to analyze other intermediate computation results.

Thus, SCInfer can be viewed as a synergistic integration of a semantic rule based
approach for inferring distribution types and an SMT solver based approach for refining
these inference rules. Our type inference rules (Sect. 3) are inspired by Barthe et al. [6]
and Ouahma et al. [47] in that they are designed to infer distribution types of interme-
diate computation results. However, there is a crucial difference: their inference rules
are syntactic with fixed accuracy, i.e., relying solely on structural information of the
program, whereas ours are semantic and the accuracy can be gradually improved with
the aid of our SMT solver based analysis. At a high level, our semantic type inference
rules subsume their syntactic type inference rules.

The main advantage of using type inference is the ability to quickly obtain sound
proofs: when there is no leak in the computation, often times, the type system can pro-
duce a proof quickly; furthermore, the result is always conclusive. However, if type
inference fails to produce a proof, the verification problem remains unresolved. Thus,
to be complete, we propose to leverage SMT solvers to resolve these left-over verifica-
tion problems. Here, solvers are used to check either the satisfiability (SAT) of a logical
formula or counting its satisfying solutions (SAT#), the later of which, although expen-
sive, is powerful enough to completely decide if the computation is perfectly masked.
Finally, by feeding solver results back to the type inference system, we can gradually
improve its accuracy. Thus, overall, the method is both sound and complete.

We have implemented our method in a software tool named SCInfer and evaluated
it on publicly available benchmarks [26,27], which implement various cryptographic
algorithms such as AES and MAC-Keccak. Our experiments show SCInfer is both
effective in obtaining proofs quickly and scalable for handling realistic applications.
Specifically, it can resolve most of the verification subproblems using type inference
and, as a result, satisfiability (SAT) based analysis needs to be applied to few left-over
cases. Only in rare cases, the most heavyweight analysis (SAT#) needs to be invoked.

To sum up, the main contributions of this work are as follows:

– We propose a new semantic type inference approach for verifying masking counter-
measures. It is sound and efficient for obtaining proofs.

– We propose a method for gradually refining the type inference system using SMT
solver based analysis, to ensure the overall method is complete.

– We implement the proposed techniques in a tool named SCInfer and demonstrate
its efficiency and effectiveness on cryptographic benchmarks.

The remainder of this paper is organized as follows. After reviewing the basics in
Sect. 2, we present our semantic type inference system in Sect. 3 and our refinement
method in Sect. 4. Then, we present our experimental results in Sect. 5 and comparison
with related work in Sect. 6. We give our conclusions in Sect. 7.

2 Preliminaries

In this section, we define the type of programs considered in this work and then review
the basics of side-channel attacks and masking countermeasures.

160 J. Zhang et al.

2.1 Probabilistic Boolean Programs

Following the notation used in [15,26,27], we assume that the program P implements
a cryptographic function, e.g., c ← P(p, k) where p is the plaintext, k is the secret key
and c is the ciphertext. Inside P, random variable r may be used to mask the secret
key while maintaining the input-output behavior of P. Therefore, P may be viewed
as a probabilistic program. Since loops, function calls, and branches may be removed
via automated rewriting [26,27] and integer variables may be converted to bits, for
verification purposes, we assume that P is a straight-line probabilistic Boolean program,
where each instruction has a unique label and at most two operands.

1 bool compute (bool r1 ,bool r2 ,
2 bool r3 ,bool k)
3 {
4 bool c1, c2, c3, c4, c5, c6 ;
5 c1 = k ⊕ r2 ;
6 c2 = r1 ⊕ r2 ;
7 c3 = c2 ⊕ c1 ;
8 c4 = c3 ⊕ c2 ;
9 c5 = c4 ⊕ r1 ;

10 c6 = c5 ∧ r3 ;
11 return c6 ;
12 }

kr2r1r3

⊕⊕

⊕

⊕

⊕
∧

c1
c2

c3

c4

c5

c6

Fig. 2. An example for masking countermeasure.

Let k (resp. r) be the set
of secret (resp. random) bits,
p the public bits, and c the
variables storing intermediate
results. Thus, the set of vari-
ables is V = k ∪ r ∪ p ∪ c.
In addition, the program uses
a set op of operators including
negation (¬), and (∧), or (∨),
and exclusive-or (⊕). A compu-
tation of P is a sequence c1 ←
i1(p, k, r); · · · ; cn ← in(p, k, r)
where, for each 1 ≤ i ≤ n, the value of ii is expressed in terms of p, k and r. Each
random bit in r is uniformly distributed in {0, 1}; the sole purpose of using them in P is
to ensure that c1, · · · cn are statistically independent of the secret k.

Data Dependency Graph (DDG). Our internal representation of P is a graph GP =

(N, E, λ), where N is the set of nodes, E is the set of edges, and λ is a labeling function.

– N = L 	 LV , where L is the set of instructions in P and LV is the set of terminal
nodes: lv ∈ LV corresponds to a variable or constant v ∈ k ∪ r ∪ p∪ {0, 1}.

– E ⊆ N × N contains edge (l, l′) if and only if l : c = x ◦ y, where either x or y is
defined by l′; or l : c = ¬x, where x is defined by l′;

– λ maps each l ∈ N to a pair (val, op): λ(l) = (c, ◦) for l : c = x ◦ y; λ(l) = (c,¬) for
l : c = ¬x; and λ(l) = (v,⊥) for each terminal node lv.

We may use λ1(l) = c and λ2(l) = ◦ to denote the first and second elements of the pair
λ(l) = (c, ◦), respectively. We may also use l.lft to denote the left child of l, and l.rgt
to denote the right child if it exists. A subtree rooted at node l corresponds to an inter-
mediate computation result. When the context is clear, we may use the following terms
exchangeably: a node l, the subtree T rooted at l, and the intermediate computation
result c = λ1(l). Let |P| denote the total number of nodes in the DDG.

Figure 2 shows an example where k = {k}, r = {r1, r2, r3}, c = {c1, c2, c3, c4, c5, c6}
and p = ∅. On the left is a program written in a C-like language except that ⊕ denotes
XOR and ∧ denotes AND. On the right is the DDG, where

SCInfer: Refinement-Based Verification of Software Countermeasures 161

c3 = c2 ⊕ c1 = (r1 ⊕ r2) ⊕ (k ⊕ r2) = k ⊕ r1
c4 = c3 ⊕ c2 = ((r1 ⊕ r2) ⊕ (k ⊕ r2)) ⊕ (r1 ⊕ r2) = k ⊕ r2
c5 = c4 ⊕ r1 = (((r1 ⊕ r2) ⊕ (k ⊕ r2)) ⊕ (r1 ⊕ r2)) ⊕ r1 = k ⊕ r1 ⊕ r2
c6 = c5 ∧ r3 = ((((r1 ⊕ r2) ⊕ (k ⊕ r2)) ⊕ (r1 ⊕ r2)) ⊕ r1) ∧ r3 = (k ⊕ r1 ⊕ r2) ∧ r3

Let supp : N → k ∪ r ∪ p be a function mapping each node l to its support variables.
That is, supp(l) = ∅ if λ1(l) ∈ {0, 1}; supp(l) = {x} if λ1(l) = x ∈ k ∪ r ∪ p; and
supp(l) = supp(l.lft) ∪ supp(l.rgt) otherwise. Thus, the function returns a set of
variables that λ1(l) depends upon structurally.

Given a node l whose corresponding expression e is defined in terms of variables
in V , we say that e is semantically dependent on a variable r ∈ V if and only if there
exist two assignments, π1 and π2, such that π1(r) � π2(r) and π1(x) = π2(x) for every
x ∈ V \ {r}, and the values of e differ under π1 and π2.

Let semd : N → r be a function such that semd(l) denotes the set of random vari-
ables upon which the expression e of l semantically depends. Thus, semd(l) ⊆ supp(l);
and for each r ∈ supp(l) \ semd(l), we know λ1(l) is semantically independent of
r. More importantly, there is often a gap between supp(l) ∩ r and semd(l), namely
semd(l) ⊆ supp(l)∩ r, which is why our gradual refinement of semantic type inference
rules can outperform methods based solely on syntactic type inference.

Consider the node lc4 in Fig. 2: we have supp(lc4) = {r1, r2, k}, semd(lc4) = {r2}, and
supp(lc4) ∩ r = {r1, r2}. Furthermore, if the random bits are uniformly distributed in
{0, 1}, then c4 is both uniformly distributed and secret independent (Sect. 2.2).

2.2 Side-Channel Attacks and Masking

We assume the adversary has access to the public input p and output c, but not the
secret k and random variable r, of the program c ← P(p, k). However, the adversary
may have access to side-channel leaks that reveal the joint distribution of at most d
intermediate computation results c1, · · · cd (e.g., via differential power analysis [39]).
Under these assumptions, the goal of the adversary is to deduce information of k. To
model the leakage of each instruction, we consider a widely-used, value-based model,
called the Hamming Weight (HW) model; other power leakage models such as the
transition-based model [5] can be used similarly [6].

Let [n] denote the set {1, · · · , n} of natural numbers where n ≥ 1. We call a set with
d elements a d-set. Given values (p, k) for (p, k) and a d-set {c1, · · · , cd} of intermediate
computation results, we use Dp,k(c1, · · · cd) to denote their joint distribution induced by
instantiating p and k with p and k, respectively. Formally, for each vector of values
v1, · · · , vd in the probability space {0, 1}d, we have Dp,k(c1, · · · cd)(v1, · · · , vd) =

|{r ∈ {0, 1}|r| | v1 = i1(p = p, k = k, r = r), · · · , vd = id(p = p, k = k, r = r)}|
2|r|

.

Definition 1. We say a d-set {c1, · · · , cd} of intermediate computation results is

– uniformly distributed if Dp,k(c1, · · · , cd) is a uniform distribution for any p and k.
– secret independent if Dp,k(c1, · · · , cd) = Dp,k′ (c1, · · · , cd) for any (p, k) and (p, k′).

162 J. Zhang et al.

Note that there is a difference between them: an uniformly distributed d-set is always
secret independent, but a secret independent d-set is not always uniformly distributed.

Definition 2. A program P is order-d perfectly masked if every k-set {c1, · · · , ck} of P
such that k ≤ d is secret independent. When P is (order-1) perfectly masked, we may
simply say it is perfectly masked.

To decide if P is order-d perfectly masked, it suffices to check if there exist a d-set and
two pairs (p, k) and (p, k′) such that Dp,k(c1, · · · , cd) � Dp,k′ (c1, · · · , cd). In this context,
the main challenge is computing Dp,k(c1, · · · , cd) which is essentially a model-counting
(SAT#) problem. In the remainder of this paper, we focus on developing an efficient
method for verifying (order-1) perfect masking, although our method can be extended
to higher-order masking as well.

Gap in Current State of Knowledge. Existing methods for verifying masking coun-
termeasures are either fast but inaccurate, e.g., when they rely solely on syntactic type
inference (structural information provided by supp in Sect. 2.1) or accurate but slow,
e.g., when they rely solely on model-counting. In contrast, our method gradually refines
a set of semantic type-inference rules (i.e., using semd instead of supp as defined in
Sect. 2.1) where constraint solvers (SAT and SAT#) are used on demand to resolve
ambiguity and improve the accuracy of type inference. As a result, it can achieve the
best of both worlds.

3 The Semantic Type Inference System

We first introduce our distribution types, which are inspired by prior work in [6,13,47],
together with some auxiliary data structures; then, we present our inference rules.

3.1 The Type System

Let T = {CST, RUD, SID, NPM, UKD} be the set of distribution types for intermediate com-
putation results, where �c� denotes the type of c← i(p, k, r). Specifically,

– �c� = CST means c is a constant, which implies that it is side-channel leak-free;
– �c� = RUD means c is randomized to uniform distribution, and hence leak-free;
– �c� = SID means c is secret independent, i.e., perfectly masked;
– �c� = NPM means c is not perfectly masked and thus has leaks; and
– �c� = UKD means c has an unknown distribution.

Definition 3. Let unq : N → r and dom : N → r be two functions such that (i)
for each terminal node l ∈ LV, if λ1(l) ∈ r, then unq(l) = dom(l) = λ1(l); otherwise
unq(l) = dom(l) = supp(l) = ∅; and (ii) for each internal node l ∈ L, we have

– unq(l) = (unq(l.lft) ∪ unq(l.rgt)) \ (supp(l.lft) ∩ supp(l.rgt));
– dom(l) = (dom(l.lft) ∪ dom(l.rgt)) ∩ unq(l) if λ2(l) = ⊕; but dom(l) = ∅ otherwise.

SCInfer: Refinement-Based Verification of Software Countermeasures 163

Fig. 3. Our semantic type-inference rules. The NPM type is not yet used here; its inference rules
will be added in Fig. 4 since they rely on the SMT solver based analyses.

Both unq(l) and dom(l) are computable in time that is linear in |P| [47]. Following the
proofs in [6,47], it is easy to reach this observation: Given an intermediate computation
result c← i(p, k, r) labeled by l, the following statements hold:

1. if |dom(l)| � ∅, then �c� = RUD;
2. if �c� = RUD, then �¬c� = RUD; if �c� = SID, then �¬c� = SID.
3. if r � semd(l) for a random bit r ∈ r, then �r ⊕ c� = RUD;
4. for every c′ ← i′(p, k, r) labeled by l′, if semd(l) ∩ semd(l′) = ∅ and �c� = �c′� =

SID, then �c ◦ c′� = SID.

Figure 3 shows our type inference rules that concretize these observations. When mul-
tiple rules could be applied to a node l ∈ N, we always choose the rules that can lead
to �l� = RUD. If no rule is applicable at l, we set �l� = UKD. When the context is clear,
we may use �l� and �c� exchangeably for λ1(l) = c. The correctness of these inference
rules is obvious by definition.

Theorem 1. For every intermediate computation result c← i(p, k, r) labeled by l,

– if �c� = RUD, then c is uniformly distributed, and hence perfectly masked;
– if �c� = SID, then c is guaranteed to be perfectly masked.

To improve efficiency, our inference rules may be applied twice, first using the supp
function, which extracts structural information from the program (cf. Sect. 2.1) and then
using the semd function, which is slower to compute but also significantly more accu-
rate. Since semd(l) ⊆ supp(l) for all l ∈ N, this is always sound. Moreover, type infer-
ence is invoked for the second time only if, after the first time, �l� remains UKD.

Example 1. When using type inference with supp on the running example, we have

�r1� = �r2� = �r3� = �c1� = �c2� = �c3� = RUD, �k� = �c4� = �c5� = �c6� = UKD

When using type inference with semd (for the second time), we have

�r1� = �r2� = �r3� = �c1� = �c2� = �c3� = �c4� = �c5� = RUD, �k� = UKD, �c6� = SID

164 J. Zhang et al.

3.2 Checking Semantic Independence

Unlike supp(l), which only extracts structural information from the program and hence
may be computed syntactically, semd(l) is more expensive to compute. In this subsec-
tion, we present a method that leverages the SMT solver to check, for any intermediate
computation result c ← i(p, k, r) and any random bit r ∈ r, whether c is semantically
dependent of r. Specifically, we formulate it as a satisfiability (SAT) problem (formula
Φs) defined as follows:

Θr=0
s (c0, p, k, r \ {r}) ∧ Θr=1

s (c1, p, k, r \ {r}) ∧ Θ�s (c0, c1),
where Θr=0

s (resp. Θr=1
s) encodes the relation i(p, k, r) with r replaced by 0 (resp. 1), c0

and c1 are copies of c and Θ�s asserts that the outputs differ even under the same inputs.
In logic synthesis and optimization, when r � semd(l), r will be called the don’t

care variable [36]. Therefore, it is easy to see why the following theorem holds.

Theorem 2. Φs is unsatisfiable iff the value of r does not affect the value of c, i.e., c is
semantically independent of r. Moreover, the formula size of Φs is linear in |P|.

Fig. 4. Our composition rules for handling sets of intermediate computation results.

3.3 Verifying Higher-Order Masking

The type system so far targets first-order masking. We now outline how it extends
to verify higher-order masking. Generally speaking, we have to check, for any k-set
{c1, · · · , ck} of intermediate computation results such that k ≤ d, the joint distribution is
either randomized to uniform distribution (RUD) or secret independent (SID).

To tackle this problem, we lift supp, semd, unq, and dom to sets of computation
results as follows: for each k-set {c1, · · · , ck},
– supp(c1, · · · , ck) =

⋃
i∈[k] supp(ci);

– semd(c1, · · · , ck) =
⋃

i∈[k] semd(ci);
– unq(c1, · · · , ck) =

(⋃
i∈[k] unq(ci)

) \⋃i, j∈[k]
(
supp(ci) ∩ supp(c j)

)
; and

– dom(c1, · · · , ck) =
(⋃

i∈[k] dom(ci)
) ∩ unq(c1, · · · , ck).

Our inference rules are extended by adding the composition rules shown in Fig. 4.

SCInfer: Refinement-Based Verification of Software Countermeasures 165

Theorem 3. For every k-set {c1, · · · , ck} of intermediate computations results,

– if �c1, · · · , ck� = RUD, then {c1, · · · , ck} is guaranteed to be uniformly distributed,
and hence perfectly masked;

– if �c1, · · · , ck� = SID, then {c1, · · · , ck} is guaranteed to be perfectly masked.

We remark that the semd function in these composition rules could also be safely
replaced by the supp function, just as before. Furthermore, to more efficiently verify
that program P is perfect masked against order-d attacks, we can incrementally apply
the type inference for each k-set, where k = 1, 2, . . . , d.

4 The Gradual Refinement Approach

In this section, we present our method for gradually refining the type inference system
by leveraging SMT solver based techniques. Adding solvers to the sound type system
makes it complete as well, thus allowing it to detect side-channel leaks whenever they
exist, in addition to proving the absence of such leaks.

4.1 SMT-Based Approach

For a given computation c← i(p, k, r), the verification of perfect masking (Definition 2)
can be reduced to the satisfiability of the logical formula (Ψ) defined as follows:

∃p.∃k.∃k′.(
∑

vr∈{0,1}|r|
i(p, k, vr) �

∑

vr∈{0,1}|r|
i(p, k′, vr)

)
.

Intuitively, given values (vp, vk) of (p, k), count =
∑

vr∈{0,1}|r| i(vp, vk, vr) denotes the
number of assignments of the random variable r under which i(vp, vk, r) is evaluated to
logical 1. When random bits in r are uniformly distributed in the domain {0, 1}, count

2|r| is
the probability of i(vp, vk, r) being logical 1 for the given pair (vp, vk). Therefore, Ψ is
unsatisfiable if and only if c is perfectly masked.

Following Eldib et al. [26,27], we encode the formula Ψ as a quantifier-free first-
order logic formula to be solved by an off-the-shelf SMT solver (e.g., Z3):

(
∧2|r|−1

r=0
Θr

k) ∧ (
∧2|r|−1

r=0
Θr

k′) ∧ Θb2i ∧ Θ�

– Θv
k (resp. Θ

v
k′) for each r ∈ {0, · · · , 2|r|−1}: encodes a copy of the input-output relation

of i(p, k, r) (resp. i(p, k′, r)) by replacing r with concrete values r. There are 2|r|
distinct copies, but share the same plaintext p.

– Θb2i: converts Boolean outputs of these copies to integers (true becomes 1 and false
becomes 0) so that the number of assignments can be counted.

– Θ�: asserts the two summations, for k and k′, differ.

Example 2. In the running example, for instance, verifying whether node c4 is perfectly
masked requires the SMT-based analysis. For brevity, we omit the detailed logical for-
mula while pointing out that, by invoking the SMT solver six times, one can get the
following result: �c1� = �c2� = �c3� = �c4� = �c5� = �c6� = SID.

166 J. Zhang et al.

Fig. 5. Complementary rules used during refinement of the type inference (Fig. 3).

Although the SMT formula size is linear in |P|, the number of distinct copies is expo-
nential of the number of random bits used in the computation. Thus, the approach cannot
be applied to large programs. To overcome the problem, incremental algorithms [26,27]
were proposed to reduce the formula size using partitioning and heuristic reduction.

Incremental SMT-Based Algorithm. Given a computation c ← i(p, k, r) that corre-
sponds to a subtree T rooted at l in the DDG, we search for an internal node ls in T (a
cut-point) such that dom(ls) ∩ unq(l) � ∅. A cut-point is maximal if there is no other
cut-point from l to ls. Let T̂ be the simplified tree obtained from T by replacing every
subtree rooted by a maximal cut-point with a random variable from dom(ls) ∩ unq(l).
Then, T̂ is SID iff T is SID.

The main observation is that: if ls is a cut-point, there is a random variable r ∈
dom(ls) ∩ unq(l), which implies λ1(ls) is RUD. Here, r ∈ unq(l) implies λ1(ls) can be
seen as a fresh random variable when we evaluate l. Consider the node c3 in our running
example: it is easy to see r1 ∈ dom(c2)∩unq(c3). Therefore, for the purpose of verifying
c3, the entire subtree rooted at c2 can be replaced by the random variable r1.

In addition to partitioning, heuristics rules [26,27] can be used to simplify SMT
solving. (1)When constructing formulaΦ of c, all random variables in supp(l)\semd(l),
which are don’t cares, can be replaced by constant 1 or 0. (2) The No-Key and Sid rules
in Fig. 3 with the supp function are used to skip some checks by SMT.

Example 3. When applying incremental SMT-based approach to our running example,
c1 has to be decided by SMT, but c2 is skipped due to No-Key rule.

As for c3, since r1 ∈ dom(c2)∩ unq(c3), c2 is a cut-point and the subtree rooted at c2
can be replaced by r1, leading to the simplified computation r1 ⊕ (r2 ⊕ k) – subsequently
it is skipped by the Sid rule with supp. Note that the above Sid rule is not applicable to
the original subtree, because r2 occurs in the support of both children of c3.

There is no cut-point for c4, so it is checked using the SMT solver. But since c4 is
semantically independent of r1 (a don’t care variable), to reduce the SMT formula size,
we replace r1 by 1 (or 0) when constructing the formula Φ.

SCInfer: Refinement-Based Verification of Software Countermeasures 167

4.2 Feeding SMT-Based Analysis Results Back to Type System

Fig. 6. Example for feeding back.

Consider a scenario where initially the type system
(cf. Sect. 3) failed to resolve a node l, i.e., �l� = UKD,
but the SMT-based approach resolved it as either NPM
or SID. Such results should be fed back to improve
the type system, which may lead to the following two
favorable outcomes: (1) marking more nodes as per-
fectly masked (RUD or SID) and (2) marking more
nodes as leaky (NPM), which means we can avoid
expensive SMT calls for these nodes. More specifi-
cally, if SMT-based analysis shows that l is perfectly
masked, the type of l can be refined to �l� = SID; feeding it back to the type system
allows us to infer more types for nodes that structurally depend on l.

On the other hand, if SMT-based analysis shows l is not perfectly masked, the type
of l can be refined to �l� = NPM; feeding it back allows the type system to infer that
other nodes may be NPM as well. To achieve what is outlined in the second case above,
we add the NPM-related type inference rules shown in Fig. 5. When they are added to
the type system outlined in Fig. 3, more NPM type nodes will be deduced, which allows
our method to skip the (more expensive) checking of NPM using SMT.

Example 4. Consider the example DDG in Fig. 6. By applying the original type infer-
ence approach with either supp or semd, we have

�c1� = �c4� = RUD, �c2� = �c3� = �c6� = SID, �c5� = �c7� = UKD.

In contrast, by applying SMT-based analysis to c5, we can deduce �c5� = SID. Feeding
�c5� = SID back to the original type system, and then applying the Sid rule to c7 =
c5 ⊕ c6, we are able to deduce �c7� = SID. Without refinement, this was not possible.

4.3 The Overall Algorithm

Having presented all the components, we now present the overall procedure, which
integrates the semantic type system and SMT-based method for gradual refinement.
Algorithm 1 shows the pseudo code. Given the program P, the sets of public (p), secret
(k), random (r) variables and an empty map π, it invokes SCInfer(P, p, k, r, π) to tra-
verse the DDG in a topological order and annotate every node l with a distribution
type from T. The subroutine TypeInfer implements the type inference rules outlined in
Figs. 3 and 5, where the parameter f can be either supp or semd.

SCInfer first deduces the type of each node l ∈ N by invoking TypeInfer with
f = supp. Once a node l is annotated as UKD, a simplified subtree P̂ of the subtree
rooted at l is constructed. Next, TypeInfer with f = semd is invoked to resolve the UKD
node in P̂. If π(l) becomes non-UKD afterward, TypeInfer with f = supp is invoked
again to quickly deduce the types of the fan-out nodes in P. But if π(l) remains UKD,
SCInfer invokes the incremental SMT-based approach to decide whether l is either SID
or NPM. This is sound and complete, unless the SMT solver runs out of time/memory, in
which case UKD is assigned to l.

168 J. Zhang et al.

Algorithm 1. Function SCInfer(P, p, k, r, π)

1 Function SCInfer(P, p, k, r, π)
2 foreach l ∈ N in a topological order do
3 if l is a leaf then π(l) := �l�;
4 else
5 TypeInfer(l, P, p, k, r, π, supp);
6 if π(l) = UKD then
7 let P̂ be the simplified tree of the subtree rooted by l in P;

8 TypeInfer(l, P̂, p, k, r, π, semd);
9 if π(l) = UKD then

10 res:=CheckBySMT(P̂, p, k, r);
11 if res=Not-Perfectly-Masked then π(l) := NPM;
12 else if res=Perfectly-Masked then π(l) := SID;
13 else π(l) := UKD;

Theorem 4. For every intermediate computation result c ← i(p, k, r) labeled by l, our
method in SCInfer guarantees to return sound and complete results:

– π(l) = RUD iff c is uniformly distributed, and hence perfectly masked;
– π(l) = SID iff c is secret independent, i.e., perfectly masked;
– π(l) = NPM iff c is not perfectly masked (leaky);

If timeout or memory out is used to bound the execution of the SMT solver, it is also
possible that π(l) = UKD, meaning c has an unknown distribution (it may or may not be
perfectly masked). It is interesting to note that, if we regard UKD as potential leak and at
the same time. bound (or even disable) SMT-based analysis, Algorithm 1 degenerates
to a sound type system that is both fast and potentially accurate.

5 Experiments

We have implemented our method in a verification tool named SCInfer, which uses
Z3 [23] as the underlying SMT solver. We also implemented the syntactic type infer-
ence approach [47] and the incremental SMT-based approach [26,27] in the same tool
for experimental comparison purposes. We conducted experiments on publicly avail-
able cryptographic software implementations, including fragments of AES and MAC-
Keccak [26,27]. Our experiments were conducted on a machine with 64-bit Ubuntu
12.04 LTS, Intel Xeon(R) CPU E5-2603 v4, and 32GB RAM.

Overall, results of our experiments show that (1) SCInfer is significantly more accu-
rate than prior syntactic type inference method [47]; indeed, it solved tens of thousand
of UKD cases reported by the prior technique; (2) SCInfer is at least twice faster than
prior SMT-based verification method [26,27] on the large programs while maintaining
the same accuracy; for example, SCInfer verified the benchmark named P12 in a few
seconds whereas the prior SMT-based method took more than an hour.

SCInfer: Refinement-Based Verification of Software Countermeasures 169

Algorithm 2. Procedure TypeInfer(l, P, p, k, r, π, f)

1 Procedure TypeInfer(l, P, p, k, r, π, f)
2 if λ2(l) = ¬ then π(l) := π(l.lft) ;
3 else if λ2(l) = ⊕ then
4 if π(l.lft) = RUD ∧ dom(l.lft) \ f (l.rgt) � ∅ then π(l) := RUD;
5 else if π(l.rgt) = RUD ∧ dom(l.rgt) \ f (l.lft) � ∅ then π(l) := RUD;
6 else if π(l.rgt) = π(l.lft) = SID ∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅ then
7 π(l) := SID
8 else if supp(l) ∩ k = ∅ then π(l) := SID;
9 else π(l) := UKD;

10 else

11 if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
(π(l.lft) = RUD ∧ π(l.rgt) � {UKD, NPM})∨
(π(l.rgt) = RUD ∧ π(l.lft) � {UKD, NPM})

)

∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
then π(l) := SID;

12 else if
(
(dom(l.rgt) \ f (l.lft)) ∪ (dom(l.lft) \ f (l.rgt)) � ∅

∧π(l.lft) = RUD ∧ π(l.rgt) = RUD

)

then

13 π(l) := SID

14 else if

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
(π(l.lft) = RUD ∧ π(l.rgt) = NPM)∨
(π(l.rgt) = RUD ∧ π(l.lft) = NPM)

)

∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
then π(l) := NPM;

15 else if
(
(π(l.lft) = RUD ∧ π(l.rgt) = NPM ∧ dom(l.lft) \ f (l.rgt) � ∅)∨
(π(l.rgt) = RUD ∧ π(l.lft) = NPM ∧ dom(l.rgt) \ f (l.lft) � ∅)

)

then

16 π(l) := NPM
17 else if (π(l.lft) = π(l.rgt) = SID) ∧ f (l.lft) ∩ f (l.rgt) ∩ r = ∅ then
18 π(l) := SID
19 else if supp(l) ∩ k = ∅ then π(l) := SID;
20 else π(l) := UKD;

5.1 Benchmarks

Table 1 shows the detailed statistics of the benchmarks, including seventeen examples
(P1–P17), all of which have nonlinear operations. Columns 1 and 2 show the name of
the program and a short description. Column 3 shows the number of instructions in the
probabilistic Boolean program. Column 4 shows the number of DDG nodes denoting
intermediate computation results. The remaining columns show the number of bits in
the secret, public, and random variables, respectively. Remark that the number of ran-
dom variables in each computation is far less than the one of the program. All these
programs are transformed into Boolean programs where each instruction has at most
two operands. Since the statistics were collected from the transformed code, they may
have minor differences from statistics reported in prior work [26,27].

In particular, P1–P5 are masking examples originated from [10], P6–P7 are orig-
inated from [15], P8–P9 are the MAC-Keccak computation reordered examples orig-
inated from [11], P10–P11 are two experimental masking schemes for the Chi func-
tion in MAC-Keccak. Among the larger programs, P12–P17 are the regenerations of

170 J. Zhang et al.

Table 1. Benchmark statistics.

Name Description �Loc �Nodes |k| |p| |r|
P1 CHES13 Masked Key Whitening 79 32 16 16 16

P2 CHES13 De-mask and then Mask 67 38 8 0 16

P3 CHES13 AES Shift Rows 21 6 2 0 2

P4 CHES13 Messerges Boolean to Arithmetic (bit0) 23 6 2 0 2

P5 CHES13 Goubin Boolean to Arithmetic (bit0) 27 8 1 0 2

P6 Logic Design for AES S-Box (1st implementation) 32 9 2 0 2

P7 Logic Design for AES S-Box (2nd implementation) 40 11 2 0 3

P8 Masked Chi function MAC-Keccak (1st implementation) 59 18 3 0 4

P9 Masked Chi function MAC-Keccak (2nd implementation) 60 18 3 0 4

P10 Syn. Masked Chi func MAC-Keccak (1st implementation) 66 28 3 0 4

P11 Syn. Masked Chi func MAC-Keccak (2nd implementation) 66 28 3 0 4

P12 MAC-Keccak 512b Perfect masked 426k 197k 288 288 3205

P13 MAC-Keccak 512b De-mask and then mask (compiler error) 426k 197k 288 288 3205

P14 MAC-Keccak 512b Not-perfect Masking of Chi function (v1) 426k 197k 288 288 3205

P15 MAC-Keccak 512b Not-perfect Masking of Chi function (v2) 429k 198k 288 288 3205

P16 MAC-Keccak 512b Not-perfect Masking of Chi function (v3) 426k 197k 288 288 3205

P17 MAC-Keccak 512b Unmasking of Pi function 442k 205k 288 288 3205

MAC-Keccak reference code submitted to the SHA-3 competition held by NIST, where
P13–P16 implement the masking of Chi functions using different masking schemes and
P17 implements the de-masking of Pi function.

5.2 Experimental Results

We compared the performance of SCInfer, the purely syntactic type inference method
(denoted Syn. Infer) and the incremental SMT-based method (denoted by SMT App).
Table 2 shows the results. Column 1 shows the name of each benchmark. Column 2
shows whether it is perfectly masked (ground truth). Columns 3–4 show the results
of the purely syntactic type inference method, including the number of nodes inferred
as UKD type and the time in seconds. Columns 5–7 (resp. Columns 8–10) show the
results of the incremental SMT-based method (resp. our method SCInfer), including
the number of leaky nodes (NPM type), the number of nodes actually checked by SMT,
and the time.

Compared with syntactic type inference method, our approach is significantly more
accurate (e.g., see P4, P5 and P15). Furthermore, the time taken by both methods are
comparable on small programs. On the large programs that are not perfectly masked
(i.e., P13–P17), our method is slower since SCInfer has to resolve the UKD nodes
reported by syntactic inference by SMT. However, it is interesting to note that, on the
perfectly masked large program (P12), our method is faster.

Moreover, the UKD type nodes in P4, reported by the purely syntactic type inference
method, are all proved to be perfectly masked by our semantic type inference system,

SCInfer: Refinement-Based Verification of Software Countermeasures 171

Table 2. Experimental results: comparison of three approaches.

Name Masked Syn. Infer [47] SMT App [26,27] SCInfer

UKD Time NPM By SMT Time NPM By SMT Time

P1 No 16 ≈0 s 16 16 0.39 s 16 16 0.39 s

P2 No 8 ≈0 s 8 8 0.28 s 8 8 0.57 s

P3 Yes 0 ≈0 s 0 0 ≈0 s 0 0 ≈0 s
P4 Yes 3 ≈0 s 0 3 0.16 s 0 0 0.06 s

P5 Yes 3 ≈0 s 0 3 0.15 s 0 2 0.25 s

P6 No 2 ≈0 s 2 2 0.11 s 2 2 0.16 s

P7 No 2 0.01 s 1 2 0.11 s 1 1 0.26 s

P8 No 3 ≈0 s 3 3 0.15 s 3 3 0.29 s

P9 No 2 ≈0 s 2 2 0.11 s 2 2 0.23 s

P10 No 3 ≈0 s 1 2 0.15 s 1 2 0.34 s

P11 No 4 ≈0 s 1 3 0.2 s 1 3 0.5 s

P12 Yes 0 1min 5 s 0 0 92min 8 s 0 0 3.8 s

P13 No 4800 1min 11 s 4800 4800 95min 30 s 4800 4800 47min 8 s

P14 No 3200 1min 11 s 3200 3200 118min 1 s 3200 3200 53min 40 s

P15 No 3200 1min 21 s 1600 3200 127min 45 s 1600 3200 69min 6 s

P16 No 4800 1min 13 s 4800 4800 123min 54 s 4800 4800 61min 15 s

P17 No 17600 1min 14 s 17600 16000 336min 51 s 17600 12800 121min 28 s

without calling the SMT solver at all. As for the three UKD type nodes in P5, our method
proves them all by invoking the SMT solver only twice; it means that the feedback of
the new SID types (discovered by SMT) allows our type system to improve its accuracy,
which turns the third UKD node to SID.

Finally, compared with the original SMT-based approach, our method is at least
twice faster on the large programs (e.g., P12–P17). Furthermore, the number of nodes
actually checked by invoking the SMT solver is also lower than in the original SMT-
based approach (e.g., P4–P5, and P17). In particular, there are 3200 UKD type nodes in
P17, which are refined into NPM type by our new inference rules (cf. Fig. 5), and thus
avoid the more expensive SMT calls.

To sum up, results of our experiments show that: SCInfer is fast in obtaining proofs
in perfectly-masked programs, while retaining the ability to detect real leaks in not-
perfectly-masked programs, and is scalable for handling realistic applications.

5.3 Detailed Statistics

Table 3 shows the more detailed statistics of our approach. Specifically, Columns 2–5
show the number of nodes in each distribution type deduced by our method. Column
6 shows the number of nodes actually checked by SMT, together with the time shown
in Column 9. Column 7 shows the time spent on computing the semd function, which
solves the SAT problem. Column 8 shows the time spent on computing the don’t care
variables. The last column shows the total time taken by SCInfer.

172 J. Zhang et al.

Table 3. Detailed statistics of our new method.

Name SCInfer

Nodes Time

RUD SID CST NPM SMT semd Don’t care SMT Total

P1 16 0 0 16 16 ≈0 s ≈0 s 0.39 s 0.39 s

P2 16 0 0 8 8 0.27 s 0.14 s 0.16 s 0.57 s

P3 6 0 0 0 0 ≈0 s ≈0 s ≈0 s ≈0 s
P4 6 0 0 0 0 ≈0 s ≈0 s ≈0 s 0.06 s

P5 6 2 0 0 2 0.08 s 0.05 s 0.05 s 0.25 s

P6 4 3 0 2 2 0.05 s 0.07 s 0.04 s 0.16 s

P7 5 5 0 1 1 0.14 s 0.09 s 0.03 s 0.26 s

P8 11 4 0 3 3 0.14 s 0.09 s 0.06 s 0.29 s

P9 12 4 0 2 2 0.13 s 0.07 s 0.03 s 0.23 s

P10 20 6 1 1 2 0.15 s 0.14 s 0.05 s 0.34 s

P11 19 7 1 1 3 0.23 s 0.2 s 0.07 s 0.5 s

P12 190400 6400 0 0 0 ≈0 s ≈0 s ≈0 s 3.8 s

P13 185600 6400 0 4800 4800 29min 33 s 16min 5 s 1min 25 s 47min 8 s

P14 187200 6400 0 3200 3200 26min 58 s 25min 26 s 11min 53 s 53min 40 s

P15 188800 8000 0 1600 3200 33min 30 s 33min 55 s 1min 35 s 69min 6 s

P16 185600 6400 0 4800 4800 26min 41 s 32min 55 s 1min 32 s 61min 15 s

P17 185600 1600 0 17600 12800 33min 25 s 83min 59 s 3min 57 s 121min 28 s

Results in Table 3 indicate that most of the DDG nodes in these benchmark pro-
grams are either RUD or SID, and almost all of them can be quickly deduced by our type
system. It explains why our new method is more efficient than the original SMT-based
approach. Indeed, the original SMT-based approach spent a large amount of time on
the static analysis part, which does code partitioning and applies the heuristic rules (cf.
Sect. 4.1), whereas our method spent more time on computing the semd function.

Column 4 shows that, at least in these benchmark programs, Boolean constants are
rare. Columns 5–6 show that, if our refined type system fails to prove perfect masking,
it is usually not perfectly masked. Columns 7–9 show that, in our integrated method,
most of the time is actually used to compute semd and don’t care variables (SAT), while
the time taken by the SMT solver to conduct model counting (SAT#) is relatively small.

6 Related Work

Many masking countermeasures [15,17,34,37,41,43,46,48,50–52] have been pub-
lished over the years: although they differ in adversary models, cryptographic algo-
rithms and compactness, a common problem is the lack of efficient tools to formally
prove their correctness [21,22]. Our work aims to bridge the gap. It differs from
simulation-based techniques [3,33,53] which aim to detect leaks only as opposed to
prove their absence. It also differs from techniques designed for other types of side

SCInfer: Refinement-Based Verification of Software Countermeasures 173

channels such as timing [2,38], fault [12,29] and cache [24,35,40], or computing secu-
rity bounds for probabilistic countermeasures against remote attacks [45].

Although some verification tools have been developed for this application [6,7,10,
13,14,20,26,27,47], they are either fast but inaccurate (e.g., type-inference techniques)
or accurate but slow (e.g., model-counting techniques). For example, Bayrak et al. [10]
developed a leak detector that checks if a computation result is logically dependent of
the secret and, at the same time, logically independent of any random variable. It is
fast but not accurate in that many leaky nodes could be incorrectly proved [26,27]. In
contrast, the model-counting based method proposed by Eldib et al. [26–28] is accurate,
but also significantly less scalable because the size of logical formulas they need to
build are exponential in the number of random variables. Moreover, for higher-order
masking, their method is still not complete.

Our gradual refinement of a set of semantic type inference rules were inspired by
recent work on proving probabilistic non-interference [6,47], which exploit the unique
characteristics of invertible operations. Similar ideas were explored in [7,14,20] as
well. However, these prior techniques differ significantly from our method because
their type-inference rules are syntactic and fixed, whereas ours are semantic and refined
based on SMT solver based analysis (SAT and SAT#). In terms of accuracy, numerous
unknowns occurred in the experimental results of [47] and two obviously perfect mask-
ing cases were not proved in [6]. Finally, although higher-order masking were addressed
by prior techniques [13], they were limited to linear operations, whereas our method can
handle both first-order and higher-order masking with non-linear operations.

An alternative way to address the model-counting problem [4,18,19,32] is to use
satisfiability modulo counting, which is a generalization of the satisfiability problem of
SMT extended with counting constraints [31]. Toward this end, Fredrikson and Jha [31]
have developed an efficient decision procedure for linear integer arithmetic (LIA) based
on Barvinok’s algorithm [8] and also applied their approach to differential privacy.

Another related line of research is automatically synthesizing countermeasures [1,
7,9,16,25,44,54] as opposed to verifying them. While methods in [1,7,9,44] rely on
compiler-like pattern matching, the ones in [16,25,54] use inductive program synthesis
based on the SMT approach. These emerging techniques, however, are orthogonal to our
work reported in this paper. It would be interesting to investigate whether our approach
could aid in the synthesis of masking countermeasures.

7 Conclusions and Future Work

We have presented a refinement based method for proving that a piece of crypto-
graphic software code is free of power side-channel leaks. Our method relies on a set of
semantic inference rules to reason about distribution types of intermediate computation
results, coupled with an SMT solver based procedure for gradually refining these types
to increase accuracy. We have implemented our method and demonstrated its efficiency
and effectiveness on cryptographic benchmarks. Our results show that it outperforms
state-of-the-art techniques in terms of both efficiency and accuracy.

For future work, we plan to evaluate our type inference systems for higher-order
masking, extend it to handle integer programs as opposed to bit-blasting them to

174 J. Zhang et al.

Boolean programs, e.g., using satisfiability modulo counting [31], and investigate the
synthesis of masking countermeasures based on our new verification method.

References

1. Agosta, G., Barenghi, A., Pelosi, G.: A code morphing methodology to automate power
analysis countermeasures. In: ACM/IEEE Design Automation Conference, pp. 77–82 (2012)

2. Almeida, J.B., Barbosa, M., Barthe, G., Dupressoir, F., Emmi, M.: Verifying constant-time
implementations. In: USENIX Security Symposium, pp. 53–70 (2016)

3. Arribas, V., Nikova, S., Rijmen, V.: VerMI: verification tool for masked implementations.
IACR Cryptology ePrint Archive, p. 1227 (2017)

4. Aydin, A., Bang, L., Bultan, T.: Automata-based model counting for string constraints. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 255–272. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_15

5. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy
engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS
2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-16763-3_5

6. Barthe, G., et al.: Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5_18

7. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y., Zucchini, R.:
Strong non-interference and type-directed higher-order masking. In: ACM Conference on
Computer and Communications Security, pp. 116–129 (2016)

8. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when
the dimension is fixed. Math. Oper. Res. 19(4), 769–779 (1994)

9. Bayrak, A.G., Regazzoni, F., Brisk, P., Standaert, F.-X., Ienne, P.: A first step towards auto-
matic application of power analysis countermeasures. In: ACM/IEEE Design Automation
Conference, pp. 230–235 (2011)

10. Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: automated verification of software
power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol.
8086, pp. 293–310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-
1_17

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak implementation
overview (2013). https://keccak.team/files/Keccak-implementation-3.2.pdf

12. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski,
B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0052259

13. Bisi, E., Melzani, F., Zaccaria, V.: Symbolic analysis of higher-order side channel counter-
measures. IEEE Trans. Comput. 66(6), 1099–1105 (2017)

14. Bloem, R., Gross, H., Iusupov, R., Konighofer, B., Mangard, S., Winter, J.: Formal verifi-
cation of masked hardware implementations in the presence of glitches. IACR Cryptology
ePrint Archive, p. 897 (2017)

15. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30564-4_5

16. Blot, A., Yamamoto, M., Terauchi, T.: Compositional synthesis of leakage resilient programs.
In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 277–297. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_13

https://doi.org/10.1007/978-3-319-21690-4_15
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-642-40349-1_17
https://doi.org/10.1007/978-3-642-40349-1_17
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/978-3-540-30564-4_5
https://doi.org/10.1007/978-3-662-54455-6_13

SCInfer: Refinement-Based Verification of Software Countermeasures 175

17. Canright, D., Batina, L.: A very compact “Perfectly Masked” S-box for AES. In: Bellovin,
S.M., Gennaro, R., Keromytis, A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 446–
459. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68914-0_27

18. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: Distribution-aware
sampling and weighted model counting for SAT. In: AAAI Conference on Artificial Intelli-
gence, pp. 1722–1730 (2014)

19. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 200–216. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40627-0_18

20. Coron, J.-S.: Formal verification of side-channel countermeasures via elementary circuit
transformations. IACR Cryptology ePrint Archive, p. 879 (2017)

21. Coron, J.-S., Prouff, E., Rivain, M.: Side channel cryptanalysis of a higher order masking
scheme. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 28–44.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_3

22. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security and mask
refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-43933-3_21

23. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78800-3_24

24. Doychev, G., Feld, D., Köpf, B., Mauborgne, L., Reineke, J.: CacheAudit: a tool for the static
analysis of cache side channels. In: USENIX Security Symposium, pp. 431–446 (2013)

25. Eldib, H., Wang, C.: Synthesis of masking countermeasures against side channel attacks.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 114–130. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08867-9_8

26. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermeasures against
side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24(2), 11 (2014)

27. Eldib, H., Wang, C., Schaumont, P.: SMT-based verification of software countermeasures
against side-channel attacks. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol.
8413, pp. 62–77. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-
8_5

28. Eldib, H., Wang, C., Taha, M., Schaumont, P.: QMS: evaluating the side-channel resistance
of masked software from source code. In: ACM/IEEE Design Automation Conference, vol.
209, pp. 1–6 (2014)

29. Eldib, H., Wu, M., Wang, C.: Synthesis of fault-attack countermeasures for cryptographic
circuits. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 343–363.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_19

30. Clavier, C., et al.: Practical improvements of side-channel attacks on AES: feedback from
the 2nd DPA contest. J. Cryptogr. Eng. 4(4), 259–274 (2014)

31. Fredrikson, M., Jha, S.: Satisfiability modulo counting: a new approach for analyzing pri-
vacy properties. In: ACM/IEEE Symposium on Logic in Computer Science, pp. 42:1–42:10
(2014)

32. Fremont, D.J., Rabe, M.N., Seshia, S.A.: Maximum model counting. In: AAAI Conference
on Artificial Intelligence, pp. 3885–3892 (2017)

33. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel resistance
validation. In: NIST Non-invasive Attack Testing Workshop (2011)

34. Goubin, L.: A sound method for switching between boolean and arithmetic masking. In:
Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 3–15. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_2

https://doi.org/10.1007/978-3-540-68914-0_27
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-3-540-74735-2_3
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_8
https://doi.org/10.1007/978-3-642-54862-8_5
https://doi.org/10.1007/978-3-642-54862-8_5
https://doi.org/10.1007/978-3-319-41540-6_19
https://doi.org/10.1007/3-540-44709-1_2

176 J. Zhang et al.

35. Grabher, P., Großschädl, J., Page, D.: Cryptographic side-channels from low-power cache
memory. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887, pp.
170–184. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77272-9_11

36. Hachtel, G.D., Somenzi, F.: Logic Synthesis and Verification Algorithms. Kluwer (1996)
37. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks.

In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45146-4_27

38. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Hei-
delberg (1996). https://doi.org/10.1007/3-540-68697-5_9

39. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999.
LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48405-1_25

40. Köpf, B., Mauborgne, L., Ochoa, M.: Automatic quantification of cache side-channels. In:
Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 564–580. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_40

41. Messerges, T.S.: Securing the AES finalists against power analysis attacks. In: Goos, G.,
Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 150–
164. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44706-7_11

42. Moradi, A., Barenghi, A., Kasper, T., Paar, C.: On the vulnerability of FPGA bitstream
encryption against power analysis attacks: extracting keys from xilinx Virtex-II FPGAs. In:
ACM Conference on Computer and Communications Security, pp. 111–124 (2011)

43. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very com-
pact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20465-4_6

44. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler assisted masking. In: Prouff, E.,
Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58–75. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8_4

45. Ochoa, M., Banescu, S., Disenfeld, C., Barthe, G., Ganesh, V.: Reasoning about probabilistic
defense mechanisms against remote attacks. In: IEEE European Symposium on Security and
Privacy, EuroS&P, pp. 499–513 (2017)

46. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis resistant
description of the AES S-Box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol.
3557, pp. 413–423. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760_28

47. El Ouahma, I.B., Meunier, Q., Heydemann, K., Encrenaz, E.: Symbolic approach for side-
channel resistance analysis of masked assembly codes. In: Security Proofs for Embedded
Systems (2017)

48. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal security proof. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 142–159.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_9

49. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and counter-
measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140,
pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45418-7_17

50. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating masking
schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 764–
783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_37

51. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard, S., Stan-
daert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15031-9_28

https://doi.org/10.1007/978-3-540-77272-9_11
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/3-540-44706-7_11
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/978-3-642-20465-4_6
https://doi.org/10.1007/978-3-642-33027-8_4
https://doi.org/10.1007/11502760_28
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-642-15031-9_28

SCInfer: Refinement-Based Verification of Software Countermeasures 177

52. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.) CT-RSA
2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006). https://doi.org/10.1007/
11605805_14

53. Standaert, F.-X.: How (not) to use welch’s t-test in side-channel security evaluations. IACR
Cryptology ePrint Archive 2017:138 (2017)

54. Wang, C., Schaumont, P.: Security by compilation: an automated approach to comprehensive
side-channel resistance. SIGLOG News 4(2), 76–89 (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, provide a link to the Creative Commons license
and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder.

https://doi.org/10.1007/11605805_14
https://doi.org/10.1007/11605805_14
http://creativecommons.org/licenses/by/4.0/

	SCINFER: Refinement-Based Verification of Software Countermeasures Against Side-Channel Attacks
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Boolean Programs
	2.2 Side-Channel Attacks and Masking

	3 The Semantic Type Inference System
	3.1 The Type System
	3.2 Checking Semantic Independence
	3.3 Verifying Higher-Order Masking

	4 The Gradual Refinement Approach
	4.1 SMT-Based Approach
	4.2 Feeding SMT-Based Analysis Results Back to Type System
	4.3 The Overall Algorithm

	5 Experiments
	5.1 Benchmarks
	5.2 Experimental Results
	5.3 Detailed Statistics

	6 Related Work
	7 Conclusions and Future Work
	References

