Skip to main content

An Image-Based Inertial Impact Test for the High Strain Rate Properties of Brittle Materials

  • Conference paper
  • First Online:
  • 1210 Accesses

Abstract

Testing ceramics at high strain rates presents many experimental difficulties due to the brittle nature of the material being tested. When using a split Hopkinson pressure bar (SHPB) for high strain rate testing, adequate time is required for stress wave effects to damp out. For brittle materials, with small strains to failure, it is difficult to satisfy this constraint. Thus, most available high strain rate data for ceramics focuses on using the SHPB for strength testing in compression. Due to the limitations of the SHPB technique, there is minimal data on the stiffness and tensile strength of ceramics at high strain rates. Recently, a new image-based inertial impact (IBII) test method has shown promise for analysing the high strain rate behaviour of brittle materials. This test method uses a reflected compressive stress wave to generate tensile stress and failure in an impacted specimen. Throughout the propagation of the stress wave, full-field displacement measurements are taken. Strain fields and acceleration fields are derived from the displacement fields. The acceleration fields are then used to reconstruct stress information and identify the material properties. The aim of this study is to apply IBII test methodology to analyse the stiffness and strength of ceramics at high strain rates. Preliminary results have shown that it was possible to use the IBII test method to identify the elastic modulus and strength of tungsten carbide at strain rates on the order of 1000/s. For a tungsten carbide with 13% cobalt binder the elastic modulus was identified as 520 GPa and the tensile strength was 1400 MPa at nominal strain rate of 1000/s. Further tests are planned on several different grades of tungsten carbide and other ceramics including boron carbide and sapphire.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mandel, K., Radajewski, M., Krüger, L.: Strain-rate dependence of the compressive strength of WC–Co hard metals. Mater. Sci. Eng. A. 612, 115–122 (2014)

    Article  Google Scholar 

  2. Swab, J.J., Meredith, C.S., Casem, D.T., Gamble, W.R.: Static and dynamic compression strength of hot-pressed boron carbide using a dumbbell-shaped specimen. J. Mater. Sci. 52, 10073–10084 (2017)

    Article  Google Scholar 

  3. Pierron, F., Forquin, P.: Ultra-High-Speed full-field deformation measurements on concrete spalling specimens and stiffness identification with the virtual fields method. Strain. 48, 388–405 (2012)

    Article  Google Scholar 

  4. Fletcher, L., Van-Blitterswyk, J., Pierron, F.: A novel image-based inertial impact (IBII) test for the transverse properties of composites at high strain rates. J. Dyna. Behav. Mat. (2018). Under Review

    Google Scholar 

  5. Grédiac, M., Sur, F., Blaysat, B.: The grid method for in-plane displacement and strain measurement: a review and analysis. Strain. 52, 205–243 (2016)

    Article  Google Scholar 

  6. Getting, I.C., Chen, G., Brown, J.A.: The strength and rheology of commercial tungsten carbide cermets used in high-pressure apparatus. Pure Appl. Geophys. 141, 545–577 (1993)

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Dr. Leslie Lamberson from Drexel University for providing the samples and for useful discussions about the material. Funding from EPSRC, grant EP/L026910/1, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lloyd Fletcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fletcher, L., Pierron, F. (2019). An Image-Based Inertial Impact Test for the High Strain Rate Properties of Brittle Materials. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics