Skip to main content

Polymers for Structure Design of Dairy Foods

  • Chapter
  • First Online:

Abstract

Dairy foods ranging from liquids, semi-solids to solids are considered as complex viscoelastic materials. Maintaining the physical stability over the shelf life and delivering superior mouthfeel of foods after series of treatments have always been challenging for the dairy industry. During the manufacturing process, both high shear stress and temperature changing history can significantly affect the macro- and microstructure of dairy food systems. Therefore, their physical stability and sensory attributes are altered as consequences. Food polymers as stabilizer and texturizer are used in different dairy systems for eliminating negative impacts of intensive processing treatments and for manipulating texture for meeting the specific sensory preference for a targeted group of consumers. As kinetically metastable systems, the optimum structure of dairy foods may be engineered by following a universal two steps principle: (1) Apply the proper mix of food polymers in the dairy food formulation; (2) Process the formula with dedicated parameters and procedures. Although the principle is simple, the implementation is complicated. Such existence of challenge is due to the detailed interaction mechanisms between non-dairy polymers and dairy components in various physicochemical environments are not entirely understood. In this chapter, the nondairy polymers induced destabilization/stabilization of dairy systems are explained, the technical challenges of stabilization of dairy systems are discussed. It focuses on three major topics regarding dairy food structure design: (1) Formulation strategy of thickening dairy matrices; (2) Formulation strategy of increasing perception of the creaminess of dairy matrices; (3) The current updates about the synergetic functionality of food polymers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acero-Lopez A, Alexander M, Corredig M (2010) Diffusing wave spectroscopy and rheological studies of rennet-induced gelation of skim milk in the presence of pectin and κ-carrageenan. Int Dairy J 20:328–335

    Article  CAS  Google Scholar 

  • Akhtar M, Stenzel J, Murray BS, Dickinson E (2005) Factors affecting the perception of creaminess of oil-in-water emulsions. Food Hydrocoll 19:521–526

    Article  CAS  Google Scholar 

  • Akhtar M, Murray BS, Dickinson E (2006) Perception of creaminess of model oil-in-water dairy emulsions: Influence of the shear-thinning nature of a viscosity-controlling hydrocolloid. Food Hydrocoll 20:839–847

    Article  CAS  Google Scholar 

  • Allen Foegeding E, Çakir E, Koç H (2010) Using dairy ingredients to alter texture of foods: implications based on oral processing considerations. Int Dairy J 20:562–570

    Article  Google Scholar 

  • Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci Technol 18:240–251

    Article  CAS  Google Scholar 

  • Antmann G, Ares G, Salvador ANA, Varela P, Fiszman SM (2011) Exploring and explaining creaminess perception: consumers’ underlying concepts. J Sens Stud 26:40–47

    Article  Google Scholar 

  • Arboleya J-C, Wilde PJ (2005) Competitive adsorption of proteins with methylcellulose and hydroxypropyl methylcellulose. Food Hydrocoll 19:485–491

    Article  CAS  Google Scholar 

  • Azarikia F, Abbasi S (2010) On the stabilization mechanism of Doogh (Iranian yoghurt drink) by gum tragacanth. Food Hydrocoll 24:358–363

    Article  CAS  Google Scholar 

  • Azegami S, Tsuboi A, Izumi T, Hirata M, Dubin PL, Wang B, Kokufuta E (1999) Formation of an intrapolymer complex from human serum albumin and poly(ethylene glycol). Langmuir 15:940–947

    Article  CAS  Google Scholar 

  • Baines ZV, Morris ER (1987) Flavour/taste perception in thickened systems: the effect of guar gum above and below c*. Food Hydrocoll 1:197–205

    Article  CAS  Google Scholar 

  • Bayarri S, González-Tomás L, Costell E (2009) Viscoelastic properties of aqueous and milk systems with carboxymethyl cellulose. Food Hydrocoll 23:441–450

    Article  CAS  Google Scholar 

  • Bayarri S, Chuliá I, Costell E (2010) Comparing λ-carrageenan and an inulin blend as fat replacers in carboxymethyl cellulose dairy desserts. Rheological and sensory aspects. Food Hydrocoll 24:578–587

    Article  CAS  Google Scholar 

  • Berry GC, Nakayasu H, Fox TG (1979) Viscosity of poly(vinyl acetate) and its concentrated solutions. J Polym Sci Polym Phys Ed 17:1825–1844

    Article  CAS  Google Scholar 

  • Bourriot S, Garnier C, Doublier J-L (1999) Phase separation, rheology and structure of micellar casein-galactomannan mixtures. Int Dairy J 9:353–357

    Article  CAS  Google Scholar 

  • Brenner T, Tuvikene R, Fang Y, Matsukawa S, Nishinari K (2015) Rheology of highly elastic iota-carrageenan/kappa-carrageenan/xanthan/konjac glucomannan gels. Food Hydrocoll 44:136–144

    Article  CAS  Google Scholar 

  • Bystrický S, Malovíková A, Sticzay T (1990) Interaction of alginates and pectins with cationic polypeptides. Carbohydr Polym 13:283–294

    Article  Google Scholar 

  • Camacho M, Martínez-Navarrete N, Chiralt A (1998) Influence of locust bean gum/λ-carrageenan mixtures on whipping and mechanical properties and stability of dairy creams. Food Res Int 31:653–658

    Article  Google Scholar 

  • Cape JN, Cook DH, Williams DR (1974) Thermodynamic considerations in co-ordination. Part XIX. In vitro studies of complexing equilibria involved in oral iron(II) therapy. J Chem Soc Dalton Trans:1849–1852

    Google Scholar 

  • Cardello AV (1994) Consumer expectations and their role in food acceptance. In: Macfie HJH, Thomson DMH (eds) Measurement of food preferences. Springer, Boston, MA

    Google Scholar 

  • Considine T, Noisuwan A, Hemar Y, Wilkinson B, Bronlund J, Kasapis S (2011) Rheological investigations of the interactions between starch and milk proteins in model dairy systems: a review. Food Hydrocoll 25:2008–2017

    Article  CAS  Google Scholar 

  • Cook DJ, Hollowood TA, Linforth RST, Taylor AJ (2002) Perception of taste intensity in solutions of random-coil polysaccharides above and below c∗. Food Qual Prefer 13:473–480

    Article  Google Scholar 

  • Corredig M, Sharafbafi N, Kristo E (2011) Polysaccharide–protein interactions in dairy matrices, control and design of structures. Food Hydrocoll 25:1833–1841

    Article  CAS  Google Scholar 

  • Dai S, Jiang F, Shah NP, Corke H (2017) Stability and phase behavior of konjac glucomannan-milk systems. Food Hydrocolloids 73:30–40

    Article  CAS  Google Scholar 

  • Dalgleish DG (1997) Structure-function relationships of caseins. In: Damodaran S (ed) Food proteins and their applications. Taylor & Francis

    Google Scholar 

  • Dalgleish DG, Morris ER (1988) Interactions between carrageenans and casein micelles: electrophoretic and hydrodynamic properties of the particles. Food Hydrocoll 2:311–320

    Article  CAS  Google Scholar 

  • Damodaran S, Parkin KL, Fennema OR (2007) Fennema’s food chemistry, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Daoud M, Cotton JP, Farnoux B, Jannink G, Sarma G, Benoit H, Duplessix C, Picot C, de Gennes PG (1975) Solutions of flexible polymers. Neutron experiments and interpretation. Macromolecules 8:804–818

    Article  CAS  Google Scholar 

  • De Bont PW, van Kempen GMP, Vreeker R (2002) Phase separation in milk protein and amylopectin mixtures. Food Hydrocoll 16:127–138

    Article  Google Scholar 

  • Dickinson E (1998) Stability and rheological implications of electrostatic milk protein–polysaccharide interactions. Trends Food Sci Technol 9:347–354

    Article  CAS  Google Scholar 

  • Dolz M, Hernández MJ, Delegido J, Alfaro MC, Muñoz J (2007) Influence of xanthan gum and locust bean gum upon flow and thixotropic behaviour of food emulsions containing modified starch. J Food Eng 81:179–186

    Article  Google Scholar 

  • Doublier JL, Garnier C, Renard D, Sanchez C (2000) Protein–polysaccharide interactions. Curr Opin Colloid Interface Sci 5:202–214

    Article  CAS  Google Scholar 

  • Drake B (1989) Sensory textural/rheological properties—a polyglot list. J Texture Stud 20:1–27

    Article  Google Scholar 

  • Dresselhuis DM, de Hoog EHA, Cohen Stuart MA, Van Aken GA (2008) Application of oral tissue in tribological measurements in an emulsion perception context. Food Hydrocoll 22:323–335

    Article  CAS  Google Scholar 

  • Drohan DD, Tziboula A, Mcnulty D, Horne DS (1997) Milk protein-carrageenan interactions. Food Hydrocoll 11:101–107

    Article  CAS  Google Scholar 

  • EFSA (2017a) Food additives [Online]. European Food Safety Authority. http://www.efsa.europa.eu/en/topics/topic/food-additives

  • EFSA (2017b) Food additive re-evaluations [Online]. European Food Safety Authority. http://www.efsa.europa.eu/en/topics/topic/food-additive-re-evaluations Accessed 26 Dec 2017

  • Elmore JR, Heymann H, Johnson J, Hewett JE (1999) Preference mapping: relating acceptance of “creaminess” to a descriptive sensory map of a semi-solid. Food Qual Prefer 10:465–475

    Article  Google Scholar 

  • El-Sayed E, Abd El-Gawad I, Murad H, Salah S (2002) Utilization of laboratory-produced xanthan gum in the manufacture of yogurt and soy yogurt. Eur Food Res Technol 215:298–304

    Article  CAS  Google Scholar 

  • Everett DW, Mcleod RE (2005) Interactions of polysaccharide stabilisers with casein aggregates in stirred skim-milk yoghurt. Int Dairy J 15:1175–1183

    Article  CAS  Google Scholar 

  • FDA (2017) Food Additives Status List [Online]. U.S. Food and Drug Administration, Spring, MD. https://www.fda.gov/Food/IngredientsPackagingLabeling/FoodAdditivesIngredients/ucm091048.htm#collapse2014. Accessed 26 Dec 2017

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Foegeding EA (2007) Rheology and sensory texture of biopolymer gels. Curr Opin Colloid Interface Sci 12:242–250

    Article  CAS  Google Scholar 

  • Folkenberg DM, Martens M (2003) Sensory properties of low fat yoghurts. Part B: hedonic evaluations of plain yoghurts by consumers correlated to fat content, sensory profile and consumer attitudes. Milchwissenschaft 58:154–157

    CAS  Google Scholar 

  • Frøst MB, Janhøj T (2007) Understanding creaminess. Int Dairy J 17:1298–1311

    Article  CAS  Google Scholar 

  • Gancz K, Alexander M, Corredig M (2006) In situ study of flocculation of whey protein-stabilized emulsions caused by addition of high methoxyl pectin. Food Hydrocoll 20:293–298

    Article  CAS  Google Scholar 

  • Gu YS, Decker EA, Mcclements DJ (2005) Influence of pH and carrageenan type on properties of β-lactoglobulin stabilized oil-in-water emulsions. Food Hydrocoll 19:83–91

    Article  CAS  Google Scholar 

  • Gutiérrez TJ (2018) Characterization and in vitro digestibility of non-conventional starches from guinea arrowroot and La Armuña lentils as potential food sources for special diet regimens. Starch-Stärke 70(1–2). https://doi.org/10.1002/star.201700124

  • Gutiérrez TJ, González Seligra P, Medina Jaramillo C, Famá L, Goyanes S (2017) Effect of filler properties on the antioxidant response of thermoplastic starch composites. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials. Wiley-Scrivener Publisher, pp 337–370. https://doi.org/10.1002/9781119441632.ch14. ISBN: 978-1-119-22362-7

  • Hansen PMT (1993) Food hydrocolloids in the dairy industry. In: Nishinari K, Doi E (eds) Food hydrocolloids: structures, properties, and functions. Springer US, Boston, MA

    Google Scholar 

  • Hemar Y, Tamehana M, Munro PA, Singh H (2001a) Influence of xanthan gum on the formation and stability of sodium caseinate oil-in-water emulsions. Food Hydrocoll 15:513–519

    Article  CAS  Google Scholar 

  • Hemar Y, Tamehana M, Munro PA, Singh H (2001b) Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum. Food Hydrocoll 15:565–574

    Article  CAS  Google Scholar 

  • Huppertz T, Kelly AL (2006) Physical Chemistry of Milk Fat Globules. In: Fox PF, Mcsweeney PLH (eds) Advanced dairy chemistry volume 2: lipids. Springer, Boston, MA

    Google Scholar 

  • Ibanoğlu E (2002) Rheological behaviour of whey protein stabilized emulsions in the presence of gum arabic. J Food Eng 52:273–277

    Article  Google Scholar 

  • Juszczak L, Fortuna T, Kośla A (2003) Sensory and rheological properties of Polish commercial mayonnaise. Food Nahrung 47:232–235

    Article  PubMed  Google Scholar 

  • Kilcast D, Clegg S (2002) Sensory perception of creaminess and its relationship with food structure. Food Qual Prefer 13:609–623

    Article  Google Scholar 

  • Kip P, Peters B, Meyer D (2003) Improving mouthfeel and texture of stirred yoghurt by the addition of inulin [P37]. In Abstract of third NIZO dairy conference, Dynamics of texture, process & perception, NIZO, Papendal, The Netherlands

    Google Scholar 

  • Kip P, Meyer D, Jellema RH (2006) Inulins improve sensoric and textural properties of low-fat yoghurts. Int Dairy J 16:1098–1103

    Article  CAS  Google Scholar 

  • Kruif CG, Holt C (2003) Casein micelle structure, functions and interactions. In: Fox PF, Mcsweeney PLH (eds) Advanced dairy chemistry—1 proteins: Part A/Part B. Springer, Boston, MA

    Google Scholar 

  • Kumar L, Brennan MA, Mason SL, Zheng H, Brennan CS (2017) Rheological, pasting and microstructural studies of dairy protein–starch interactions and their application in extrusion-based products: a review. Starch Stärke 69:1600273

    Article  CAS  Google Scholar 

  • Kumar L, Brennan M, Zheng H, Brennan C (2018) The effects of dairy ingredients on the pasting, textural, rheological, freeze-thaw properties and swelling behaviour of oat starch. Food Chem 245:518–524

    Article  PubMed  CAS  Google Scholar 

  • Laguna L, Farrell G, Bryant M, Morina A, Sarkar A (2017) Relating rheology and tribology of commercial dairy colloids to sensory perception. Food Funct 8:563–573

    Article  PubMed  CAS  Google Scholar 

  • Langendorff V, Cuvelier G, Launay B, Parker A (1997) Gelation and flocculation of casein micelle/carrageenan mixtures. Food Hydrocoll 11:35–40

    Article  CAS  Google Scholar 

  • Langendorff V, Cuvelier G, Launay B, Michon C, Parker A, de Kruif CG (1999) Casein micelle/iota carrageenan interactions in milk: influence of temperature. Food Hydrocoll 13:211–218

    Article  CAS  Google Scholar 

  • Langendorff V, Cuvelier G, Michon C, Launay B, Parker A, de Kruif CG (2000) Effects of carrageenan type on the behaviour of carrageenan/milk mixtures. Food Hydrocoll 14:273–280

    Article  CAS  Google Scholar 

  • Le XT, Rioux L-E, Turgeon SL (2017) Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv Colloid Interf Sci 239:127–135

    Article  CAS  Google Scholar 

  • Li K, Woo MW, Patel H, Selomulya C (2017) Enhancing the stability of protein-polysaccharides emulsions via Maillard reaction for better oil encapsulation in spray-dried powders by pH adjustment. Food Hydrocoll 69:121–131

    Article  CAS  Google Scholar 

  • Lin C, Hansen P (1970) Stabilization of casein micelles by carrageenan. Macromolecules 3:269–274

    Article  CAS  Google Scholar 

  • Lizarraga MS, Piante Vicin DD, González R, Rubiolo A, Santiago LG (2006) Rheological behaviour of whey protein concentrate and λ-carrageenan aqueous mixtures. Food Hydrocoll 20:740–748

    Article  CAS  Google Scholar 

  • Lynch MG, Mulvihill DM (1994) The influence of caseins on the rheology of ι-carrageenan gels. Food Hydrocoll 8:317–329

    Article  CAS  Google Scholar 

  • Marle MEV, Ende DVD, Kruif CGD, Mellema J (1999) Steady-shear viscosity of stirred yogurts with varying ropiness. J Rheol 43:1643–1662

    Article  Google Scholar 

  • Maroziene A, de Kruif CG (2000) Interaction of pectin and casein micelles. Food Hydrocoll 14:391–394

    Article  CAS  Google Scholar 

  • Marshall VM, Rawson H (1999) Effects of exopolysaccharide-producing strains of thermophilic lactic acid bacteria on the texture of stirred yoghurt. Int J Food Sci Technol 34:137–143

    Article  CAS  Google Scholar 

  • Mcnamee BF, O’Riorda ED, O’Sullivan M (1998) Emulsification and microencapsulation properties of gum arabic. J Agric Food Chem 46:4551–4555

    Article  CAS  Google Scholar 

  • Mela DJ (1988) Sensory assessment of fat content in fluid dairy products. Appetite 10:37–44

    Article  PubMed  CAS  Google Scholar 

  • Mession JL, Assifaoui A, Lafarge C, Saurel R, Cayot P (2012) Protein aggregation induced by phase separation in a pea proteins–sodium alginate–water ternary system. Food Hydrocoll 28:333–343

    Article  CAS  Google Scholar 

  • Meyer D, Bayarri S, Tárrega A, Costell E (2011a) Inulin as texture modifier in dairy products. Food Hydrocoll 25:1881–1890

    Article  CAS  Google Scholar 

  • Meyer D, Vermulst J, Tromp RH, de Hoog EHA (2011b) The effect of inulin on tribology and sensory profiles of skimmed milk. J Texture Stud 42:387–393

    Article  Google Scholar 

  • Morris ER (1994) Rheological and organoleptic properties of food hydrocolloids. Food hydrocolloids. Springer, Boston, MA

    Google Scholar 

  • Morris ER, Cutler AN, Ross-Murphy SB, Rees DA, Price J (1981) Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr Polym 1:5–21

    Article  CAS  Google Scholar 

  • Mudgil D, Barak S, Khatkar BS (2014) Guar gum: processing, properties and food applications—a Review. J Food Sci Technol 51:409–418

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Yoshida R, Maeda H, Corredig M (2006) The stabilizing behaviour of soybean soluble polysaccharide and pectin in acidified milk beverages. Int Dairy J 16:361–369

    Article  CAS  Google Scholar 

  • Nguyen PTM, Bhandari B, Prakash S (2016) Tribological method to measure lubricating properties of dairy products. J Food Eng 168:27–34

    Article  Google Scholar 

  • Niederauer MQ, Glatz CE (1994) Model of the polyelectrolyte precipitation of genetically engineered enzymes possessing charged polypeptide tails. J Macromol Sci A 31:127–153

    Article  Google Scholar 

  • Nobuhara T, Matsumiya K, Nambu Y, Nakamura A, Fujii N, Matsumura Y (2014) Stabilization of milk protein dispersion by soybean soluble polysaccharide under acidic pH conditions. Food Hydrocoll 34:39–45

    Article  CAS  Google Scholar 

  • Oakenfull D, Glicksman M (1987) Gelling agents. CRC Crit Rev Food Sci Nutr 26:1–25

    Article  CAS  Google Scholar 

  • Paseephol T, Small DM, Sherkat F (2008) Rheology and texture of set yogurt as affected by inulin addition. J Texture Stud 39:617–634

    Article  Google Scholar 

  • Phillips GO, Williams PA (2009) Handbook of hydrocolloids. Elsevier Science, Amsterdam

    Book  Google Scholar 

  • Piron E, Tholin R (2001) Polysaccharide crosslinking, hydrogel preparation, resulting polysaccharide(s) and hydrogel(s), uses thereof. Google Patents

    Google Scholar 

  • Porcar I, Cottet H, Gareil P, Tribet C (1999) Association between protein particles and long amphiphilic polymers: effect of the polymer hydrophobicity on binding isotherms. Macromolecules 32:3922–3929

    Article  CAS  Google Scholar 

  • Rees D, Steele I, Williamson F (1969) Conformational analysis of polysaccharides. III. The relation between stereochemistry and properties of some natural polysaccharide sulfates (1). J Polym Sci Polym Symp 28(1):261–276

    Article  Google Scholar 

  • Repin N, Scanlon MG, Gary Fulcher R (2012) Phase behaviour of casein micelles and barley beta-glucan polymer molecules in dietary fibre-enriched dairy systems. J Colloid Interface Sci 377:7–12

    Article  PubMed  CAS  Google Scholar 

  • Rodd AB, Davis CR, Dunstan DE, Forrest BA, Boger DV (2000) Rheological characterisation of ‘weak gel’ carrageenan stabilised milks. Food Hydrocoll 14:445–454

    Article  CAS  Google Scholar 

  • Rohart A, Michon C (2014) Designing microstructure into xanthan gum-enriched acid milk gels. Innovative Food Sci Emerg Technol 25:53–57

    Article  CAS  Google Scholar 

  • Saha D, Bhattacharya S (2010) Hydrocolloids as thickening and gelling agents in food: a critical review. J Food Sci Technol 47:587–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schorsch C, Jones MG, Norton IT (2000) Phase behaviour of pure micellar casein/κ-carrageenan systems in milk salt ultrafiltrate. Food Hydrocoll 14:347–358

    Article  CAS  Google Scholar 

  • Shahidi F, Han XQ (1993) Encapsulation of food ingredients. Crit Rev Food Sci Nutr 33:501–547

    Article  PubMed  CAS  Google Scholar 

  • Sonne A, Busch-Stockfisch M, Weiss J, Hinrichs J (2014) Improved mapping of in-mouth creaminess of semi-solid dairy products by combining rheology, particle size, and tribology data. LWT Food Sci Technol 59:342–347

    Article  CAS  Google Scholar 

  • Spagnuolo PA, Dalgleish DG, Goff HD, Morris ER (2005) Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocoll 19:371–377

    Article  CAS  Google Scholar 

  • Suresh B, Remco T, Peter S (2006) Spinodal decomposition in a food colloid–biopolymer mixture: evidence for a linear regime. J Phys Condens Matter 18:L339

    Article  CAS  Google Scholar 

  • Syrbe A, Bauer WJ, Klostermeyer H (1998) Polymer science concepts in dairy systems—an overview of milk protein and food hydrocolloid interaction. Int Dairy J 8:179–193

    Article  CAS  Google Scholar 

  • Szczesniak AS (2002) Texture is a sensory property. Food Qual Prefer 13:215–225

    Article  Google Scholar 

  • Tarrega A, Costell E (2006) Effect of composition on the rheological behaviour and sensory properties of semisolid dairy dessert. Food Hydrocoll 20:914–922

    Article  CAS  Google Scholar 

  • Thies C (2003) MICROCAPSULES A2—caballero, benjamin. encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford

    Google Scholar 

  • Tobin JT, Fitzsimons SM, Kelly AL, Fenelon MA (2011) The effect of native and modified konjac on the physical attributes of pasteurized and UHT-treated skim milk. Int Dairy J 21:790–797

    Article  CAS  Google Scholar 

  • Tuinier R, Rieger J, de Kruif CG (2003) Depletion-induced phase separation in colloid–polymer mixtures. Adv Colloid Interf Sci 103:1–31

    Article  CAS  Google Scholar 

  • Tuorila H, Cardello AV, Lesher LL (1994) Antecedents and consequences of expectations related to fat-free and regular-fat foods. Appetite 23:247–263

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg L, van Vliet T, van der Linden E, van Boekel M, van de Velde F (2007) Breakdown properties and sensory perception of whey proteins/polysaccharide mixed gels as a function of microstructure. Food Hydrocoll 21:961–976

    Article  CAS  Google Scholar 

  • Van der Sman RGM (2015) Biopolymer gel swelling analysed with scaling laws and Flory–Rehner theory. Food Hydrocoll 48:94–101

    Article  CAS  Google Scholar 

  • Vasir JK, Tambwekar K, Garg S (2003) Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm 255:13–32

    Article  PubMed  CAS  Google Scholar 

  • Vega C, Dalgleish DG, Goff HD (2005) Effect of κ-carrageenan addition to dairy emulsions containing sodium caseinate and locust bean gum. Food Hydrocoll 19:187–195

    Article  CAS  Google Scholar 

  • Verbeken D, Thas O, Dewettinck K (2004) Textural properties of gelled dairy desserts containing κ-carrageenan and starch. Food Hydrocoll 18:817–823

    Article  CAS  Google Scholar 

  • Villegas B, Carbonell I, Costell E (2007) Inulin milk beverages: sensory differences in thickness and creaminess using R-index analysis of the ranking data. J Sens Stud 22:377–393

    Article  Google Scholar 

  • Walstra P (2006) Dairy science and technology. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

  • Walstra P, Wouters JTM, Geurts TJ (2006) Dairy science and technology. CRC/Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Wang X, Lee J, Wang Y-W, Huang Q (2007) Composition and Rheological Properties of β-Lactoglobulin/Pectin Coacervates: Effects of Salt Concentration and Initial Protein/Polysaccharide Ratio. Biomacromolecules 8:992–997

    Article  PubMed  CAS  Google Scholar 

  • Wood FW (1968) Psychophysical studies on the consistency of liquid foods. Rheology and texture of foodstuffs. Society of Chemical Industry, London

    Google Scholar 

  • Ying Q, Chu B (1987) Overlap concentration of macromolecules in solution. Macromolecules 20:362–366

    Article  CAS  Google Scholar 

  • Zaleska H, Ring SG, Tomasik P (2000) Apple pectin complexes with whey protein isolate. Food Hydrocoll 14:377–382

    Article  CAS  Google Scholar 

  • Zhao Q, Zhao M, Li J, Yang B, Su G, Cui C, Jiang Y (2009) Effect of hydroxypropyl methylcellulose on the textural and whipping properties of whipped cream. Food Hydrocoll 23:2168–2173

    Article  CAS  Google Scholar 

  • Zheng H, Jiménez-Flores R, Everett DW (2014) Lateral lipid organization of the bovine milk fat globule membrane is revealed by washing processes. Journal of Dairy Science 97(10):5964–5974

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haotian Zheng PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, H. (2018). Polymers for Structure Design of Dairy Foods. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_19

Download citation

Publish with us

Policies and ethics