Skip to main content

Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing

  • Chapter
  • First Online:

Abstract

Electrohydrodynamic processing, including electrospinning and electrospraying, is an emerging technique for the encapsulation of bioactive ingredients (e.g. omega-3, vitamins, antioxidants, probiotics) with interest for the functional food industry. This chapter presents the fundamentals of electrohydrodynamic processes for the production of nano-microstructures (fibers or capsules) loaded with bioactive compounds. Particularly, it focuses on the properties as well as electrospinning and electrospray processing of food-grade polymers. The physicochemical characteristics of the resulting nano-microencapsulates will also be discussed. Electrospun and electrospray food-grade polymers include biopolymers such as proteins (e.g. zein, gelatin, whey, casein, amaranth, soy, egg and fish protein) and polysaccharides (e.g. pullulan, dextran, chitosan, starch, alginate, cellulose, cyclodextrin, xanthan gum), as well as blends of biopolymers with biocompatible synthetic polymers (e.g. poly-vinyl alcohol).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aceituno-Medina M, Lopez-Rubio A, Mendoza S, Lagaron JM (2013a) Development of novel ultrathin structures based in amaranth (amaranthus hypochondriacus) protein isolate through electrospinning. Food Hydrocoll 31:289–298

    Article  CAS  Google Scholar 

  • Aceituno-Medina M, Mendoza S, Lagaron JM, López-Rubio A (2013b) Development and characterization of food-grade electrospun fibers from amaranth protein and pullulan blends. Food Res Int 54:667–674

    Article  CAS  Google Scholar 

  • Aceituno-Medina M, Mendoza S, Lagaron JM, Lopez-Rubio A (2015a) Photoprotection of folic acid upon encapsulation in food-grade amaranth (Amaranthus hypochondriacus L.) protein isolate—Pullulan electrospun fibers. LWT Food Sci Technol 62:970–975

    Article  CAS  Google Scholar 

  • Aceituno-Medina M, Mendoza S, Rodríguez BA et al (2015b) Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. J Funct Foods 12:332–341

    Article  CAS  Google Scholar 

  • Alborzi S, Lim LT, Kakuda Y (2010) Electrospinning of sodium alginate-pectin ultrafine fibers. J Food Sci 75:100–107

    Article  CAS  Google Scholar 

  • Alborzi S, Lim L-T, Kakuda Y (2012) Encapsulation of folic acid and its stability in sodium alginate-pectin-poly(ethylene oxide) electrospun fibres. J Microencapsul 30:1–8

    Google Scholar 

  • Alborzi S, Lim L-T, Kakuda Y (2014) Release of folic acid from sodium alginate-pectin-poly(ethylene oxide) electrospun fibers under in vitro conditions. LWT Food Sci Technol 59:383–388

    Article  CAS  Google Scholar 

  • Arya N, Chakraborty S, Dube N, Katti DS (2009) Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. J Biomed Mater Res B Appl Biomater 88B:17–31

    Article  CAS  Google Scholar 

  • Augustin MA, Oliver CM (2014) Use of milk proteins for encapsulation of food ingredients. In: Gaonkar AG, Vasisht N, Khare AR (eds) Microencapsulation in the food industry. Academic Press, San Diego, pp 211–226

    Google Scholar 

  • Austero MS, Donius AE, Wegst UGK, Schauer CL (2012) New crosslinkers for electrospun chitosan fibre mats. I. Chemical analysis. J R Soc Interface 9:2551–2562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balan V, Verestiuc L (2014) Strategies to improve chitosan hemocompatibility: a review. Eur Polym J 53:171–188

    Article  CAS  Google Scholar 

  • Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  PubMed  CAS  Google Scholar 

  • Bhattarai N, Edmondson D, Veiseh O et al (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184

    Article  PubMed  CAS  Google Scholar 

  • Blanco-Padilla A, López-Rubio A, Loarca-Piña G, Gómez-Mascaraque LG, Mendoza S (2015) Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers. LWT Food Sci Technol 63:1137–1144

    Article  CAS  Google Scholar 

  • Bocanegra R, Gaonkar AG, Barrero A, Loscertales IG, Pechack D, Marquez M (2005) Production of cocoa butter microcapsules using an electrospray process. J Food Sci 70:492–497

    Article  Google Scholar 

  • Bonino CA, Krebs MD, Saquing CD et al (2011) Electrospinning alginate-based nanofibers: from blends to crosslinked low molecular weight alginate-only systems. Carbohydr Polym 85:111–119

    Article  CAS  Google Scholar 

  • Celebioglu A, Uyar T (2010) Cyclodextrin nanofibers by electrospinning. Chem Commun (Camb) 46:6903–6905

    Article  CAS  Google Scholar 

  • Celebioglu A, Uyar T (2011) Electrospinning of polymer-free nanofibers from cyclodextrin inclusion complexes. Langmuir 27:6218–6226

    Article  PubMed  CAS  Google Scholar 

  • Celebioglu A, Uyar T (2013) Electrospinning of nanofibers from non-polymeric systems: electrospun nanofibers from native cyclodextrins. J Colloid Interface Sci 404:1–7

    Article  PubMed  CAS  Google Scholar 

  • Celebioglu A, Kayaci-Senirmak F, Kusku Sİ et al (2016) Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property. Food Funct 7:3141–3153

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Mo X, Qing F (2007) Electrospinning of collagen-chitosan complex. Mater Lett 61:3490–3494

    Article  CAS  Google Scholar 

  • Chronakis IS (2005) Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process: a review. J Mater Process Technol 167:283–293

    Article  CAS  Google Scholar 

  • Chronakis IS (2010) Nano-microfibers by electrospinning technology: processing, properties and applications. In: Quin Y (ed) Micromanufacturing engineering and technology. Elsevier, Oxford, pp 264–286

    Chapter  Google Scholar 

  • Deng L, Kang X, Liu Y, Feng F, Zhang H (2017) Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin. Food Chem 231:70–77

    Article  PubMed  CAS  Google Scholar 

  • Desai K, Kit K, Li J et al (2009) Nanofibrous chitosan non-wovens for filtration applications. Polymer (Guildf) 50:3661–3669

    Article  CAS  Google Scholar 

  • Devarayan K, Hanaoka H, Hachisu M et al (2013) Direct electrospinning of cellulose-chitosan composite nanofiber. Macromol Mater Eng 298:1059–1064

    CAS  Google Scholar 

  • Drosou C, Krokida M, Biliaderis CG (2018) Composite pullulan-whey protein nanofibers made by electrospinning: Impact of process parameters on fiber morphology and physical properties. Food Hydrocoll 77:726–735

    Article  CAS  Google Scholar 

  • El-Salam MHA, El-Shibiny S (2016) Natural biopolymers as. Elsevier

    Google Scholar 

  • Faria S, De Oliveira Petkowicz CL, De Morais SAL et al (2011) Characterization of xanthan gum produced from sugar cane broth. Carbohydr Polym 86:469–476

    Article  CAS  Google Scholar 

  • Fathi M, Martín Á, McClements DJ (2014) Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends Food Sci Technol 39:18–39

    Article  CAS  Google Scholar 

  • Fernandez A, Torres-Giner S, Lagaron JM (2009) Novel route to stabilization of bioactive antioxidants by encapsulation in electrospun fibers of zein prolamine. Food Hydrocoll 23:1427–1432

    Article  CAS  Google Scholar 

  • Frey MW (2008) Electrospinning cellulose and cellulose derivatives. Polym Rev 48:378–391

    Article  CAS  Google Scholar 

  • Fu R, Li C, Yu C et al (2015) A novel electrospun membrane based on moxifloxacin hydrochloride/poly(vinyl alcohol)/sodium alginate for antibacterial wound dressings in practical application. Drug Deliv 7544:1–12

    Google Scholar 

  • Fuenmayor CA, Mascheroni E, Cosio MS et al (2013) Encapsulation of R-(+)-limonene in edible electrospun nanofibers. Chem Eng Trans 32:1771–1776

    Google Scholar 

  • García-Moreno PJ, Stephansen K, Van Der Kruijs J, Guadix A, Guadix EM, Chronakis IS, Jacobsen C (2016) Encapsulation of fish oil in nanofibers by emulsion electrospinning: physical characterization and oxidative stability. J Food Eng 183:39–49

    Article  CAS  Google Scholar 

  • García-Moreno PJ, Özdemir N, Stephansen K, Mateiu RV, Echegoyen Y, Lagaron JM, Chronakis IS, Jacobsen C (2017a) Development of carbohydrate-based nano-microstructures loaded with fish oil by using electrohydrodynamic processing. Food Hydrocoll 69:273–285

    Article  CAS  Google Scholar 

  • García-Moreno PJ, Damberg C, Chronakis IS, Jacobsen C (2017b) Oxidative stability of pullulan electrospun fibers containing fish oil: effect of oil content and natural antioxidants addition. Eur J Lipid Sci Technol 1600305:1–11

    Google Scholar 

  • García-Moreno PJ, Pelayo A, Yu S, Busolo M, Lagaron JM, Chronakis IS, Jacobsen C (2018) Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: combined use of whey protein and carbohydrates as wall materials. Food Hydrocoll 231:42–53

    Google Scholar 

  • Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432

    Article  PubMed  CAS  Google Scholar 

  • Ghorani B, Tucker N (2015) Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology. Food Hydrocoll 51:227–240

    Article  CAS  Google Scholar 

  • Gómez-Estaca J, Gavara R, Hernández-Muñoz P (2015) Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Sci Emerg Technol 29:302–307

    Article  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Lopez-Rubio A (2016) Protein-based emulsion electrosprayed micro- and submicroparticles for the encapsulation and stabilization of thermosensitive hydrophobic bioactives. J Colloid Interface Sci 465:259–270

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Lagarón JM, López-Rubio A (2015) Electrosprayed gelatin submicrocapsules as edible carriers for the encapsulation of polyphenols of interest in functional foods. Food Hydrocoll 49:42–52

    Article  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Morfin RC, Pérez-Masiá R, Sanchez G, Lopez-Rubio A (2016a) Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro digestion. LWT Food Sci Technol 69:438–446

    Article  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Sanchez G, López-Rubio A (2016b) Impact of molecular weight on the formation of electrosprayed chitosan microcapsules as delivery vehicles for bioactive compounds. Carbohydr Polym 150:121–130

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Perez-Masia R, Gonzalez-Barrio R, Jesus Periago M, Lopez-Rubio A (2017a) Potential of microencapsulation through emulsion-electrospraying to improve the bioaccesibility of beta-carotene. Food Hydrocoll 73:1–12

    Article  CAS  Google Scholar 

  • Gómez-Mascaraque LG, Hernández-Rojas M, Tarancón P, Tenon M, Feuillére N et al (2017b) Impact of microencapsulation within electrosprayed proteins on the formulation of green tea extract—enriched biscuits. LWT Food Sci Technol 81:77–86

    Article  CAS  Google Scholar 

  • Gudjónsdóttir M, Gacutan MD, Mendes AC et al (2015) Effects of electrospun chitosan wrapping for dry-ageing of beef, as studied by microbiological, physicochemical and low-field nuclear magnetic resonance analysis. Food Chem 184:167–175

    Article  PubMed  CAS  Google Scholar 

  • Guo C, Zhou L, Lv J (2013) Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym Polym Compos 21:449–456

    Article  CAS  Google Scholar 

  • Gutiérrez TJ (2017) Chitosan applications for the food industry. In: Ahmed S, Ikram S (eds) Chitosan: derivatives, composites and applications. Wiley-Scrivener Publisher, pp 185–232. 232. https://doi.org/10.1002/9781119364849.ch8. ISBN: 978-1-119-36350-7

  • Gutiérrez TJ (2018) Processing nano- and microcapsules for industrial applications. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, pp. 989-1011. https://doi.org/10.1016/B978-0-12-813351-4.00057-2. ISBN: 978-0-12-813351-4

  • Gutiérrez TJ, Álvarez K (2017) Biopolymers as microencapsulation materials in the food industry. In: Masuelli M, Renard D (eds) Advances in physicochemical properties of biopolymers: Part 2. Bentham Science Publishers, pp 296–322. https://doi.org/10.2174/9781681085449117010009. ISBN: 978-1-68108-545-6. eISBN: 978-1-68108-544-9

  • Gutiérrez TJ, Alvarez VA (2017) Cellulosic materials as natural fillers in starch-containing matrix-based films: a review. Polym Bull 74(6):2401–2430. https://doi.org/10.1007/s00289-016-1814-0

    Article  CAS  Google Scholar 

  • Gutiérrez TJ, Guarás MP, Alvarez VA (2017) Reactive extrusion for the production of starch-based biopackaging. In: Masuelli MA (ed) Biopackaging. CRC Press, Taylor & Francis Group, Miami, pp 287–315. ISBN: 978-1-4987-4968-8

    Google Scholar 

  • Hani NM, Torkamani AE, Azarian MH, Mahmood KWA, Ngalim SH (2017) Characterisation of electrospun gelatine nanofibres encapsulated with Moringa oleifera bioactive extract. J Sci Food Agric 97:3348–3358

    Article  PubMed  CAS  Google Scholar 

  • Hu X, Liu S, Zhou G et al (2014) Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release 185:12–21

    Article  PubMed  CAS  Google Scholar 

  • Huang XJ, Chen PC, Huang F et al (2011) Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym 70:95–100

    Article  CAS  Google Scholar 

  • Ignatova M, Manolova N, Markova N, Rashkov I (2009) Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9:102–111

    Article  PubMed  CAS  Google Scholar 

  • Ignatova M, Manolova N, Rashkov I (2013) Electrospun antibacterial chitosan-based fibers. Macromol Biosci 13:860–872

    Article  PubMed  CAS  Google Scholar 

  • Jacobs IC (2014) Atomization and spray-drying processes. In: Gaonkar AG, Vasisht N, Khare AR (eds) Microencapsulation in the food industry. Academic Press, San Diego, pp 47–56

    Google Scholar 

  • Jacobsen C, García-Moreno PJ, Mendes AC, Mateiu RV, Chronakis IS (2018) Use of electrohydrodynamic processes for encapsulation of sensitive bioactive compounds and applications in food. Annu Rev Food Sci Technol 9:525–549

    Article  PubMed  CAS  Google Scholar 

  • Jayakumar R, Menon D, Manzoor K et al (2010a) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82:227–232

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010b) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150

    Article  PubMed  CAS  Google Scholar 

  • Jeannie Tan ZY, Zhang XW (2011) Influence of chitosan on electrospun PVA nanofiber mat. Adv Mater Res 311–313:1763–1768

    Article  CAS  Google Scholar 

  • Jiang HL, Fang DF, Hsiao BS, Chu B, Chen WL (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5:326–333

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Kotaki M, Okubayashi S, Sukigara S (2010) Fabrication of electrospun eggshell membrane nanofibers by treatment with catechin. J Appl Polym Sci 117:2042–2049

    Article  CAS  Google Scholar 

  • Karim MR, Lee HW, Kim R et al (2009) Preparation and characterization of electrospun pullulan/montmorillonite nanofiber mats in aqueous solution. Carbohydr Polym 78:336–342

    Article  CAS  Google Scholar 

  • Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133:641–649

    Article  CAS  Google Scholar 

  • Kayaci F, Ertas Y, Uyar T (2013a) Enhanced thermal stability of eugenol by cyclodextrin inclusion complex encapsulated in electrospun polymeric nanofibers. J Agric Food Chem 61:8156–8165

    Article  PubMed  CAS  Google Scholar 

  • Kayaci F, Umu OCO, Tekinay T, Uyar T (2013b) Antibacterial electrospun poly(lactic acid) (PLA) nano fi brous webs incorporating triclosan/cyclodextrin inclusion complexes. J Agric Food Chem 61:3901−3908

    Google Scholar 

  • Kiechel MA, Schauer CL (2013) Non-covalent crosslinkers for electrospun chitosan fibers. Carbohydr Polym 95:123–133

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Ziegler GR (2012) Role of molecular entanglements in starch fiber formation by electrospinning. Biomacromolecules 13:2247–2253

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Ziegler GR (2013) Quantitative relationship between electrospinning parameters and starch fiber diameter. Carbohydr Polym 92:1416–1422

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Ziegler GR (2014a) Rheological aspects in fabricating pullulan fibers by electro-wet-spinning. Food Hydrocoll 38:220–226

    Article  CAS  Google Scholar 

  • Kong L, Ziegler GR (2014b) Fabrication of pure starch fibers by electrospinning. Food Hydrocoll 36:20–25

    Article  CAS  Google Scholar 

  • Kong L, Ziegler GR (2014c) Formation of starch-guest inclusion complexes in electrospun starch fibers. Food Hydrocoll 38:211–219

    Article  CAS  Google Scholar 

  • Lachke A (2004) Xanthan—a versatile gum. Resonance 9:25–33

    Article  Google Scholar 

  • Laelorspoen N, Wongsasulak S, Yoovidhya T, Devahastin S (2014) Microencapsulation of Lactobacillus acidophilus in zein-alginate core-shell microcapsules via electrospraying. J Funct Foods 7:342–349

    Article  CAS  Google Scholar 

  • Lancuški A, Vasilyev G, Putaux JL, Zussman E (2015) Rheological properties and electrospinnability of high-amylose starch in formic acid. Biomacromolecules 16:2529–2536

    Article  PubMed  CAS  Google Scholar 

  • Lancuški A, Abu Ammar A, Avrahami R et al (2017) Design of starch-formate compound fibers as encapsulation platform for biotherapeutics. Carbohydr Polym 158:68–76

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Jeong L, Kang YOO et al (2009) Electrospinning of polysaccharides for regenerative medicine. Adv Drug Deliv Rev 61:1020–1032

    Article  PubMed  CAS  Google Scholar 

  • Li L, Hsieh YL (2006) Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr Res 341:374–381

    Article  PubMed  CAS  Google Scholar 

  • Li J, He A, Zheng J, Han CC (2006) Gelatin and gelatin—hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules 7:2243–2247

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Lim LT, Kakuda Y (2009) Electrospun zein fibers as carriers to stabilize (−)-epigallocatechin gallate. J Food Sci 74:C233–C240

    Article  PubMed  CAS  Google Scholar 

  • Li J, Chotiko A, Narcisse DA, Sathivel S (2016a) Evaluation of alpha-tocopherol stability in soluble dietary fiber based nanofiber. LWT Food Sci Technol 68:485–490

    Article  CAS  Google Scholar 

  • Li H, Wang M, Williams GR, Wu J, Sun X, Lv Y, Zhu LM (2016b) Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials. RSC Adv 6:50267–50277

    Article  CAS  Google Scholar 

  • Librán CM, Castro S, Lagaron JM (2016) Encapsulation by electrospray coating atomization of probiotic strains. Innovative Food Sci Emerg Technol 39:216–222

    Article  CAS  Google Scholar 

  • Lim LT (2015) Encapsulation of bioactive compounds using electrospinning and electrospraying technologies. In Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients, ed. CM Sabliov, H Chen, RY Yada, pp. 297–317. New York: Wiley.

    Google Scholar 

  • Lindman B, Karlstrom G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    Article  CAS  Google Scholar 

  • Lopez-Rubio A, Lagaron JM (2012) Whey protein capsules obtained through electrospraying for the encapsulation of bioactives. Innovative Food Sci Emerg Technol 13:200–206

    Article  CAS  Google Scholar 

  • López-Rubio A, Sanchez E, Wilkanowicz S et al (2012) Electrospinning as a useful technique for the encapsulation of living bifidobacteria in food hydrocolloids. Food Hydrocoll 28:159–167

    Article  CAS  Google Scholar 

  • Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    Article  PubMed  CAS  Google Scholar 

  • Ma G, Liu Y, Fang D et al (2012) Hyaluronic acid/chitosan polyelectrolyte complexes nanofibers prepared by electrospinning. Mater Lett 74:78–80

    Article  CAS  Google Scholar 

  • McClements DJ (2015) Nanoparticle- and microparticle-based delivery systems—encapsulation, proteciton and release of active compounds. CRC Press, Boca Raton, pp 265–339

    Google Scholar 

  • Mendes AC, Baran ET, Pereira RC et al (2012) Encapsulation and survival of a chondrocyte cell line within xanthan gum derivative. Macromol Biosci 12:350–359

    Article  PubMed  CAS  Google Scholar 

  • Mendes AC, Gorzelanny C, Halter N et al (2016) Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. Int J Pharm 510:48–56

    Article  PubMed  CAS  Google Scholar 

  • Mendes AC, Stephansen K, Chronakis IS (2017) Electrospinning of food proteins and polysaccharides. Food Hydrocoll 68:53–68

    Article  CAS  Google Scholar 

  • Meng Y, Cloutier S (2014) Gelatin and other proteins for microencapsulation. In: Gaonkar AG, Vasisht N, Khare AR (eds) Microencapsulation in the food industry. Academic Press, San Diego, pp 227–239

    Google Scholar 

  • Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys 205:2327–2338

    Article  CAS  Google Scholar 

  • Moomand K, Lim LT (2014) Oxidative stability of encapsulated fish oil in electrospun zein fibres. Food Res Int 62:523–532

    Article  CAS  Google Scholar 

  • Moomand K, Lim LT (2015) Effects of solvent and n-3 rich fish oil on physicochemical properties of electrospun zein fibres. Food Hydrocoll 46:191–200

    Article  CAS  Google Scholar 

  • Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D (2013) Encapsulation food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid system. Food Chem 136:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Nie H, He A, Zheng J et al (2008) Effects of chain conformation and entanglement on the electrospinning of pure alginate. Biomacromolecules 9:1362–1365

    Article  PubMed  CAS  Google Scholar 

  • Nieuwland M, Geerdink P, Brier P, van den Eijnden P, Henket JTM, Langelaan MLP, Stroeks N, van Deventer HC, Martin AH (2013) Food-grade electrospinning of proteins. Innovative Food Sci Emerg Technol 20:269–275

    Article  CAS  Google Scholar 

  • Ohkawa K, Cha D, Kim H et al (2004) Electrospinning of chitosan. Macromol Rapid Commun 25:1600–1605

    Article  CAS  Google Scholar 

  • Okutan N, Terzi P, Altay F (2014) Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocoll 39:19–26

    Article  CAS  Google Scholar 

  • Pakravan M, Heuzey M-C, Ajji A (2012) Core-shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13:412–421

    Article  PubMed  CAS  Google Scholar 

  • Park WH, Jeong L, Il YD, Hudson S (2004) Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer (Guildf) 45:7151–7157

    Article  CAS  Google Scholar 

  • Pelayo A (2017) Production, characterization and oxidative stability of fish oil-loaded nanocapsules and yoghurt fortified with the nanocapsules. Master thesis, Technical University of Denmark

    Google Scholar 

  • Pérez-Masiá R, Lagaron JM, López-Rubio A (2014a) Development and optimization of novel encapsulation structures of interest in functional foods through electrospraying. Food Bioprocess Technol 7:3236–3245

    Article  CAS  Google Scholar 

  • Pérez-Masiá R, Lagaron JM, Lopez-Rubio A (2014b) Morphology and stability of edible lycopene-containing micro- and nanocapsules produced through electrospraying and spray drying. Food Bioprocess Technol 8:459–470

    Article  CAS  Google Scholar 

  • Pérez-Masiá R, López-Nicolás R, Periago MJ et al (2015) Encapsulation of folic acid in food hydrocolloids through nanospray drying and electrospraying for nutraceutical applications. Food Chem 168:124–133

    Article  PubMed  CAS  Google Scholar 

  • Pitigraisorn P, Srichaisupakit K, Wongpadungkiat N, Wongsasulak S (2017) Encapsulation of lactobacillus acidophilus in moist-heat-resistant multilayered microcapsules. J Food Eng 192:11–18

    Article  CAS  Google Scholar 

  • Reddy N, Yang Y (2015) Innovative biofibers from renewable resources. Springer, New York

    Book  Google Scholar 

  • Rezaei A, Nasirpour A, Fathi M (2015) Application of Cellulosic Nanofibers in Food Science Using Electrospinning and Its Potential Risk. Compr Rev Food Sci Food Saf 14:269–284

    Article  CAS  PubMed  Google Scholar 

  • Ritcharoen W, Thaiying Y, Saejeng Y et al (2008) Electrospun dextran fibrous membranes. Cellulose 15:435–444

    Article  CAS  Google Scholar 

  • Rosalam S, England R (2006) Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp. Enzym Microb Technol 39:197–207

    Article  CAS  Google Scholar 

  • Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7:2710–2714

    Article  PubMed  CAS  Google Scholar 

  • Schiffman JD, Schauer CL (2007) One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules 8:2665–2667

    Article  PubMed  CAS  Google Scholar 

  • Shalumon KT, Anulekha KH, Girish CM et al (2010) Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym 80:414–420

    Article  CAS  Google Scholar 

  • Shekarforoush E, Mendes ACL, Baj V, Beeren SR, Chronakis IS (2017a) Electrospun phospholipid fibers as micro-encapsulation and antioxidant matrices. Molecules 22:1708

    Article  CAS  PubMed Central  Google Scholar 

  • Shekarforoush E, Faralli A, Ndoni S et al (2017b) Electrospinning of xanthan polysaccharide. Macromol Mater Eng 201700067:1700067

    Article  CAS  Google Scholar 

  • Shukla R, Cheryan M (2001) Zein: the industrial protein from corn. Ind Crop Prod 13:171–192

    Article  CAS  Google Scholar 

  • Sobel R, Versic R, Gaonkar AG (2014) Introduction to microencapsulation and controlled delivery in foods. In: Gaonkar AG, Vasisht N, Khare AR (eds) Microencapsulation in the food industry. Academic Press, San Diego, pp 3–12

    Google Scholar 

  • Songchotikunpan P, Tattiyakul J, Supaphol P (2008) Extraction and electrospinning of gelatin from fish skin. Int J Biol Macromol 42:247–255

    Article  PubMed  CAS  Google Scholar 

  • Songsurang K, Praphairaksit N, Siraleartmukul K, Muangsin N (2011) Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch Pharm Res 34:583–592

    Article  PubMed  CAS  Google Scholar 

  • Spano F, Massaro A (2012) Electrospun dextran-based nanofibers for biosensing and biomedical applications. Acad Res J 1:23–30

    Google Scholar 

  • Sreekumar S, Lemke P, Moerschbacher BM et al (2017) Preparation and optimization of submicron chitosan capsules by water-based electrospraying for food and bioactive packaging applications. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 34:1795–1806

    Article  PubMed  CAS  Google Scholar 

  • Stephansen K, Chronakis IS, Jessen F (2014) Bioactive electrospun fish sarcoplasmic proteins as a drug delivery system. Colloids Surf B Biointerfaces 122:158–165

    Article  PubMed  CAS  Google Scholar 

  • Stephansen K, García-Díaz M, Jessen F, Chronakis IS, Nielsen H (2015) Bioactive protein-based nanofibers interact with intestinal biological components resulting in transepithelial permeation of a therapeutic protein. Int J Pharm 495:58–66

    Article  PubMed  CAS  Google Scholar 

  • Stephansen K, García-Díaz M, Jessen F, Chronakis IS, Nielsen HM (2016) Interactions between surfactants in solution and electrospun protein fibers: effects on release behavior and fiber properties. Mol Pharm 13:748–755

    Article  PubMed  CAS  Google Scholar 

  • Stijnman AC, Bodnar I, Hans Tromp R (2011) Electrospinning of food-grade polysaccharides. Food Hydrocoll 25:1393–1398

    Article  CAS  Google Scholar 

  • Suárez G, Gutiérrez TJ (2017) Recent advances in the development of biodegadable films and foams from cassava starch. In: Klein C (ed) Handbook on cassava: production, potential uses and recent advances. Nova Science Publishers, New York, pp 297–312. ISBN: 978-1-53610-307-6

    Google Scholar 

  • Sullivan ST, Tang C, Kennedy A, Talwar S, Khan SA (2014) Electrospinning and heat treatment of whey protein nanofibers. Food Hydrocoll 35:36–50

    Article  CAS  Google Scholar 

  • Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett 5:342–361

    Article  CAS  Google Scholar 

  • Sun XB, Jia D, Kang WM et al (2013) Research on electrospinning process of pullulan nanofibers. Appl Mech Mater 268–270:198–201

    Article  CAS  Google Scholar 

  • Taepaiboon P, Rungsardthong U, Supaphol P (2007) Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur J Pharm Biopharm 67:387–397

    Article  PubMed  CAS  Google Scholar 

  • Thien DVH, Hsiao SW, Ho MH (2012) Synthesis of electrosprayed chitosan nanoparticles for drug sustained release. Nano Life 2:1250003

    Article  CAS  Google Scholar 

  • Tomasula PM, Sousa AMM, Liou SC, Li R, Bonnaillie LM, Liu LS (2016) Short communication: electrospinning of casein/pullulan blends for food-grade application. J Dairy Sci 99:1837–1845

    Article  PubMed  CAS  Google Scholar 

  • Torres-Giner S, Ocio MJ, Lagaron JM (2008) Development of active antimicrobial fiber-based chitosan polysaccharide nanostructures using electrospinning. Eng Life Sci 8:303–314

    Article  CAS  Google Scholar 

  • Torres-Giner S, Ocio MJ, Lagaron JM (2009) Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning. Carbohydr Polym 77:261–266

    Article  CAS  Google Scholar 

  • Torres-Giner S, Martinez-Abad A, Ocio MJ, Lagaron JM (2010) Stabilization of a nutraceutical omega-3 fatty acid by encapsulation in ultrathin electrosprayed zein prolamine. J Food Sci 75:N69–N79

    Article  PubMed  CAS  Google Scholar 

  • Ungeheuer S, Bewersdorff H, Singh RP (1989) Turbulent drag effectiveness and shear stability of xanthan-gum-based graft copolymers. J Appl Polym Sci 37:2933–2948

    Article  CAS  Google Scholar 

  • Vega-Lugo AC, Lim LT (2009) Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res Int 42:933–940

    Article  CAS  Google Scholar 

  • Verdugo M, Lim LT, Rubilar M (2014) Electrospun protein concentrate fibers from microalgae residual biomass. J Polym Environ 22:373–383

    Article  CAS  Google Scholar 

  • Wang S, Bai J, Li C, Zhang J (2012) Functionalization of electrospun B-cyclodextrin/polyacrylonitrile (PAN) with silver nanoparticles: Broad-spectrum antibacterial property. Appl Surf Sci 261:499–503

    Article  CAS  Google Scholar 

  • Weiss J, Kanjanapongkul K, Wongsasulak S, Yoovidhya T (2012) Electrospun fibers: fabrication, functionalities and potential food industry applications. In: Huang Q (ed) Nanotechnology in the food, beverage and nutraceutical industries. Woodhead Publishing, Cambridge, pp 362–397

    Chapter  Google Scholar 

  • Wu X, Wang L, Yu H, Huang Y (2005) Effect of solvent on morphology of electrospinning ethyl cellulose fibers. J Appl Polym Sci 97:1292–1297

    Article  CAS  Google Scholar 

  • Xie JB, Hsieh YL (2003) Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J Mater Sci 38:2125–2133

    Article  CAS  Google Scholar 

  • Xu W, Yang W, Yang Y (2009) Electrospun starch acetate nanofibers: development, properties, and potential application in drug delivery. Biotechnol Prog 25:1788–1795

    Article  PubMed  CAS  Google Scholar 

  • Yang DZ, Li YN, Nie J (2007) Preparation of gelatin/PVA nanofibers and their potential application in controlled release of drugs. Carbohydr Polym 69:538–543

    Article  CAS  Google Scholar 

  • Yang H, Wen P, Feng K, Zong MH, Lou WY, Wu H (2017) Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties. RSC Adv 7:14939–14946

    Article  CAS  Google Scholar 

  • Zeleny J (1914) The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Phys Rev 3:69–91

    Article  Google Scholar 

  • Zirnsak MA, Boger DV, Tirtaatmadja V (1999) Steady shear and dynamic rheological properties of xanthan gum solutions in viscous solvents. J Rheol (N Y N Y) 43:627

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro J. García-Moreno or Ana C. Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Moreno, P.J., Mendes, A.C., Jacobsen, C., Chronakis, I.S. (2018). Biopolymers for the Nano-microencapsulation of Bioactive Ingredients by Electrohydrodynamic Processing. In: Gutiérrez, T. (eds) Polymers for Food Applications . Springer, Cham. https://doi.org/10.1007/978-3-319-94625-2_17

Download citation

Publish with us

Policies and ethics