Skip to main content

Abstract

In situ tissue engineering refers to the regeneration of normal tissue, in this case bone, directly at the site that it is required. It is a relatively new and powerful tool that eliminated open bone harvesting from donor sites and therefore the morbidity associated with it.

The principle is the classic tissue engineering triangle of cells, signal, and matrix. In the younger patients (<30 years) and in uncompromised tissue, the cells are derived from resident stem cell and progenitor cells at the recipient site and those in platelet-rich plasma (PRP). The matrix is the cancellous allogeneic bone and the cell adhesion molecules, fibrin, fibronectin, and vitronectin, in PRP. The signal is recombinant human bone morphogenetic protein-2/acellular collagen sponge (rhBMP-2/ACS) at a dose of 0.5 mg/tooth width for ridge augmentation and 1.0 mg/cm length for a continuity defect.

For patients older than 30 years and with larger defects such as post-cancer resections, benign tumor resections, and osteomyelitis, the non-cancer patients with drug-induced osteonecrosis, and the osteoradionecrosis cases, the cellular element is derived from a bone marrow aspirate (BMA) or a bone marrow aspirate concentrate (BMAC). These both contain true stem cells (CD34+) and the osteoprogenitor cells CD44+, CD90+, CD105+, and CD271+ and will be the cellular source of bone regeneration with the same matrix and signal as used with PRP for ridge augmentations.

The time saving, morbidity reduction, less operating time, and less hospital time strongly recommend this scientifically and clinically proven method to regenerate bone in areas of lost bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marx RE. Platelet rich plasma: evidence to support its use. J Oral Maxillofac Surg. 2004;62:489–93.

    Article  Google Scholar 

  2. Prockop DJ. Marrow stromal cells for nonhematopoietic tissues. Science. 1997;276:71–4.

    Article  CAS  Google Scholar 

  3. Schimandle JH, Boden SD, Hutton WC. Experimental spinal fusion with recombinant human bone morphogenetic protein-2. Spine. 1995;20:1326–34.

    Article  CAS  Google Scholar 

  4. Swiontkowski M, Goulet J, Paiement G, Bucholz R, Jones A, Fitzpatrick M, Valentin-Opran A. Safety and feasibility of implanting recombinant human BMP-2/absorbable collagen sponge in patients with open tibia fractures. Presented at the Annual Meeting of the Orthopedic Trauma Association. 1997.

    Google Scholar 

  5. Fiorellini JP, Howell TH, Cochran D, Malmquist J, Lilly LC, Spagnoli D, Tolzanic J, Jones A, Nevins MR. Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket documentation. J periodontol. 2005;76(4):605–13.

    Article  CAS  Google Scholar 

  6. Boyne PJ, Marx RE, Nevins M, Triplett G, Lazaro E, Lilly L, Alder M, Nummikoksi P. A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation. Int J Periodontics Restorative Dent. 1997;17:11–25.

    CAS  PubMed  Google Scholar 

  7. Boyne PJ, Lilly LC, Marx RE, Moy PK, Nevins M, Spagnoli DB. De novo bone induction by recombinant human bone morphogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentations. J Oral Maxillofac Surg. 2005;63(12):1693–707.

    Article  Google Scholar 

  8. rhBMP-2 and ACS. In: McKay WF, Peckman SM, Marotta JS, editors. The science of rhBMP-2, chap. 4. St Louis: Quality Medical Publishing; 2006. p. 67–85.

    Google Scholar 

  9. Wozney JM. The bone morphogenetic protein family and osteogenesis (review). Mol Reprod Dev. 1992;32:160–7.

    Article  CAS  Google Scholar 

  10. Wang EA, Rosen V, D’alessandro JS, Baudy M, Cordes P, Harads J. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci U S A. 1990;87:2220–9.

    Article  CAS  Google Scholar 

  11. Marx RE. Mandibular reconstruction. J Oral Maxillofac Surg. 1993;51:466–79.

    Article  CAS  Google Scholar 

  12. Hidalgo DA. Fibula free flap. A new method of mandible reconstruction. Plast Reconstr Surg. 1989;84:71–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Marx .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marx, R.E. (2019). In Situ Tissue Engineering. In: Melville, J., Shum, J., Young, S., Wong, M. (eds) Regenerative Strategies for Maxillary and Mandibular Reconstruction. Springer, Cham. https://doi.org/10.1007/978-3-319-93668-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93668-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93667-3

  • Online ISBN: 978-3-319-93668-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics