Skip to main content

Prokaryote Genomes

  • Chapter
  • First Online:
Introduction to Evolutionary Genomics

Part of the book series: Computational Biology ((COBO,volume 17))

  • 1865 Accesses

Abstract

The world of prokaryotes (bacteria and archaea) is much more diverse than that of eukaryotes. After glancing the diversity of prokaryotes, the basic structure of prokaryote genomes is discussed using Escherichia coli as an example, followed by discussions on GC content heterogeneity, horizontal gene transfer, codon usage, prokaryotic metagenomes, plasmids, and CRISPR-Cas system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fox, G. E., Magrum, L. J., Balch, W. E., Wolfe, R. S., & Woese, C. R. (1977). Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proceedings of the National Academy of Sciences USA, 74, 4537–4541.

    Article  Google Scholar 

  2. Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences USA, 74, 5088–5090.

    Article  Google Scholar 

  3. Woese, C. R., et al. (1990). Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences USA, 87, 4576–4579.

    Article  Google Scholar 

  4. Koga, Y. (2012). Archaea. In Encyclopedia of evolution (pp. 37–42). Tokyo: Kyoritsu Shuppan (in Japanese).

    Google Scholar 

  5. Parks, D. H., et al. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2, 1533–1542.

    Article  Google Scholar 

  6. Fukami-Kobayashi, K., Minezaki, Y., Tateno, Y., & Nishikawa, K. (2007). A tree of life based on protein domain organizations. Molecular Biology and Evolution, 24, 1181–1189.

    Article  Google Scholar 

  7. Battistuzzi, F. U., Feijão, A., & Hedges, S. B. (2004). A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evolutionary Biology, 4, 44.

    Article  Google Scholar 

  8. Battistuzzi, F. U., & Hedges, S. B. (2009). A major clade of Prokaryotes with ancient adaptations to life on land. Molecular Biology and Evolution, 26, 335–343.

    Article  Google Scholar 

  9. Yokono, M., Satoh, S., & Tanaka, A. (2018). Comparative analyses of whole-genome protein sequences from multiple organisms. Scientific Reports, 8, 6800.

    Article  Google Scholar 

  10. https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/.

  11. Maeda, A. H., Nishi, S., Ozeki, Y., Ohta, Y., Hatada, Y., & Kanaly, R. A. (2013). Draft genome sequence of Sphingobium sp. strain KK22, a high-molecular-weight polycyclic aromatic hydrocarbon-degrading bacterium isolated from cattle pasture soil. Genome Announcements, 1, e00911–e00913.

    Article  Google Scholar 

  12. GenProtEC database (http://genprotec.mbl.edu/overview.html).

  13. PEC database at http://www.shigen.nig.ac.jp/ecoli/pec/genes.jsp.

  14. Blattner, F. R., et al. (1997). The complete genome sequence of Escherichia coli K-12. Science, 277, 1453–1462.

    Article  Google Scholar 

  15. Mahillon, J., & Chandler, M. (1998). Insertion sequences. Microbiology and Molecular Biology Reviews, 62, 725–774.

    Google Scholar 

  16. Hayashi, T., et al. (2001). Complete genome sequence of enterohemorrhagic Escherichia coli O157: H7 and genomic comparison with a laboratory strain K-12. DNA Research, 8, 11–22.

    Article  Google Scholar 

  17. Watanabe, H., Mori, H., Itoh, T., & Gojobori, T. (1997). Genome plasticity as a paradigm of eubacteria evolution. Journal of Molecular Evolution, 44(Suppl 1), S57–S64.

    Article  Google Scholar 

  18. Fraser, C. M., et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science, 270, 397–403.

    Article  Google Scholar 

  19. Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y., & Ishikawa, H. (2000). Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407, 81–86.

    Article  Google Scholar 

  20. Cole, S. T., et al. (2001). Massive gene decay in the leprosy bacillus. Nature, 409, 1007–1011.

    Article  Google Scholar 

  21. Gregory, T. R., & DeSakke, R. (2005). Chapter 10: Comparative genomics in Prokaryotes. In T. R. Gregory (Ed.), The evolution of the genome. Burlington: Elsevier.

    Google Scholar 

  22. Ferdows, M. S., & Barbour, A. G. (1989). Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proceedings of the National Academy of Sciences USA, 86, 5969–5973.

    Article  Google Scholar 

  23. Omura, S., et al. (2001). Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proceedings of the National Academy of Sciences USA, 98, 12215–12220.

    Article  Google Scholar 

  24. Sueoka, N. (1962). On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National Academy of Sciences USA, 48, 582–592.

    Article  Google Scholar 

  25. Moran, N. A. (2002). Microbial minimalism: Genome reduction in bacterial pathogens. Cell, 108, 583–586.

    Article  Google Scholar 

  26. Rocha, E. P. C., & Danchin, A. (2002). Base composition bias might result from competition for metabolic resources. Trends in Genetics, 18, 291–294.

    Article  Google Scholar 

  27. Saitou, N. (2007). Introduction to genome evolution studies. Tokyo: Kyoritsu Shuppan. (in Japanese).

    Google Scholar 

  28. Karlin, S., & Ladunga, I. (1994). Comparisons of eukaryotic genome sequences. Proceedings of the National Academy of Sciences USA, 91, 12832–12836.

    Article  Google Scholar 

  29. Karlin, S., & Mrazek, J. (1997). Compositional differences within and between eukaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 94, 10227–10232.

    Article  Google Scholar 

  30. Karlin, S., Mrazek, J., & Campbell, A. (1997). Compositional biases of bacterial genomes and evolutionary implications. Journal of Bacteriology, 179, 3899–3913.

    Article  Google Scholar 

  31. Karlin, S. (2005). Statistical signals in bioinformatics. Proceedings of the National Academy of Sciences USA, 102, 13355–13362.

    Article  Google Scholar 

  32. Nakashima, H., Nishikawa, K., & Ooi, T. (1997). Differences in dinucleotide frequencies of human, yeast, and Escherichia coli genes. DNA Research, 4, 185–192.

    Article  Google Scholar 

  33. Nakashima, H., Ota, M., Nishikawa, K., & Ooi, T. (1998). Genes from nine genomes are separated into their organisms in the dinucleotide composition space. DNA Research, 5, 251–259.

    Article  Google Scholar 

  34. Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78, 1464–1480.

    Article  Google Scholar 

  35. Abe, T., Kanaya, S., Kinouchi, M., Ichiba, Y., Kozuki, T., & Ikemura, T. (2003). Informatics for unveiling hidden genome signatures. Genome Research, 13, 693–702.

    Article  Google Scholar 

  36. Snel, B., Bork, P., & Huynen, M. A. (1999). Genome phylogeny based on gene content. Nature Genetics, 21, 108–110.

    Article  Google Scholar 

  37. Tekaia, F., Lazcano, A., & Dujon, B. (1999). The genomic tree as revealed from whole proteome comparisons. Genome Research, 9, 550–557.

    Google Scholar 

  38. Fitz-Gibbon, S. T., & House, C. H. (1999). Whole genome-based phylogenetic analysis of free living microorganisms. Nucleic Acids Research, 27, 4218–4222.

    Article  Google Scholar 

  39. Bansal, A. K., & Meyer, T. E. (2002). Evolutionary analysis by whole-genome comparisons. Journal of Bacteriology, 184, 2260–2272.

    Article  Google Scholar 

  40. Gupta, R. S. (1998). Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiology and Molecular Biology Reviews, 62, 1435–1491.

    Google Scholar 

  41. Gupta, R. S. (2001). The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. International Microbiology, 4, 187–202.

    Article  Google Scholar 

  42. Dandekar, T., Snel, B., Huynen, M., & Bork, P. (1998). Conservation of gene order: A fingerprint of proteins that physically interact. Trends in Biochemical Sciences, 23, 324–328.

    Article  Google Scholar 

  43. Huynen, M. A., & Bork, P. (1998). Measuring genome evolution. Proceedings of the National Academy of Sciences USA, 95, 5849–5856.

    Article  Google Scholar 

  44. Kunisawa, T. (2001). Gene arrangements and phylogeny in the class Proteobacteria. Journal of Theoretical Biology, 213, 9–19.

    Article  Google Scholar 

  45. Suyama, M., & Bork, P. (2001). Evolution of prokaryotic gene order: Genome rearrangements in closely related species. Trends in Genetics, 17, 10–13.

    Article  Google Scholar 

  46. Pride, D. T., Meinersmann, R. J., Wassenaar, T. M., & Blaser, M. J. (2003). Evolutionary implications of microbial genome tetranucleotide frequency biases. Genome Research, 13, 145–155.

    Article  Google Scholar 

  47. Takahashi, M., Kryukov, K., & Saitou, N. (2009). Estimation of bacterial species phylogeny through oligonucleotide frequency distances. Genomics, 93, 525–533.

    Article  Google Scholar 

  48. Rzhetsky, A., & Nei, M. (1992). A simple method for estimating and testing minimum-evolution trees. Molecular Biology and Evolution, 9, 945–967.

    Google Scholar 

  49. Koonin, E. V. (2011). The Logic of chance. Upper Saddle River: Pearson Education.

    Google Scholar 

  50. Sawada, H., Suzuki, F., Matsuda, I., & Saitou, N. (1999). Phylogenetic analysis of Pseudomonas syringe pathovar suggests the horizontal gene transfer of argK and the evolutionary stability of hrp gene cluster. Journal of Molecular Evolution, 49, 627–644.

    Article  Google Scholar 

  51. Heinrichs, D. E., Yethon, J. A., & Whitfield, C. (1998). Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Molecular Microbiology, 30, 221–232.

    Article  Google Scholar 

  52. Nakamura, Y., Itoh, T., Matsuda, H., & Gojobori, T. (2004). Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nature Genetics, 36, 760–766.

    Article  Google Scholar 

  53. Abby, S. S., Tannier, E., Gouy, M., & Daubin, V. (2012). Lateral gene transfer as a support for the tree of life. Proceedings of the National Academy of Sciences USA, 109, 4962–4967.

    Article  Google Scholar 

  54. Doolittle, W. (1999). Phylogenetic classification and the universal tree. Science, 284, 2124–2129.

    Article  Google Scholar 

  55. Saitou, N. (2004). Genome and evolution. Tokyo: Shinyosha. (in Japanese).

    Google Scholar 

  56. Ikemura, T. (1981). Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the E. coli translational system. Journal of Molecular Biology, 151, 389–409.

    Article  Google Scholar 

  57. Ikemura, T. (1982). Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. Journal of Molecular Biology, 158, 573–597.

    Article  Google Scholar 

  58. Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology and Evolution, 2, 13–34.

    Google Scholar 

  59. Sharp, P. M., & Li, W. H. (1987). The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Molecular Biology and Evolution, 4, 222–230.

    Google Scholar 

  60. Kanaya, S., Yamada, Y., Kinouchi, M., Kudo, Y., & Ikemura, T. (2001). Codon usage and tRNA genes in eukaryotes: Correlation of codon usage diversity with translation efficiency and with CG-dinucleotide usage as assessed by multivariate analysis. Journal of Molecular Evolution, 53, 290–298.

    Article  Google Scholar 

  61. http://www.kazusa.or.jp/codon/.

  62. Nakamura, Y., Gojobori, T., & Ikemura, T. (2000). Codon usage tabulated from international DNA sequence databases: Status for the year 2000. Nucleic Acids Research, 28, 292.

    Article  Google Scholar 

  63. Athey, J., et al. (2017) A new and updated resource for codon usage tables.

    Google Scholar 

  64. https://hive.biochemistry.gwu.edu/review/codon.

  65. Venter, J. C., et al. (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74.

    Article  Google Scholar 

  66. Abe, T., Sugawara, T., Kanaya, S., & Ikemura, T. (2005). Novel phylogenetic studies of genomic sequence fragments derived from uncultured microbe mixtures in environmental and clinical samples. DNA Research, 12, 281–290.

    Article  Google Scholar 

  67. Rusch, D. B., et al. (2007). The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biology, 5, e77.

    Article  Google Scholar 

  68. Yooseph, S., et al. (2007). The Sorcerer II global ocean sampling expedition: Expanding the universe of protein families. PLoS Biology, 5, e16.

    Article  Google Scholar 

  69. Kurokawa, K., et al. (2007). Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Research, 14, 169–181.

    Article  Google Scholar 

  70. Yatsunenko, T., et al. (2012). Human gut microbiome viewed across age and geography. Nature, 486, 222–227.

    Article  Google Scholar 

  71. Craig, R., & Millan, A. S. (2015). Microbial evolution: towards resolving the plasmid paradox. Current Biology, 25, R753–R773.

    Article  Google Scholar 

  72. Shintani, M., et al. (2015). Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Frontiers in Microbiology, 6, 242.

    Article  Google Scholar 

  73. Esser, K., et al. (1986). Plasmids of Eukaryotes. Berlin: Springer.

    Book  Google Scholar 

  74. Harrison, E., & Brockhurst, M. A. (2012). Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends in Microbiology, 20, 262–267.

    Article  Google Scholar 

  75. https://www.ncbi.nlm.nih.gov/genome/plasmids/438.

  76. Bier, E., et al. (2018). Advances in engineering the fly genome with the CRISPR-Cas system. Genetics, 208, 1–18.

    Article  Google Scholar 

  77. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M., & Nakata, A. (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429–5433.

    Article  Google Scholar 

  78. Jansen, R., et al. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43, 1565–1575.

    Article  Google Scholar 

  79. Barrangou, R., et al. (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712.

    Article  Google Scholar 

  80. Koonin, E. V., Makarova, K. S., & Zhang, F. (2017). Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology, 37, 67–78. Falush, D., et al. (2003). Traces of human migrations in Helicobacter pylori populations. Science, 299, 1582–1585.

    Article  Google Scholar 

  81. Koonin, E. V., & Wolf, Y. I. (2016). Just how Lamarckian is CRISPR-Cas immunity: The continuum of evolvability mechanisms. Biology Direct, 11, 9.

    Article  Google Scholar 

  82. Lamark, J.-B. (1809). Zoological philosophy, or exposition with regard to the natural history of animals (in French).

    Google Scholar 

  83. Falush, D., et al. (2003). Traces of human migrations in Helicobacter pylori populations. Science, 299, 1582–1585.

    Article  Google Scholar 

  84. Suzuki, R., Shiota, S., & Yamaoka, Y. (2012). Molecular epidemiology, population genetics, and pathogenic role of Helicobacter pylori. Infection, Genetics and Evolution, 12, 203–213.

    Article  Google Scholar 

  85. Kryukov, K., & Saitou, N. (2010). MISHIMA – A new method for high speed multiple alignment of nucleotide sequences of bacterial genome scale data. BMC Bioinformatics, 11, 142.

    Article  Google Scholar 

  86. Kawai, M., Furuta, Y., Yahara, K., Tsuru, T., Oshima, K., Handa, N., et al. (2011). Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiology, 11, 104.

    Article  Google Scholar 

  87. Thorell, K., et al. (2017). Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas. PLoS Genetics, 13, e1006730.

    Article  Google Scholar 

  88. Subsomwong, P., et al. (2017). Helicobacter pylori virulence genes of minor ethnic groups in North Thailand. Gut Pathogens, 9, 56.

    Article  Google Scholar 

  89. Shapiro, B. J., Friedman, J., Cordero, O. X., Preheim, S. P., Timberlake, S. C., Szabo, G., et al. (2012). Population genomics of early events in the ecological differentiation of bacteria. Science, 336, 48–51.

    Article  Google Scholar 

  90. Shapiro, B. J. (2018). What microbial population genomics has taught us about speciation. In: Population Genomics. Springer, Cham.

    Google Scholar 

  91. Mori, H., et al. (1997). Post-sequencing genome analysis of Escherichia coli. Tanpakushitsu-Kakusan-Koso, 46, 1977–1985. (in Japanese).

    Google Scholar 

  92. Yura, T., Mori, H., Nagai, H., Nagata, T., Ishihama, A., Fujita, N., et al. (1992). Systematic sequencing of the Escherichia coli genome: Analysis of the 0–2.4 min region. Nucleic Acids Research, 20, 3305–3308.

    Article  Google Scholar 

  93. Fujita, N., Mori, H., Yura, T., & Ishihama, A. (1994). Systematic sequencing of the Escherichia coli genome: Analysis of the 2.4–4.1 min (110,917–193,643 bp) region. Nucleic Acids Research, 22, 1637–1639.

    Article  Google Scholar 

  94. Oshima, T., et al. (1996). A 718-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 12.7–28.0 min region on the linkage map. DNA Research, 3, 137–155.

    Article  Google Scholar 

  95. Aiba, H., et al. (1996). A 570-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 28.0–40.1 min region on the linkage map. DNA Research, 3, 363–377.

    Article  Google Scholar 

  96. Itoh, T., et al. (1996). A 460-kb DNA sequence of the Escherichia coli K-12 genome corresponding to the 40.1–50.0 min region on the linkage map. DNA Research, 3, 379–392.

    Article  Google Scholar 

  97. Yamamoto, Y., et al. (1997). Construction of a contiguous 874-kb sequence of the Escherichia coli – K12 genome corresponding to 50.0–68.8 min on the linkage map and analysis of its sequence features. DNA Research, 4, 91–113.

    Article  Google Scholar 

  98. Fleischmann, R. D., et al. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269, 496–512.

    Article  Google Scholar 

  99. http://en.wikipedia.org/wiki/Richard_Friedrich_Johannes_Pfeiffer.

  100. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., & Roe, B. A. (1980). Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology, 143, 161–178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naruya Saitou .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saitou, N. (2018). Prokaryote Genomes. In: Introduction to Evolutionary Genomics. Computational Biology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-92642-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92642-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92641-4

  • Online ISBN: 978-3-319-92642-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics