Skip to main content

Middleware for Multi-robot Systems

  • Chapter
  • First Online:
Mission-Oriented Sensor Networks and Systems: Art and Science

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 164))

Abstract

Recent advances in robotics technology have made it viable to assign complex tasks to large numbers of inexpensive robots. The robots as an ensemble form into a multi-robot system (MRS), which can be utilized for many applications where a single robot is not efficient or feasible. MRS can be used for a wide variety of application domains such as military, agriculture, smart home, disaster relief, etc. It offers higher scalability, reliability, and efficiency as compared to single-robot system. However, it is nontrivial to develop and deploy MRS applications due to many challenging issues such as distributed computation, collaboration, coordination, and real-time integration of robotic modules and services. To make the development of multi-robot applications easier, researchers have proposed various middleware architectures to provide programming abstractions that help in managing the complexity and heterogeneity of hardware and applications. With the help of middleware, an application developer can concentrate on the high-level logic of applications instead of worrying about low-level hardware and network details. In this chapter, we survey state of the art in both distributed MRS and middleware being used for developing their applications. We provide a taxonomy that can be used to classify the MRS middleware and analyze existing middleware functionalities and features. Our work will help researchers and developers in the systematic understanding of middleware for MRS and in selecting or developing the appropriate middleware based on the application requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.eecs.harvard.edu/ssr/projects/progSA/kilobot.html.

  2. 2.

    http://mrsl.rice.edu/projects/r-one.

  3. 3.

    http://www.k-team.com/khepera-iv.

  4. 4.

    http://www.e-puck.org/.

  5. 5.

    http://playerstage.sourceforge.net/.

  6. 6.

    http://orca-robotics.sourceforge.net/index.html.

  7. 7.

    https://sourceforge.net/projects/miro-middleware.berlios/.

  8. 8.

    http://www.mira-project.org/joomla-mira/.

  9. 9.

    http://openrdk.sourceforge.net/index.php?n=Main.HomePage.

  10. 10.

    http://marie.sourceforge.net/wiki/index.php/Main_Page.

  11. 11.

    http://www.gostai.com/products/urbi/.

  12. 12.

    https://www.microsoft.com/en-us/download/details.aspx?id=29081.

  13. 13.

    http://robocomp.github.io/website/.

  14. 14.

    http://www.ros.org/.

  15. 15.

    http://www.opros.or.kr/display/opros/OPRoS+Wiki.

  16. 16.

    http://openrtm.org.

  17. 17.

    http://mobots.epfl.ch/aseba.php.

References

  1. Ahmad, A., Babar, M.A.: Software architectures for robotic systems: a systematic mapping study. J. Syst. Softw. 122, 16–39 (2016)

    Article  Google Scholar 

  2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  3. Alimisis, D.: Educational robotics: open questions and new challenges. Themes Sci. Technol. Educ. 6(1), 63–71 (2013)

    Google Scholar 

  4. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.K.: Rt-middleware: distributed component middleware for rt (robot technology). In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3933–3938. IEEE (2005)

    Google Scholar 

  5. Ando, N., Suehiro, T., Kotoku, T.: A software platform for component based rt-system development: Openrtm-aist. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 87–98. Springer (2008)

    Google Scholar 

  6. Arai, T., Pagello, E., Parker, L.E.: Editorial: advances in multi-robot systems. IEEE Trans. Rob. Autom. 18(5), 655–661 (2002)

    Article  Google Scholar 

  7. Arbuckle, D., Requicha, A.A.: Self-assembly and self-repair of arbitrary shapes by a swarm of reactive robots: algorithms and simulations. Auton. Robots 28(2), 197–211 (2010)

    Article  Google Scholar 

  8. Baillie, J.C., Demaille, A., Hocquet, Q., Nottale, M., Tardieu, S.: The URBI universal platform for robotics. In: First International Workshop on Standards and Common Platform for Robotics (2008)

    Google Scholar 

  9. Beasley, R.A.: Medical robots: current systems and research directions. J. Robot. 2012 (2012)

    Google Scholar 

  10. Benitti, F.B.V.: Exploring the educational potential of robotics in schools: a systematic review. Comput. Educ. 58(3), 978–988 (2012)

    Article  Google Scholar 

  11. Broadbent, E., Stafford, R., MacDonald, B.: Acceptance of healthcare robots for the older population: review and future directions. Int. J. Soc. Robot. 1(4), 319–330 (2009)

    Article  Google Scholar 

  12. Bruce, J., Zickler, S., Licitra, M., Veloso, M.: Cmdragons: dynamic passing and strategy on a champion robot soccer team. In: IEEE International Conference on Robotics and Automation, 2008. ICRA 2008, pp. 4074–4079. IEEE (2008)

    Google Scholar 

  13. Bruyninckx, H.: Open robot control software: the orocos project. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 3, pp. 2523–2528. IEEE (2001)

    Google Scholar 

  14. Burgard, W., Moors, M., Fox, D., Simmons, R., Thrun, S.: Collaborative multi-robot exploration. In: IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA’00, vol. 1, pp. 476–481. IEEE (2000)

    Google Scholar 

  15. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)

    Article  Google Scholar 

  16. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)

    Google Scholar 

  17. Calisi, D., Censi, A., Iocchi, L., Nardi, D.: Openrdk: a modular framework for robotic software development. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1872–1877. IEEE (2008)

    Google Scholar 

  18. Chalup, S.K., Murch, C.L., Quinlan, M.J.: Machine learning with AIBO robots in the four-legged league of robocup. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 37(3), 297–310 (2007)

    Article  Google Scholar 

  19. Chen, D., Varshney, P.K.: Qos support in wireless sensor networks: a survey. In: International Conference on Wireless Networks, vol. 233, pp. 1–7 (2004)

    Google Scholar 

  20. Chitic, S.G., Ponge, J., Simonin, O.: Are middlewares ready for multi-robots systems? In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 279–290. Springer (2014)

    Google Scholar 

  21. Cianci, C.M., Raemy, X., Pugh, J., Martinoli, A.: Communication in a swarm of miniature robots: the e-puck as an educational tool for swarm robotics. In: International Workshop on Swarm Robotics, pp. 103–115. Springer (2006)

    Google Scholar 

  22. Collett, T.H., MacDonald, B.A., Gerkey, B.P.: Player 2.0: toward a practical robot programming framework. In: Proceedings of the Australasian Conference on Robotics and Automation (ACRA 2005), p. 145 (2005)

    Google Scholar 

  23. Cote, C., Brosseau, Y., Letourneau, D., Raïevsky, C., Michaud, F.: Robotic software integration using marie. Int. J. Adv. Robot. Syst. 3(1), 55–60 (2006)

    Article  Google Scholar 

  24. Darwin, C., Beer, G.: The origin of species. Dent (1951)

    Google Scholar 

  25. De Rosa, M., Goldstein, S., Lee, P., Campbell, J., Pillai, P.: Scalable shape sculpting via hole motion: motion planning in lattice-constrained modular robots. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp. 1462–1468. IEEE (2006)

    Google Scholar 

  26. Di Mario, E., Martinoli, A.: Distributed particle swarm optimization for limited-time adaptation with real robots. Robotica 32(02), 193–208 (2014)

    Article  Google Scholar 

  27. Einhorn, E., Langner, T., Stricker, R., Martin, C., Gross, H.M.: Mira-middleware for robotic applications. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2591–2598. IEEE (2012)

    Google Scholar 

  28. Elkady, A., Sobh, T.: Robotics middleware: a comprehensive literature survey and attribute-based bibliography. J. Robot. 2012 (2012)

    Google Scholar 

  29. Engelberger, J.F.: Robotics in Practice: Management and Applications of Industrial Robots. Springer Science & Business Media (2012)

    Google Scholar 

  30. Farinelli, A., Iocchi, L., Nardi, D.: Multirobot systems: a classification focused on coordination. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34(5), 2015–2028 (2004)

    Article  Google Scholar 

  31. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: tools for multi-robot and distributed sensor systems. In: Proceedings of the 11th International Conference on Advanced Robotics, vol. 1, pp. 317–323 (2003)

    Google Scholar 

  32. Gerkey, B.P., Vaughan, R.T., Stoy, K., Howard, A., Sukhatme, G.S., Mataric, M.J.: Most valuable player: a robot device server for distributed control. In: 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2001. Proceedings, vol. 3, pp. 1226–1231. IEEE (2001)

    Google Scholar 

  33. Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: The nao humanoid: a combination of performance and affordability. CoRR abs/08073223 (2008)

    Google Scholar 

  34. Grieco, L.A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Di Paola, D., Boggia, G.: Iot-aided robotics applications: technological implications, target domains and open issues. Comput. Commun. 54, 32–47 (2014)

    Article  Google Scholar 

  35. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor networks using kairos. In: International Conference on Distributed Computing in Sensor Systems, pp. 126–140. Springer (2005)

    Google Scholar 

  36. Habibi, G., Xie, W., Jellins, M., McLurkin, J.: Distributed path planning for collective transport using homogeneous multi-robot systems. In: Distributed Autonomous Robotic Systems, pp. 151–164. Springer (2016)

    Google Scholar 

  37. Heckel, F., Blakely, T., Dixon, M., Wilson, C., Smart, W.D.: The wurde robotics middleware and ride multirobot tele-operation interface. In: Proceedings of the 21st National Conference on Artificial Intelligence (AAAI06) (2006)

    Google Scholar 

  38. Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. Int. J. Robot. Res. 25(5–6), 431–447 (2006)

    Article  Google Scholar 

  39. Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture, challenges and applications. IEEE Netw. 26(3), 21–28 (2012)

    Article  Google Scholar 

  40. Jackson, J.: Microsoft robotics studio: a technical introduction. IEEE Robot. Autom. Mag. 14(4), 82–87 (2007)

    Article  MathSciNet  Google Scholar 

  41. Jang, C., Lee, S.I., Jung, S.W., Song, B., Kim, R., Kim, S., Lee, C.H.: Opros: a new component-based robot software platform. ETRI J. 32(5), 646–656 (2010)

    Article  Google Scholar 

  42. Jia, S., Takase, K.: Network distributed monitoring system based on robot technology middleware. Int. J. Adv. Robot. Syst. 4(1), 69–72 (2007)

    Article  Google Scholar 

  43. Jia, S., Hada, Y., Gakuhari, H., Takase, K., Ohnishi, T., Nakamoto, H.: Intelligent home service robotic system based on robot technology middleware. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4478–4483. IEEE (2006)

    Google Scholar 

  44. Jiang, S., Cao, J., Liu, Y., Chen, J., Liu, X.: Programming large-scale multi-robot system with timing constraints. In: 2016 25th International Conference on Computer Communication and Networks (ICCCN), pp. 1–9. IEEE (2016a)

    Google Scholar 

  45. Jiang, S., Liang, J., Cao, J., Liu, R.: An ensemble-level programming model with real-time support for multi-robot systems. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–3. IEEE (2016)

    Google Scholar 

  46. Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of honeybee aggregation behavior in an artificial micro-robotic system. Adapt. Behav. 17(3), 237–259 (2009)

    Article  Google Scholar 

  47. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Article  Google Scholar 

  48. Kramer, J., Scheutz, M.: Development environments for autonomous mobile robots: a survey. Auton. Robots 22(2), 101–132 (2007)

    Article  Google Scholar 

  49. Liang, J., Cao, J., Liu, R., Li, T.: Distributed intelligent mems: a survey and a real-time programming framework. ACM Comput. Surv. (CSUR) 49(1), 20 (2016)

    Article  Google Scholar 

  50. Lima, P.U., Custodio, L.M.: Multi-robot systems. In: Innovations in Robot Mobility and Control, pp. 1–64. Springer (2005)

    Google Scholar 

  51. Lopes, Y.K., Leal, A.B., Dodd, T.J., Groß, R.: Application of supervisory control theory to swarms of e-puck and kilobot robots. In: International Conference on Swarm Intelligence, pp. 62–73. Springer (2014)

    Google Scholar 

  52. Magnenat, S., Longchamp, V., Mondada, F.: Aseba, an event-based middleware for distributed robot control. In: Workshops and Tutorials CD IEEE/RSJ 2007 International Conference on Intelligent Robots and Systems, LSRO-CONF-2007-016. IEEE Press (2007)

    Google Scholar 

  53. Magnenat, S., Noris, B., Mondada, F.: Aseba-challenge: an open-source multiplayer introduction to mobile robots programming. In: Fun and Games, pp. 65–74. Springer (2008a)

    Google Scholar 

  54. Magnenat, S., Rétornaz, P., Noris, B., Mondada, F.: Scripting the swarm: event-based control of microcontroller-based robots. In: SIMPAR 2008 Workshop Proceedings, LSRO-CONF-2008-057 (2008b)

    Google Scholar 

  55. Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: Aseba: a modular architecture for event-based control of complex robots. IEEE/ASME Trans. Mechatron. 16(2), 321–329 (2011)

    Article  Google Scholar 

  56. Makarenko, A., Brooks, A., Kaupp, T.: Orca: components for robotics. In: International Conference on Intelligent Robots and Systems (IROS), pp. 163–168 (2006)

    Google Scholar 

  57. Manso, L., Bachiller, P., Bustos, P., Núñez, P., Cintas, R., Calderita, L.: Robocomp: a tool-based robotics framework. In: International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 251–262. Springer (2010)

    Google Scholar 

  58. Mataric, M.J.: Interaction and intelligent behavior. Technical report, DTIC Document (1994)

    Google Scholar 

  59. McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In: In 7th International Symposium on Distributed Autonomous Robotic Systems (DARS). Citeseer (2004)

    Google Scholar 

  60. McLurkin, J., Smith, J., Frankel, J., Sotkowitz, D., Blau, D., Schmidt, B.: Speaking swarmish: Human-robot interface design for large swarms of autonomous mobile robots. In: AAAI Spring Symposium: To Boldly Go Where No Human-Robot Team Has Gone Before, pp. 72–75 (2006)

    Google Scholar 

  61. McLurkin, J., Lynch, A.J., Rixner, S., Barr, T.W., Chou, A., Foster, K., Bilstein, S.: A low-cost multi-robot system for research, teaching, and outreach. In: Distributed Autonomous Robotic Systems, pp. 597–609. Springer (2013)

    Google Scholar 

  62. McLurkin, J., Rykowski, J., John, M., Kaseman, Q., Lynch, A.J.: Using multi-robot systems for engineering education: teaching and outreach with large numbers of an advanced, low-cost robot. IEEE Trans. Educ. 56(1), 24–33 (2013)

    Article  Google Scholar 

  63. McLurkin, J., McMullen, A., Robbins, N., Habibi, G., Becker, A., Chou, A., Li, H., John, M., Okeke, N., Rykowski, J., et al.: A robot system design for low-cost multi-robot manipulation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 912–918. IEEE (2014)

    Google Scholar 

  64. Michael, N., Fink, J., Kumar, V.: Experimental testbed for large multirobot teams. IEEE Robot. Autom. Mag. 15(1), 53–61 (2008)

    Article  Google Scholar 

  65. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: Middleware for robotics: a survey. In: 2008 IEEE Conference on Robotics Automation and Mechatronics, pp. 736–742. IEEE (2008)

    Google Scholar 

  66. Mohamed, N., Al-Jaroodi, J., Jawhar, I.: A review of middleware for networked robots. Int. J. Comput. Sci. Netw. Secur. 9(5), 139–148 (2009)

    Google Scholar 

  67. Mondada, F., Franzi, E., Guignard, A.: The development of khepera. In: Experiments with the Mini-Robot Khepera, Proceedings of the First International Khepera Workshop, LSRO-CONF-2006-060, pp. 7–14 (1999)

    Google Scholar 

  68. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.C., Floreano, D., Martinoli, A.: The e-puck, a robot designed for education in engineering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and Competitions, IPCB: Instituto Politécnico de Castelo Branco, vol. 1, pp. 59–65 (2009)

    Google Scholar 

  69. Mottola, L., Picco, G.P.: Programming wireless sensor networks: fundamental concepts and state of the art. ACM Comput. Surv. (CSUR) 43(3), 19 (2011)

    Article  Google Scholar 

  70. Owens, G., Granader, Y., Humphrey, A., Baron-Cohen, S.: Lego® therapy and the social use of language programme: An evaluation of two social skills interventions for children with high functioning autism and asperger syndrome. J. Autism Dev. Disord. 38(10), 1944–1957 (2008)

    Article  Google Scholar 

  71. Parker, L.E.: Current state of the art in distributed autonomous mobile robotics. In: Distributed Autonomous Robotic Systems 4. Springer, pp. 3–12 (2000)

    Google Scholar 

  72. Prencipe, G., Santoro, N.: Distributed algorithms for autonomous mobile robots. In: Fourth IFIP International Conference on Theoretical Computer Science-TCS 2006, pp. 47–62. Springer (2006)

    Google Scholar 

  73. Pugh, J., Raemy, X., Favre, C., Falconi, R., Martinoli, A.: A fast onboard relative positioning module for multirobot systems. IEEE/ASME Trans. Mechatron. 14(2), 151–162 (2009)

    Article  Google Scholar 

  74. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, Kobe, Japan, vol. 3, p. 5 (2009)

    Google Scholar 

  75. Rogers III, J.G., Trevor, A.J., Nieto-Granda, C., Cunningham, A., Paluri, M., Michael, N., Dellaert, F., Christensen, H.I., Kumar, V.: Effects of sensory precision on mobile robot localization and mapping. In: Experimental Robotics, pp. 433–446. Springer (2014)

    Google Scholar 

  76. Rubenstein, M., Shen, W.M.: Automatic scalable size selection for the shape of a distributed robotic collective. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 508–513. IEEE (2010)

    Google Scholar 

  77. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298. IEEE (2012)

    Google Scholar 

  78. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., Nagpal, R.: Collective transport of complex objects by simple robots: theory and experiments. In: Proceedings of the 2013 International Conference on Autonomous Agents and Multi-agent Systems, International Foundation for Autonomous Agents and Multiagent Systems, pp. 47–54 (2013)

    Google Scholar 

  79. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low cost robot with scalable operations designed for collective behaviors. Robot. Auton. Syst. 62(7), 966–975 (2014)

    Article  Google Scholar 

  80. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a thousand-robot swarm. Science 345(6198), 795–799 (2014)

    Article  Google Scholar 

  81. Saeedi, S., Trentini, M., Seto, M., Li, H.: Multiple-robot simultaneous localization and mapping: a review. J. Field Robot. 33(1), 3–46 (2016)

    Article  Google Scholar 

  82. Sapaty, P.: Military robotics: latest trends and spatial grasp solutions. Int. J. Adv. Res. Artif. Intell. 4(4), 9–18 (2015)

    Google Scholar 

  83. Sartoretti, G., Hongler, M.O., de Oliveira, M.E., Mondada, F.: Decentralized self-selection of swarm trajectories: from dynamical systems theory to robotic implementation. Swarm Intell. 8(4), 329–351 (2014)

    Article  Google Scholar 

  84. Schlegel, C., Worz, R.: Interfacing different layers of a multilayer architecture for sensorimotor systems using the object-oriented framework smartsoft. In: 1999 Third European Workshop on Advanced Mobile Robots, 1999 (Eurobot’99), pp. 195–202. IEEE (1999)

    Google Scholar 

  85. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer Science & Business Media (2008)

    Google Scholar 

  86. Smart, W.D.: Is a common middleware for robotics possible? In: Proceedings of the IROS 2007 Workshop on Measures and Procedures for the Evaluation of Robot Architectures and Middleware. Citeseer, vol. 1 (2007)

    Google Scholar 

  87. Soares, J.M., Aguiar, A.P., Pascoal, A.M., Martinoli, A.: A graph-based formation algorithm for odor plume tracing. In: Distributed Autonomous Robotic Systems, pp. 255–269. Springer (2016)

    Google Scholar 

  88. Soares, J.M., Navarro, I., Martinoli, A.: The khepera iv mobile robot: performance evaluation, sensory data and software toolbox. In: Robot 2015: Second Iberian Robotics Conference, pp. 767–781. Springer (2016)

    Google Scholar 

  89. Stampfer, D., Lotz, A., Lutz, M., Schlegel, C.: The smartmdsd toolchain: an integrated mdsd workflow and integrated development environment (ide) for robotics software. J. Softw. Eng. Robot. 7(1), 3–19 (2016)

    Google Scholar 

  90. Stoy, K., Nagpal, R.: Self-repair through scale independent self-reconfiguration. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (IROS 2004). Proceedings, vol. 2, pp. 2062–2067. IEEE (2004)

    Google Scholar 

  91. Tsui, K.M., Yanco, H.A.: Assistive, rehabilitation, and surgical robots from the perspective of medical and healthcare professionals. In: AAAI 2007 Workshop on Human Implications of Human-Robot Interaction, Technical Report WS-07-07 Papers from the AAAI 2007 Workshop on Human Implications of HRI (2007)

    Google Scholar 

  92. Utz, H., Sablatnog, S., Enderle, S., Kraetzschmar, G.: Miro-middleware for mobile robot applications. IEEE Trans. Robot. Autom. 18(4), 493–497 (2002)

    Article  MATH  Google Scholar 

  93. Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., Das, H.: The CLARAty architecture for robotic autonomy. In: Aerospace Conference, 2001, IEEE Proceedings, vol. 1, pp. 1–121. IEEE (2001)

    Google Scholar 

  94. Wang, M.M., Cao, J.N., Li, J., Dasi, S.K.: Middleware for wireless sensor networks: a survey. J. Comput. Sci. Technol. 23(3), 305–326 (2008)

    Article  Google Scholar 

  95. Whittier, L.E., Robinson, M.: Teaching evolution to non-english proficient students by using lego robotics. Am. Second. Educ. 19–28 (2007)

    Google Scholar 

  96. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29(1), 9 (2008)

    Google Scholar 

  97. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of multi-robot coordination. Int. J. Adv. Robot. Syst. 10 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANR/RGC Joint Research Scheme [grant number A-PolyU505/12], the NSFC Key Grant [grant number 61332004], and the NSFC/RGC Joint Research Scheme [grant number N-PolyU519/12].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiannong Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahni, Y., Cao, J., Jiang, S. (2019). Middleware for Multi-robot Systems. In: Ammari, H. (eds) Mission-Oriented Sensor Networks and Systems: Art and Science. Studies in Systems, Decision and Control, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-319-92384-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92384-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92383-3

  • Online ISBN: 978-3-319-92384-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics