
Visualizing Software Architectures
in Virtual Reality with an Island

Metaphor

Andreas Schreiber1(B) and Martin Misiak2

1 Intelligent and Distributed Systems, German Aerospace Center (DLR),
Linder Höhe, 51147 Köln, Germany

Andreas.Schreiber@dlr.de
2 TH Köln – University of Applied Sciences,
Betzdorfer Straße 2, 50679 Köln, Germany

martin.misiak@th-koeln.de

Abstract. Software architecture is abstract and intangible. Tools for
visualizing software architecture can help to comprehend the imple-
mented architecture but they need an effective and feasible visual
metaphor, which maps all relevant aspects of a software architecture and
fits all types of software. We focus on the visualization of module-based
software—such as OSGi, which underlies many large software systems—
in virtual reality, since this offers a much higher comprehension potential
compared to classical 3D visualizations. Particularly, we present an app-
roach for visualizing OSGi-based software architectures in virtual reality
based on an island metaphor. The software modules are visualized as
islands on a water surface. The island system is displayed in the confines
of a virtual table where users can explore the software visualization on
multiple levels of granularity by performing intuitive navigational tasks.
Our approach allows users to get a first overview about the complexity
of the software system by interactively exploring its modules as well as
the dependencies between them.

Keywords: Virtual reality · Software visualization · Software analysis

1 Introduction

Software is abstract and intangible. With increasing functionality, its complexity
grows and hinders its further development. Visualization techniques, that map
intangible software aspects onto visually perceivable entities, help to enhance
the understandability and reduce the development costs of software systems [10].
Over the years a number of two and three dimensional visualization approaches
have been proposed. However, the visualization of software in virtual reality (VR)
still remains a sparsely researched field. While it offers a much higher compre-
hension potential compared to classical three dimensional visualizations, it also
requires a different approach, as the requirements on a usable VR application
c© Springer International Publishing AG, part of Springer Nature 2018
J. Y. C. Chen and G. Fragomeni (Eds.): VAMR 2018, LNCS 10909, pp. 168–182, 2018.
https://doi.org/10.1007/978-3-319-91581-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91581-4_13&domain=pdf


Visualizing Software Architectures in Virtual Reality 169

are much higher than those of a classical desktop application. This is derived
from the substantially higher immersion degree, that this medium can achieve.

We present an approach for visualizing OSGi-based software projects in vir-
tual reality. OSGi (Open Services Gateway Initiative), is a module-based, service-
oriented framework specification for Java. OSGi is widely used in the Eclipse
ecosystem. It centers on application development using modular units, called
bundles. A bundle is a self-contained unit of classes and packages, which can
be selectively made available to other bundles. The OSGi service layer handles
communication between service components, which can reference or implement
specific interfaces [18]. Popular implementations of the OSGi specification are
Apache Felix, Equinox, or Knopflerfish.

Our goal is to provide a high level overview of the underlying software archi-
tecture to the user, while minimizing the experienced simulator sickness and
enabling an intuitive navigation. Although our implementation targets OSGi-
based software, the presented concepts are applicable to a large variety of use
cases, such as other module-based software architectures.

Our main contributions are:

– We present a novel real-world metaphor based on an island system for visu-
alizing module-based software architectures (Sect. 3).

– We present our approach for the exploration of software projects in VR, with
focus on high level comprehension and improvements to user comfort (Sect. 4).

2 Software Visualization

Software visualization is a very large research field. Existing work can be classi-
fied based on multiple categories. A differentiation between static and dynamic
aspects of a software can be made. While dynamic aspects capture information
of a particular program run, static aspects are valid for all execution paths of a
software. Additionally, they can be extended to capture the entire evolution of
a software architecture.

Software visualization can be made on roughly three different levels of
abstraction [7]. While the lowest abstraction level deals with the source code, the
highest abstraction level deals with the entirety of the software architecture and
belongs to the most important in software visualization [1]. They convey the
underlying hierarchical component structure, the relationships between these
components and the visual representation usually contains some form of code
quality metrics.

A software visualization can consist of one or more views. Each view can use
its own visualization approach and can therefore focus on different aspects of
the software. Multi-view, as opposed to single-view approaches, can represent a
broad range of information of varying granularity levels, however at the cost of
imposing a significant cognitive burden and making a communication on common
grounds between users more difficult [17].

Visualizations can be made in the two dimensional and three dimensional
space. While 2D visualizations are easier to navigate and interact with, they



170 A. Schreiber and M. Misiak

do not scale particularly well for large data sets. To avoid a cluttered view, 2D
visualizations rely on multiple views. 3D approaches resort to the added dimen-
sion to increase the information density of the visualization, without exposing
the user to any additional cognitive load, as the task of processing 3D objects
is completely shifted to the perceptual system [13]. They are more effective at
identifying substructures and relationships between objects [5,22] and represent
real-world metaphors more closely.

3 Visual Metaphors and Environment

3.1 Islands

After careful analysis of the requirements the visualization had on the metaphor,
the concept of mapping the software system onto an island metaphor was chosen.
The entire software system is represented as an ocean with many islands on it.
Each island represents an OSGi bundle and is split into multiple regions. Each
region represents a Java package and contains multiple buildings. The buildings
are the representatives of the individual class types which reside inside of a
package. Each region provides enough space to accommodate all of its buildings
without overlapping, and hence the overall size of an island is proportional to
the number of class types inside of a bundle.

The island metaphor provides a hierarchical structure with three different
levels (island, region, and building). The navigation between these layers should
be based on our natural understanding of spatial relationships and be therefore
dependent on the relative size of the elements in the users view frustum. Hence,
the transition between the levels happens implicitly, as the user moves closer or
further away from an element, or the element itself is scaled. This avoids the
introduction of additional complexity into the navigation.

The metaphor is flexible enough to be extended for more than three abstrac-
tion levels. Individual island groups can form archipelagos, which would provide
an additional abstraction level. In the opposite direction, each island region could
be interpreted as a country, which would open up even more possible hierarchical
subdivisions.

The islands metaphor has several advantages for software visualization.
Islands express the aspect of decoupled entities, coexisting in the same environ-
ment very clearly, which makes them a good candidate for representing software
modules. Additionally, islands can be relocated at run-time, while maintaining
a certain plausibility. A software evolution visualization could benefit from this
property, as the island movements would reflect the dependency changes within
the system.

The islands of our visualization metaphor are aimed at having a high resem-
blance to their real-world counterparts and in thus, emphasizing the plausibility
of the metaphor. Each region represents a package and has an irregular, rugged
shape, similar to countries when seen on a map. These regions share borders,
and together, they determine the shape of the island (Figs. 1 and 2). The indi-
vidual cells of a region are designed to provide enough accommodation area



Visualizing Software Architectures in Virtual Reality 171

Fig. 1. (left) A minimal cohesion factor leads to very rugged islands with many holes.
(middle) A very high cohesion factor reduces holes greatly and creates compact islands.
(right) Our dynamic cohesion factor, combined with the claiming of large regions first,
the island preserves some of the ruggedness, yet it minimizes holes.

Fig. 2. A range of different coast shapes, created with specific height profiles.

for buildings to be placed on top. To maximize their perceivability from afar a
multi-storey building representation is chosen. For the implemented prototype,
a Lines of Code metric was chosen, where for every n lines of code, a storey is
added to the building.

Island Construction. The island construction is based on claiming cells in
a Voronoi diagram (analogous to the work of Yang and Biuk-Aghai [23], while
we use a Voronoi diagram instead of a hexagonal grid as the underlying tile
structure). Additionally, no hierarchical claiming is performed, as all regions of
an island are considered equivalent. This reflects the way packages are interpreted
by Java, as the hierarchical naming convention is only relevant from a developers
perspective.

The first step in the construction is to create a Voronoi diagram from a point
distribution. The most aesthetically pleasing islands were achieved with points
exhibiting a blue noise characteristic. In the next step, each package claims
multiple cells of the created Voronoi diagram, corresponding to the number of



172 A. Schreiber and M. Misiak

contained classes. Cells are claimed one at a time and only cells next to already
existing entities can be claimed.

To create rugged and irregular shapes for the package representations, the
cells are selected probabilistically. To avoid non-continuous regions induced by
a random selection mechanism, we employ an estimating function as described
by Yang and Biuk-Aghai [23].

Before a new tile is selected, each eligible cell counts its already claimed
neighbors. If a cell is surrounded with n claimed neighbors, the probability of it
being a hole grows with n. A score Sn is calculated for each candidate, based on

Sn = bn (1)

where b is a user definable cohesion factor. Once the scores are known, a new cell
can be selected, where the probability of each candidate is directly proportional
to its score Sn. Higher b values result in less holes, but also more regular and
compact shapes.

To preserve the rugged appearance of an island, we use a simple extension of
the cohesion factor. Defining bmin and bmax, the cohesion factor can be varied on
a per region basis, depending on their size. While the smallest region is assigned
bmin, the cohesion factor is interpolated towards bmax for larger regions. Addi-
tionally, the regions are claimed in descending order, starting with the largest
package first. This results in islands which contain smaller, irregular regions at
their edge, while the larger, more regular regions reside in the interior (Fig. 1
right). From a usability perspective, this layout is more advantageous for VR
based interaction, as smaller regions are harder to select when surrounded by
larger ones.

Once all packages have claimed their cells, the coast area can be added.
This is done by claiming neighboring cells of the existing island boundary. Each
time the boundary is expanded outwards a new height value is associated with
its cells. A user defined height profile controls this process (Fig. 2), where each
entry expands the coast by one cell and assigns the stored height value. In the
final construction step, a polygonal mesh is generated from all claimed cells in
the Voronoi diagram using triangulation.

3.2 Visualization of Dependencies

Dependencies Between Modules. Due to the architecture oriented focus of
the presented software visualization, the dependencies between individual mod-
ules are of high importance. Building on the island metaphor, an import and
export port is added to each island. These ports are situated along the coast
line and manage the incoming and outgoing dependencies. To visualize them,
two orthogonal types of approaches are considered. An explicit and an implicit
dependency visualization.

Explicit Visualization. Building on the simplicity of straight lines, import and
export arrows (Fig. 3) are used to explicitly visualize the package dependencies



Visualizing Software Architectures in Virtual Reality 173

Fig. 3. Explicit dependency visualization via an arced arrow. The island on the right
imports packages from the bundle on the left.

between bundles. In the geographic context, such arrows are encountered in flow
maps [11] and visualize the movement of various resources or entities, from one
point to another, while the arrow width is proportional to the moved volume.
The resulting dependency visualization is similar to a discrete flow map, as
implemented by Tobler [19]. To reduce the intersection problem of straight lines,
the arrows follow a vertical arc. The start and end points are at the height
of a port, while towards the middle segment the height increases, reaching its
maximum halfway between the anchor points. The arrows maintain throughout a
constant curvature. As a result, longer arrows also span a greater height range. A
color gradient, together with the arrow head indicate the dependency direction.
The width is mapped to the number of packages which are being imported or
exported over the given connection.

Implicit Visualization. We use the island adjacency to implicitly represent the
dependency strength (Fig. 4). The island layout is computed with the help of an
iterative, force-directed graph layout algorithm, based on the work of Eades [3].
In it, nodes are interpreted as particles, which are influenced by attractive and
repulsive forces from other particles. These forces are accumulated and applied
to each particle at the end of the iteration. Attractive forces are exerted between
nodes, which are connected by an edge. The force is dependent on the distance
d between the two nodes and the variables c1 and c2.

Fa = c1 · log(d/c2) (2)

Fa can be interpreted as a spring like force defined by the stiffness factor c1 and
the unloaded spring length c2. In contrast to Eades, who focused on layouts with
uniform edge lengths, we compute c2 on a per edge basis to reflect the relative
dependency strength between the nodes in question as



174 A. Schreiber and M. Misiak

Fig. 4. Island placement based on the presented force-directed layout algorithm. Islands
with the highest dependencies are accumulated in the middle, while independent islands
are pushed outwards.

c2 = c3 · imax

iA + iB
, (3)

where imax is the project wide largest number of bidirectionally imported pack-
ages per edge, iA is the number of packages bundle A imports from B and iB the
number of packages B imports from A. As the dependency between two nodes
increases, the resulting unloaded spring length c2 decreases. The user defined
variable c3 represents the lower bound on the spring length. It should be noted
that Fa is applied to both nodes, only if they are interdependent. If iA or iB is
zero, the attraction force is applied only to one node.

For nonadjacent nodes a repulsion force Fr is introduced.

Fr =
c4
d2

(4)

The repulsion force is described by an inverse-square law, while its relative
strength can be controlled with the user defined variable c4.

Once all forces for a particle have been accumulated, they are applied to
determine the next position of the particle. This is done under the assumption
of a constant time step Δt and a particle mass of m = 1.



Visualizing Software Architectures in Virtual Reality 175

Visualization of Service Dependencies. The main entities of the OSGi ser-
vice layer are service interfaces and service components. As these components
are linked to Java class types, we visualize them as special building types. To
visualize the relationships between the service entities, we introduce the ser-
vice connection node. These nodes hover above the service interface and service
component buildings at a certain height and act as connection points for them.
Each node has a visual downward connection to its parent building in order for
the user to quickly locate its associated service entity. There are three distinct
types of nodes. Service interface (SIN ), service provide (SPN ) and service refer-
ence nodes (SRN ). They are assigned to different service slices, where each slice
resides at a specific height.

SIN nodes assume a central role as they form connections to the other two
node types. All SPNs and SRNs connected to a SIN form a service group and
are members of the same service slice. Only a few service groups are assigned
per service slice. This reduces the visual complexity, as the nodes and their con-
nections are evenly distributed over the available height dimension. Due to this
design, there are no connections going across individual height layers. Connec-
tion crossing can only occur between the service groups that reside in the same
service slice. However even this can be reduced as the individual service groups
are independent and can be assigned to arbitrary slices.

3.3 Virtual Table

We choose a virtual table metaphor to integrate the software visualization into
the virtual environment. The visualization is presented on top of a virtual table
situated in an arbitrary room. The entire content of the visualization is confined
to the extents of the table. In contrast to a real-world scale visualization, which
is more likely to cause a feeling of presence of being inside the data, the table
metaphor allows a more strategic/analytic view of the data. Although the table
size may vary based on user preference, the metaphor itself imposes a restriction
on the size of the visualization space. However this limitation is not a disadvan-
tage, since it enforces to show the visualization in a space saving representation.
While it can be helpful to see the fine grained details of software artifacts, it is the
higher abstraction levels which contribute mostly to program and architecture
comprehension.

The virtual table metaphor provides a transparent transition between indi-
vidual abstraction levels, as the user does not experience any relocation, since
only the visualization in the confinements of the table has to be changed with-
out altering the virtual room around it. This reduces user disorientation and
motion sickness, as the room always provides a stable frame of reference [2,12].
This is especially important for the usability of the system for software compre-
hension, as users can stay longer immersed in the virtual environment without
interrupting their train of thought.

As has been noted in Sect. 3.1, the abstraction levels should be directly con-
nected to the relative scale of the elements, which translates to an up or down
scaling of the visualization itself. If, due to a high scaling factor, parts of the



176 A. Schreiber and M. Misiak

visualization extend beyond the confined bounds of the table, they will not
be displayed. Only content inside of the table bounds is visible. This poses a
problem for the display of fine granular software artifacts while preserving their
surrounding context. However it is the trade-off when using this metaphor.

On the other hand, the limited visualization volume does not force the user
to move around excessively in the virtual environment to view the desired infor-
mation. This makes the metaphor also very suitable for a seated or standing VR
experience, which can improve user comfort and reduce the dependency on VR
hardware capable of precise positional tracking.

3.4 Virtual Environment

Although the entire software visualization is displayed in the compounds of the
table, the enclosing room plays an important role. In order to maintain the plau-
sibility of all “magic” interactions the table is capable of, a futuristic design is
chosen, where the table is augmented with holographic functionality. With the
software visualization interpreted as a hologram, the room for plausible inter-
actions is very large. This functionality is implemented by simply discarding all
rendered fragments of the software visualization, that exceed the table radius.
When designing the environment, we avoided introducing an excessive bright-
ness contrast. This helps in minimizing the “godray” effect, attributed to the
used Fresnel lenses.

4 Interaction and Navigation

To enable the user to fully focus on software comprehension, the cognitive load
introduced by navigating and interacting with the virtual environment must
be minimal. This requires both activities to be intuitive and natural. We build
upon the available positional information of the input devices and integrate all
interaction possibilities into the environment itself. This reduces the reliance on
various button presses and keeps the user interface simple (Fig. 5).

The software visualization appears in the confines of a virtual table, which is
placed inside a room. Due to the use of virtual reality and its inherent naviga-
tional advantages, the user can walk around the table and inspect the visualiza-
tion from different perspectives. However this navigational freedom has its limits
when inspecting elements up close, as the human visual system has a limit to
the distance it can focus on and fuse a stereoscopic image. Therefore it is crucial
to be able to additionally manipulate the visualization itself.

The displayed island system has great resemblance to a cartographic map.
Thus the proposed manipulation scheme should be familiar to the user, from
the usage of digital maps. Our navigational technique encompasses translation,
rotation and scaling. It is very similar to the “Two-Handed Interface” technique
described by Schultheis et al. [15]. In contrast to their work we constrain the rota-
tion to one axis (Fig. 6 bottom). The scaling operation is especially important,
as zooming is directly tied to the transition between the individual abstraction



Visualizing Software Architectures in Virtual Reality 177

Fig. 5. (left) The two service nodes signalize that the component provides, as well as
references a service interface. (middle) The connections to the two service interfaces
are shown. Both are placed at different heights as the blue service interface nodes
are assigned to two distinct service slices. (right) Multiple service connections shown
simultaneously. (Color figure online)

layers of the software architecture. This mode of navigation basically follows a
level of detail scheme, where the elements belonging to a specific layer can be
interacted with, as soon as they are large enough for the user to see and select.

The visualization can be translated along the axis defined by the table plane.
This usually results in left, right, forward, and backward panning, while the
translation in the height dimension given by the table normal is prohibited.
To apply the translation, the user grabs the visualization and drags it in the
direction he wishes to translate, releasing it again when finished.

To perform rotation and scaling, the visualization needs to be grabbed with
both controllers. Once grabbed, a virtual pivot point P is established between
the controllers. Moving the controllers away from P , along the surface plane of
the table, results in a scale increase. Moving them closer towards P decreases the
scale. Both actions can be interpreted as a “stretching” or “compressing” of the
visualization. In order to rotate the visualization, both controllers are moved in a
circular motion around the pivot point. As with a cartographic map, the rotation
is constrained to the axis defined by the normal of the table surface. This control
scheme allows both scaling and rotation to be performed simultaneously, while
P acts as the transformation origin.

Due to the direct manipulation technique, the visualization is more likely to
be interpreted as an object and not as part of the stable reference frame [6],
reducing discomfort upon navigation.

4.1 Displaying Textual Information

Displaying the names of individual elements is a crucial aspect of software visu-
alization, as it establishes a connection to the underlying software artifact.
The display of textual information in a virtual reality environment however,
is a challenging task, due to the severe resolution limitations of current head-
mounted displays (HMDs). For text to be clearly readable, it has to occupy a



178 A. Schreiber and M. Misiak

Fig. 6. Navigational operations: (top) Translation. (middle) Scale. (bottom) Rotation.

significantly larger angle in the users field of view, which prohibits the display
of large quantities of textual information in the virtual world.

Ideally, the user should be able to know which element he is looking at,
without introducing any additional effort. Constantly displaying the text labels
of every element however, is not a good solution. The required text size would
quickly result in cluttered, overlapping labels, which would increase the overall
visual complexity by a large amount. Instead, we display only the text labels of
elements which are being hovered over by the controllers. This provides a better
control and frees up the HMD for performing only navigational tasks, as opposed
to gaze based selection. To display the names of elements further away, a laser
pointer functionality is added.

Each time a label is displayed, it adjusts its scale to take up a constant
amount of display space, irrespective of its actual distance to the user. Thus,
ensuring a consistent readability. However once a label is displayed, it will not



Visualizing Software Architectures in Virtual Reality 179

further change its scale. This allows the labels to be perceived as 3D objects
anchored in the virtual environment.

4.2 Virtual Personal Digital Assistant

While world space anchored text labels are good for displaying object names,
they are not suitable for the display of larger amounts of text. However such a
functionality is greatly needed, as some information are best presented in their
textual form.

A virtual monitor or panel can be anchored somewhere in the environment.
When the user interacts with diverse elements, additional information is dis-
played on this panel. To ensure a good readability, the panel has to be very
large and must be placed somewhere, where it is not occluded by the environ-
ment or vice versa. To avoid the placement problem, we anchor the display to
the virtual body of the user. More specifically, to his hand. This way the panel
avoids occlusion problems through the environment, as the user can reposition
the panel at any time, without any cognitive effort. The benefit of a large infor-
mation storage capacity is preserved, as the close proximity of the panel results
in large viewing angles.

The panel is attached to the non-dominant hand of the user, so it can be inter-
acted with, by use of the dominant hand. This represents a “double-dexterity”
interface, as the interacting hand can be brought to the panel, or the panel
to it (or both) [6]. The panel can be thought of as a virtual Personal Digital
Assistant (VPDA) or tablet (Fig. 7). To avoid unnecessary occlusion and unin-
tentional interactions, the VPDA is disabled per default and has to be explicitly
activated by the user. This is done by turning the underside of the controller,
or the palm of the hand, towards the user. Inside the VPDA, a classical tabs
and windows system is employed, to organize information as well as provide
additional functionality.

Fig. 7. To activate the VPDA, the underside of the controller is rotated into the users
field of view, providing access to additional textual information and functionality.



180 A. Schreiber and M. Misiak

5 Implementation

We developed our software prototype, IslandViz, using Unity3D. The targeted
HMD is the HTC Vive. We validated our approach by visualizing the OSGi-based
software project RCE1. To extract all relevant information from the software we
used a tool based on the work of Seider et al. [16].

6 Related Work

Maletic et al. [8] presented a visualization of C++ code in a virtual environment.
Classes are represented as floating platforms upon which additional geometric
shapes are placed to visualize attributes and methods. While inheritance is imple-
mented via platform adjacency, other dependency types use explicit connections.
The presented system is displayed inside a CAVE environment and showcased
only very simple software systems.

Fittkau et al. [4] proposed an approach for a live trace visualizations using a
city metaphor in virtual reality. The visualization is presented to the user in a
head mounted display (Oculus DK1 ). Since the used hardware does not incorpo-
rate any positional tracking, the visualized content is additionally transformed
via gesture based controls. In combination with a gaze driven pointer, objects
can be selected and interacted with.

Schreiber and Brüggemann [14] introduced an approach for visualizing soft-
ware modules using the metaphor of electrical components. Modules are repre-
sented as blocks and the containing packages are stacked on top of each module.
The stacked modules are visualized in virtual reality by various placement algo-
rithms based on the relationship between modules. Modules and packages can
be selected an interactively explored by showing service modules, classes, and
dependencies between modules and packages.

Recently, Merino et al. [9] and Vincur et al. [20,21] presented a VR visual-
ization for object oriented software (Java, C/C++) using a city metaphor. The
approaches rely on VR hardware capable of positional tracking, as the main
navigational mechanism is physical movement and interaction is based on the
controller positions. In contrast, the main navigational mechanism in our work
is the explicit transformation of the visualization itself and is therefore inde-
pendent of the available physical tracking space. Additionally, we also support
positional tracking.

7 Conclusion and Future Work

We presented our approach for exploring OSGi-based software architectures in
virtual reality. Based on user feedback, we conclude that a software visualization
in VR has great potential in the educational field, as insights into the world of
software development can be, almost casually, conveyed to the public.

1 http://rcenvironment.de/.

http://rcenvironment.de/


Visualizing Software Architectures in Virtual Reality 181

Further evaluation is needed to determine the practicability of the approach
in aiding software comprehension tasks. For this, additional software metrics
and functionality need to be incorporated, to construct more realistic scenarios
of use.

An advantage of the islands metaphor is the presence of the ocean as the
“base plane”, spanning over the individual elements. Water possesses interesting
optical properties, which could be used for filtering tasks. This could allow the
user to reduce the visual complexity by submerging specific islands under the
ocean.

A hand based interaction scheme should be investigated and compared to the
existing controller scheme. Additionally, a hand based interaction would allow
the use of a real physical table prop. This prop would be aligned to the virtual
table and provide a form of passive haptic feedback, which has the potential of
increasing the users presence in the virtual environment.

Due to the choice of the table metaphor, the visualization should be, at least
on a conceptual level, easily portable to an Augmented Reality medium. Its
performance and usability in it, could be the topic of future work.

With the recent release of JDK 9, Java finally receives native support for
modules. With a slight change, IslandViz will be able to visualize a large quantity
of future Java based projects, which is an exciting prospect.

References

1. Caserta, P., Zendra, O.: Visualization of the static aspects of software: a survey.
IEEE Trans. Vis. Comput. Graph. 17(7), 913–933 (2011). https://doi.org/10.1109/
TVCG.2010.110

2. Duh, H.B.L., Parker, D.E., Furness, T.A.: An “independent visual background”
reduced balance disturbance envoked by visual scene motion: implication for alle-
viating simulator sickness. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 85–89. ACM (2001)

3. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160
(1984)

4. Fittkau, F., Krause, A., Hasselbring, W.: Exploring software cities in virtual reality.
In: 2015 IEEE 3rd Working Conference on Software Visualization (VISSOFT), pp.
130–134, September 2015

5. Irani, P., Ware, C.: Diagramming information structures using 3D perceptual prim-
itives. ACM Trans. Comput.-Hum. Interact. 10(1), 1–19 (2003). https://doi.org/
10.1145/606658.606659

6. Jerald, J.: The VR Book: Human-Centered Design for Virtual Reality. Association
for Computing Machinery and Morgan & Claypool, New York (2016)

7. Koschke, R.: Software visualization in software maintenance, reverse engineering,
and re-engineering: a research survey. J. Softw. Maintenance 15(2), 87–109 (2003).
https://doi.org/10.1002/smr.270

8. Maletic, J.I., Leigh, J., Marcus, A., Dunlap, G.: Visualizing object-oriented soft-
ware in virtual reality. In: Proceedings 9th International Workshop on Program
Comprehension, IWPC 2001, pp. 26–35. IEEE Computer Society, Washington,
DC (2001)

https://doi.org/10.1109/TVCG.2010.110
https://doi.org/10.1109/TVCG.2010.110
https://doi.org/10.1145/606658.606659
https://doi.org/10.1145/606658.606659
https://doi.org/10.1002/smr.270


182 A. Schreiber and M. Misiak

9. Merino, L., Ghafari, M., Anslow, C., Nierstrasz, O.: CityVR: gameful software
visualization. In: 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 633–637. IEEE (2017). http://scg.unibe.ch/archive/
papers/Meri17c.pdf

10. Mili, R., Steiner, R.: Software engineering - introduction. In: Revised Lectures
on Software Visualization, International Seminar, pp. 129–137. Springer, London
(2002). http://dl.acm.org/citation.cfm?id=647382.724792

11. Parks, M.: American Flow Mapping: A Survey of the Flow Maps Found in Twenti-
eth Century Geography Textbooks, Including a Classification of the Various Flow
Map Designs. Georgia State University (1987). https://books.google.de/books?
id=mgRENwAACAAJ

12. Prothero, J.D., Draper, M.H., Parker, D.E., Wells, M.J.: The use of an independent
visual background to reduce simulator side-effects. Aviat. Space Environ. Med. 70,
277–83 (1999)

13. Robertson, G.G., Card, S.K., Mackinlay, J.D.: Information visualization using 3D
interactive animation. Commun. ACM 36(4), 57–71 (1993). https://doi.org/10.
1145/255950.153577

14. Schreiber, A., Brüggemann, M.: Interactive visualization of software components
with virtual reality headsets. In: 2017 IEEE Working Conference on Software Visu-
alization (VISSOFT) (2017)

15. Schultheis, U., Jerald, J., Toledo, F., Yoganandan, A., Mlyniec, P.: Comparison of
a two-handed interface to a wand interface and a mouse interface for fundamental
3D tasks. In: 2012 IEEE Symposium on 3D User Interfaces (3DUI), pp. 117–124,
March 2012

16. Seider, D., Schreiber, A., Marquardt, T., Brüggemann, M.: Visualizing modules
and dependencies of OSGI-based applications. In: 2016 IEEE Working Conference
on Software Visualization (VISSOFT), pp. 96–100. IEEE (2016)

17. Storey, M.A.D., Wong, K., Muller, H.A.: How do program understanding tools
affect how programmers understand programs? In: Proceedings of the Fourth
Working Conference on Reverse Engineering, pp. 12–21, October 1997

18. Tavares, A.L., Valente, M.T.: A gentle introduction to OSGI. SIGSOFT Softw.
Eng. Notes 33(5), 8:1–8:5 (2008). https://doi.org/10.1145/1402521.1402526

19. Tobler, W.: Experiments in migration mapping by computer. Am. Cartographer
14, 155–163 (1987)

20. Vincur, J., Navrat, P., Polasek, I.: VR city: software analysis in virtual reality envi-
ronment. In: 2017 IEEE International Conference on Software Quality, Reliability
and Security Companion (QRS-C), pp. 509–516, July 2017

21. Vincur, J., Polasek, I., Navrat, P.: Searching and exploring software repositories
in virtual reality. In: Proceedings of the 23rd ACM Symposium on Virtual Reality
Software and Technology, VRST 2017, pp. 75:1–75:2. ACM, New York (2017).
https://doi.org/10.1145/3139131.3141209

22. Ware, C., Franck, G.: Evaluating stereo and motion cues for visualizing information
nets in three dimensions. ACM Trans. Graph. 15(2), 121–140 (1996). https://doi.
org/10.1145/234972.234975

23. Yang, M., Biuk-Aghai, R.P.: Enhanced hexagon-tiling algorithm for map-like infor-
mation visualisation. In: Proceedings of the 8th International Symposium on Visual
Information Communication and Interaction, VINCI 2015, pp. 137–142. ACM, New
York (2015). https://doi.org/10.1145/2801040.2801056

http://scg.unibe.ch/archive/papers/Meri17c.pdf
http://scg.unibe.ch/archive/papers/Meri17c.pdf
http://dl.acm.org/citation.cfm?id=647382.724792
https://books.google.de/books?id=mgRENwAACAAJ
https://books.google.de/books?id=mgRENwAACAAJ
https://doi.org/10.1145/255950.153577
https://doi.org/10.1145/255950.153577
https://doi.org/10.1145/1402521.1402526
https://doi.org/10.1145/3139131.3141209
https://doi.org/10.1145/234972.234975
https://doi.org/10.1145/234972.234975
https://doi.org/10.1145/2801040.2801056

	Visualizing Software Architectures in Virtual Reality with an Island Metaphor
	1 Introduction
	2 Software Visualization
	3 Visual Metaphors and Environment
	3.1 Islands
	3.2 Visualization of Dependencies
	3.3 Virtual Table
	3.4 Virtual Environment

	4 Interaction and Navigation
	4.1 Displaying Textual Information
	4.2 Virtual Personal Digital Assistant

	5 Implementation
	6 Related Work
	7 Conclusion and Future Work
	References




