Skip to main content

Copper and Zinc

  • Living reference work entry
  • First Online:
Geriatric Gastroenterology

Abstract

Micronutrients (or microminerals) play vital roles in the health and nutrition of older people. Microminerals, or trace minerals, are termed as such due to the low levels present in the diet and similarly low levels in the body. Copper and zinc are two essential microminerals available in the diet; such microminerals or nutrients are required in small amounts of 1–100 mg/day. Trace mineral deficiencies result from use of parenteral nutrition, restrictive or popular diets, and metabolic abnormalities. Copper and zinc are essential elements involved in multiple body functions. Copper is found in food sources, such as legumes, nuts, seeds, organ meats, and whole grains. Total body copper is 100–200 mg, being higher in brain, liver, and kidneys; most of serum copper is bound to ceruloplasmin. Copper deficiency results from major burns, renal replacement therapy, parenteral nutrition, and gastric bypass procedures. Importantly, copper interacts with iron and zinc in the process of intestinal absorption; intake of each element and the body status may influence the absorption of the others. Zinc is a component of various enzyme systems; it is required for protein health, immune function, and wound healing. It is present in meat, sea food, grains, and vegetables. Zinc deficiency occurs from an inadequate diet, inadequate absorption, altered demand, or increased losses. Zinc replacement corrects deficiency in weeks; prolonged therapy may result in toxicity. There appears a relationship between the intake and levels of copper and zinc with respect to cardiovascular health and neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • 2001. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. [Online]. The National Academies Press. Available http://search.nap.edu/nap-cgi/skimchap.cgi?recid=10026&chap=224-257. https://www.ncbi.nlm.nih.gov/books/NBK222310/. Accessed 11 Jan 2010.

  • Agnew UM, Slesinger TL. Zinc toxicity. In: StatPearls. Treasure Island: StatPearls Publishing, StatPearls Publishing LLC; 2020.

    Google Scholar 

  • Almohanna HM, Ahmed AA, Tsatalis JP, Tosti A. The role of vitamins and minerals in hair loss: a review. Dermatol Ther (Heidelb). 2019;9:51–70.

    Google Scholar 

  • Altarelli M, Ben-Hamouda N, Schneider A, Berger MM. Copper deficiency: causes, manifestations, and treatment. Nutr Clin Pract. 2019;34:504–13.

    CAS  PubMed  Google Scholar 

  • Bagheri S, Squitti R, Haertle T, Siotto M, Saboury AA. Role of copper in the onset of Alzheimer’s disease compared to other metals. Front Aging Neurosci. 2017;9:446.

    PubMed  Google Scholar 

  • Baltaci AK, Mogulkoc R, Baltaci SB. Review: the role of zinc in the endocrine system. Pak J Pharm Sci. 2019;32:231–239.

    Google Scholar 

  • Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cellular copper distribution: a mechanistic systems biology approach. Cell Mol Life Sci. 2010;67:2563–89.

    CAS  PubMed  Google Scholar 

  • Barnett JB, Hamer DH, Meydani SN. Low zinc status: a new risk factor for pneumonia in the elderly? Nutr Rev. 2010;68:30–7.

    PubMed  Google Scholar 

  • Barnett JB, Dao MC, Hamer DH, Kandel R, Brandeis G, Wu D, Dallal GE, Jacques PF, Schreiber R, Kong E, Meydani SN. Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2016;103:942–51.

    CAS  PubMed  Google Scholar 

  • Benedictis CA. Chapter 6: the role of trace metals in Alzheimer’s disease. Brisbane: Codon publications; 2019.

    Google Scholar 

  • Berson EL. Nutrition and retinal degenerations. Int Ophthalmol Clin. 2000;40:93–111.

    CAS  PubMed  Google Scholar 

  • Bisaglia M, Bubacco L. Copper ions and Parkinson’s disease: why is homeostasis so relevant? Biomol Ther. 2020;10:1–14.

    Google Scholar 

  • Bogden JD. Influence of zinc on immunity in the elderly. J Nutr Health Aging. 2004;8:48–54.

    CAS  PubMed  Google Scholar 

  • Brewer GJ. Wilson’s disease. In: Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J, editors. Harrison’s principles of internal medicine, 20e. McGraw-Hill Education: New York; 2018.

    Google Scholar 

  • Chan LN. The science and practice of micronutrient supplementations in nutritional Anemia: an evidence-based review. J Parenter Enter Nutr. 2014;38:656–72.

    Google Scholar 

  • Chan LN, Mike LA. The science and practice of micronutrient supplementations in nutritional anemia: an evidence-based review. JPEN J Parenter Enteral Nutr. 2014;38:656–72.

    CAS  PubMed  Google Scholar 

  • Das JK, Salam RA, Mahmood SB, Moin A, Kumar R, Mukhtar K, Lassi ZS, Bhutta ZA. Food fortification with multiple micronutrients: impact on health outcomes in general population. Cochrane Database Syst Rev. 2019;12:CD011400.

    PubMed  Google Scholar 

  • Dastych M. Copper in the feces–a marker for the effectiveness of zinc in the treatment of Wilson’s disease. Z Gastroenterol. 1990;28:389–91.

    CAS  PubMed  Google Scholar 

  • Dibaise M, Tarleton SM. Hair, nails, and skin: differentiating cutaneous manifestations of micronutrient deficiency. Nutr Clin Pract. 2019;34:490–503.

    CAS  PubMed  Google Scholar 

  • Doguer C, HA JH, Collins JF. Intersection of Iron and copper metabolism in the mammalian intestine and liver. Compr Physiol. 2018;8:1433–61.

    PubMed  PubMed Central  Google Scholar 

  • Gabreyes AA, Abbasi HN, Forbes KP, Mcquaker G, Duncan A, Morrison I. Hypocupremia associated cytopenia and myelopathy: a national retrospective review. Eur J Haematol. 2013;90:1–9.

    CAS  PubMed  Google Scholar 

  • Gambling L, Andersen HS, Mcardle HJ. Iron and copper, and their interactions during development. Biochem Soc Trans. 2008;36:1258.

    CAS  PubMed  Google Scholar 

  • Giacconi R, Muti E, Malavolta M, Cipriano C, Costarelli L, Bernardini G, Gasparini N, Mariani E, Saba V, Boccoli G, Mocchegiani E. The +838 C/G MT2A polymorphism, metals, and the inflammatory/immune response in carotid artery stenosis in elderly people. Mol Med. 2007;13:388–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glutsch V, Hamm H, Goebeler M. Zinc and skin: an update. J Dtsch Dermatol Ges. 2019;17:589–96.

    PubMed  Google Scholar 

  • Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system-working in harmony to reduce the risk of infection. Nutrients. 2020;12

    Google Scholar 

  • Haase H, Mocchegiani E, Rink L. Correlation between zinc status and immune function in the elderly. Biogerontology. 2006;7:421–8.

    CAS  PubMed  Google Scholar 

  • Hammond BR Jr, Johnson MA. The age-related eye disease study (AREDS). Nutr Rev. 2002;60:283–8.

    PubMed  Google Scholar 

  • Hedera P. Clinical management of Wilson disease. Ann Transl Med. 2019;7:S66.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heintschel M, Heuberger R. The potential role of zinc supplementation on pressure injury healing in older adults: a review of the literature. Wounds. 2017;29:56–61.

    PubMed  Google Scholar 

  • Hirota K, Hirota T. Nutrition-related bone disease. Nihon Rinsho Jpn J Clin Med. 2006;64:1707–11.

    Google Scholar 

  • Hordyjewska A, Popiolek L, Kocot J. The many “faces” of copper in medicine and treatment. Biometals. 2014;27:611–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hung YH, Bush AI, Cherny RA. Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem. 2010;15:61–76.

    CAS  PubMed  Google Scholar 

  • Hunt JR. Bioavailability of Iron, zinc and other trace minerals from vegetarian diets. Am J Clin Nutr. 2003;78(suppl):633S–9S.

    CAS  PubMed  Google Scholar 

  • Institute of Medicine. Dietary reference intakes for vitamin a, vitamin K, arsenic, boron, chromium, copper, iodine, Iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington (DC): National Academies Press (US); 2001.. Copyright 2001 by the National Academy of Sciences. All rights reserved

    Google Scholar 

  • Iyengar V, Pullakhandam R, Nair KM. Dietary ligands as determinants of iron-zinc interactions at the absorptive enterocyte. J Food Sci. 2010;75:H260–4.

    CAS  PubMed  Google Scholar 

  • Jaiser SR, Winston GP. Copper deficiency myelopathy. J Neurol. 2010;257:869–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama K. Zinc and protein metabolism in chronic liver diseases. Nutr Res. 2020;74:1–9.

    CAS  PubMed  Google Scholar 

  • King D, Siau K, Senthil L, Kane KF, Cooper SC. Copper deficiency myelopathy after upper gastrointestinal surgery. Nutr Clin Pract. 2018;33:515–9.

    PubMed  Google Scholar 

  • Knovich MA, Il’yasova D, Ivanova A, Molnar I. The association between serum copper and anaemia in the adult second National Health and nutrition examination survey (NHANES II) population. Br J Nutr. 2008;99:1226–9.

    CAS  PubMed  Google Scholar 

  • Kondaiah P, Yaduvanshi PS, Sharp PA, Pullakhandam R. Iron and zinc homeostasis and interactions: does enteric zinc excretion cross-talk with intestinal Iron absorption? Nutrients. 2019;11

    Google Scholar 

  • Kosaka K, Yamashita S, Ando C, Endo Y, Taniguchi K, Kikunaga S. Relationships among body mass index, activities of daily living and zinc nutritional status in disabled elderly patients in nursing facilities. J Nutr Sci Vitaminol (Tokyo). 2013;59:420–30.

    CAS  Google Scholar 

  • Kozlowski H, Luczkowski M, Remelli M, Valensin D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases). Coord Chem Rev. 2012;256:2129–41.

    CAS  Google Scholar 

  • Krupanidhi S, Sreekumar A, Sanjeevi CB. Copper and biological health. Indian J Med Res. 2008;128:448–61.

    CAS  PubMed  Google Scholar 

  • Kvamme JM, Grønli O, Jacobsen BK, Florholmen J. Risk of malnutrition and zinc deficiency in community-living elderly men and women: the Tromsø study. Public Health Nutr. 2015;18:1907–13.

    PubMed  Google Scholar 

  • Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30:371–82.

    CAS  PubMed  Google Scholar 

  • Lutsenko S. Human copper homeostasis: a network of interconnected pathways. Curr Opin Chem Biol. 2010;14:211–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahawar KK, Bhasker AG, Bindal V, Graham Y, Dudeja U, Lakdawala M, Small PK. Zinc deficiency after gastric bypass for morbid obesity: a systematic review. Obes Surg. 2017;27:522–9.

    PubMed  Google Scholar 

  • Maret W, Sandstead H. Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol. 2006;20:3–18.

    CAS  PubMed  Google Scholar 

  • Mathys ZK, White AR. Copper and Alzheimer’s disease. Adv Neurobiol. 2017;18:199–216.

    PubMed  Google Scholar 

  • Maxfield L (2020) Bookshelf statpearl from NCBI. https://www.ncbi.nlm.nih.gov/books/NBK493231/

  • Maxfield L, Crane JS. Zinc deficiency [online]. In: StatPearls [internet]. Treasure Island: StatPearls Publishing; 2020. Available https://www.ncbi.nlm.nih.gov/books/NBK493231/. Accessed 5 Dec 2020.

    Google Scholar 

  • Meunier N, O’connor JM, Maiani G, Cashman KD, Secker DL, Ferry M, Roussel AM, Coudray C. Importance of zinc in the elderly: the ZENITH study. Eur J Clin Nutr. 2005;59:S1–4.

    CAS  PubMed  Google Scholar 

  • Mezzaroba L, Alfieri DF, Colado Simao AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology. 2019;74:230–41.

    CAS  PubMed  Google Scholar 

  • Milne DB, Johnson PE. Assessment of copper status effect of age and gender on reference ranges in healthy adults. Clin Chem. 1993;39:883–7.

    CAS  PubMed  Google Scholar 

  • Miyata S. Zinc deficiency in the elderly. Nippon Ronen Igakkai Zasshi. 2007a;44:677–89.

    PubMed  Google Scholar 

  • Miyata S. Zinc deficiency in the elderly. Nihon Ronen Igakkai Zasshi. 2007b;44:677–89.

    PubMed  Google Scholar 

  • Mocchegiani E, Malavolta M, Lattanzio F, Piacenza F, Basso A, Abbatecola AM, Russo A, Giovannini S, Capoluongo E, Bustacchini S, Guffanti EE, Bernabei R, Landi F. Cu to Zn ratio, physical function, disability, and mortality risk in older elderly (ilSIRENTE study). Age (Dordr). 2012;34:539–52.

    Google Scholar 

  • Mohammadifard N, Humphries KH, Gotay C, Mena-Sanchez G, Salas-Salvado J, Esmaillzadeh A, Ignaszewski A, Sarrafzadegan N. Trace minerals intake: risks and benefits for cardiovascular health. Crit Rev Food Sci Nutr. 2019;59:1334–46.

    CAS  PubMed  Google Scholar 

  • Morrell A, Tallino S, Yu L, Burkhead JL. The role of insufficient copper in lipid synthesis and fatty-liver disease. IUBMB Life. 2017;69:263–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nations SP, Boyer PJ, Love LA, Burritt MF, Butz JA, Wolfe GI, Hynan LS, Reisch J, Trivedi JR. Denture cream: an unusual source of excess zinc, leading to hypocupremia and neurologic disease. Neurology. 2008;71:639–43.

    CAS  PubMed  Google Scholar 

  • Nishito YKT. Absorption mechanisms of Iron, copper and zinc: an overview. J Nutr Sci Vitaminol (Tokyo). 2018;64:1–7.

    CAS  Google Scholar 

  • Ohashi W, Fukada T. Contribution of zinc and zinc transporters in the pathogenesis of inflammatory bowel diseases. J Immunol Res. 2019;2019:8396878.

    PubMed  PubMed Central  Google Scholar 

  • Pisano M, Hilas O. Zinc and taste disturbances in older adults: a review of the literature. Consult Pharm. 2016;31:267–70.

    PubMed  Google Scholar 

  • Puchkova LV, Broggini M, Polishchuk EV, Ilyechova EY, Polishchuk RS. Silver ions as a tool for understanding different aspects of copper metabolism. Nutrients. 2019;11

    Google Scholar 

  • Rosenblum H, Wessler JD, Gupta A, Maurer MS, Bikdeli B. Zinc deficiency and heart failure: a systematic review of the current literature. J Card Fail. 2020;26:180–9.

    PubMed  Google Scholar 

  • Santos HO, Teixeira FJ, Schoenfeld BJ. Dietary vs. pharmacological doses of zinc: a clinical review. Clin Nutr. 2020;39:1345–53.

    CAS  PubMed  Google Scholar 

  • Squitti R, Siotto M, Polimanti R. Low-copper diet as a preventive strategy for Alzheimer’s disease. Neurobiol Aging. 2014;35(Suppl 2):S40–50.

    CAS  PubMed  Google Scholar 

  • Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Arch Toxicol. 2005;80:1–9.

    PubMed  Google Scholar 

  • Tako E. Dietary trace minerals. Nutrients. 2019;11:1–3.

    Google Scholar 

  • Taylor AA, Tsuji JS, Garry MR, Mcardle ME, Goodfellow WL Jr, Adams WJ, Menzie CA. Critical review of exposure and effects: implications for setting regulatory health criteria for ingested copper. Environ Manag. 2020;65:131–59.

    Google Scholar 

  • Tubek S. Role of zinc in regulation of arterial blood pressure and in the etiopathogenesis of arterial hypertension. Biol Trace Elem Res. 2007;117:39–51.

    CAS  PubMed  Google Scholar 

  • Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol. 2013;58:585–609.

    PubMed  Google Scholar 

  • Van Den Berghe PVE, Klomp LWJ. New developments in the regulation of intestinal copper absorption. Nutr Rev. 2009;67:658–72.

    PubMed  Google Scholar 

  • Vasilyev VB. Looking for a partner: ceruloplasmin in protein-protein interactions. Biometals. 2019;32:195–210.

    CAS  PubMed  Google Scholar 

  • Vujasinovic M, Hedstrom A, Maisonneuve P, Valente R, Von Horn H, Lohr JM, Haas SL. Zinc deficiency in patients with chronic pancreatitis. World J Gastroenterol. 2019;25:600–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Wang XP. Does Ceruloplasmin defend against neurodegenerative diseases? Curr Neuropharmacol. 2019;17:539–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss GCP. Role of divalent metals in infectious disease susceptibility and outcome. Clin Microbiol Infect. 2018;24:16–23.

    Google Scholar 

  • Yamaguchi M. Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem. 2009;338:241–54.

    PubMed  Google Scholar 

  • Zhao T, Huang Q, Su Y, Sun W, Huang Q, Wei W. Zinc and its regulators in pancreas. Inflammopharmacology. 2019;27:453–64.

    CAS  PubMed  Google Scholar 

  • Zofkova I, Davis M, Blahos J. Trace elements have beneficial, as well as detrimental effects on bone homeostasis. Physiol Res. 2017;66:391–402.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Dharmarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gunturu, S., Dharmarajan, T.S. (2020). Copper and Zinc. In: Pitchumoni, C., Dharmarajan, T. (eds) Geriatric Gastroenterology. Springer, Cham. https://doi.org/10.1007/978-3-319-90761-1_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-90761-1_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-90761-1

  • Online ISBN: 978-3-319-90761-1

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics