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Abstract. Most verification tools find it difficult to prove properties of
programs containing loops that process arrays of large or unknown size.
These methods either fail to abstract the array at the right granularity
and are therefore limited in precision or scalability, or they attempt to
synthesize an appropriate invariant that is quantified over the elements
of the array, a task known to be difficult. In this paper, we present a
different approach based on a notion called loop shrinkability, in which
an array processing loop is transformed to a loop of much smaller bound
that processes only a few non-deterministically chosen elements of the
array. The result is a finite state program with a drastically reduced state
space that can be analyzed by bounded model checkers. We show that the
proposed transformation is an over-approximation, i.e. if the transformed
program is correct, so is the original. In addition, when applicable, the
method is impervious to the size or existence of the bound of the array. As
an assessment of usefulness, we tested a tool based on our method on the
ArraysReach category of SV-COMP 2017 benchmarks. After excluding
programs with feature not handled by our tool, we could successfully
verify 87 of the 93 remaining programs.

1 Introduction

An array processing loop is a common occurrence in programs, and an assurance
of reliability often requires the program developer to prove properties that are
quantified over the elements of the array being processed. This is, in general,
difficult because such programs have huge, at times infinite state space. So while
static analysis techniques like array smashing and partitioning [4,5,11,14,16,
17] fail due to abstractions that are too coarse, attempts with bounded model
checkers or theorem provers that are equipped with array theories [3,8,9,15,18,
22,23] tend to fail for lack of scalability or their inability to synthesize the right
quantified invariants.

In certain situations, the decidability of property checking of finite state pro-
grams can be used to prove properties of infinite state space programs. Consider
a program P and a property ¢ that can be transformed to an abstract finite
state program P’ and a property 1/, such that if the property 1’ holds in P’
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i| #define N 7 i #dgflne N 7
2fmain () 2main () |
2 { 3| int i, m, a[N]={8,4,6,2,11,2,2};
3
J i i 4| unsigned 1i, it[2];
4/ int i, m; L mo- o[01; ic0;

. . ) . _ . ic0;
5 ;ni ZEI(\)I}.{S,4,6,2,11,2,2}, 6/ it[0]=nondet (); it[l]=nondet ();
6 i=0 ’ 7| assume (1 <= it [0] && it [0]1<it[1]);
' iy =) . . . .
5| while (i < N) 8 fér (J._l_O,, 1i < 2 ; li++) |
o | of i=it[li] - 1;

i = ali]- o if (! (1 < N)) break;
10 if (m >= l[l] 1) I if(m >= al[i]l-1) m = a[i]l;
R m = ali]; :
i 12 1++;
12 1++;
13}
i assume (1i==2);
y - 14 ==2);
.. - . < ; i
14 )assert Vje€0..N—1].(m<alj]) s assert Vicit.(m<alt—1]);
15
16| }

(a) Concrete program (b) Abstract program

Fig. 1. Loop shrinking abstraction illustration

then the property v holds in P. Then P’ can be analyzed for v’ to show that 1
holds in P. In this paper we present such a transformation for programs which
process arrays in loops. The property v is usually a V or a 3 property over ele-
ments of the array, but can also be a property over scalar variables modified
in the loop. The transformation replaces the loop that manipulates an array of
possibly large or even unknown size with a smaller loop that operates only on a
few non-deterministically chosen elements of the array.

As an example, consider the program in Fig. 1(a). The loop in the program
purportedly computes in a variable m, the minimum element, denoted min, of
an array a. However, due to a programmer error at line 10 (a[i]-1 instead of
a[i]), the program actually computes the last value in the longest subsequence
aliil,alizol,...,ali,] of the array, such that a[i;] = min, and for any two
consecutive elements afiy] and afig41] of the subsequence, afiry1] < alix] +
1.1 Notice that for ease of exposition, we have used a V to express universal
quantification; in reality, a loop will be used instead. The property holds for the
example because the longest subsequence of the array with the stated properties
is {2,2,2}, and the last element happens to be the same as min. However, the
assertion will fail if, for example, the last two elements of the array are changed
to 3 and 5, so that the longest subsequence is now {2, 3}.

Abstraction based verifiers as well as bounded model checkers fail to verify
this program when the array size is increased to 1000. For example, CBMC 5.8 [§]
reports “out of memory”, when run with an unwinding count of 20. Abstraction
based verifiers like SATABS 3.2 [9] and CPAchecker 1.6 [3] keep on iterating in
their abstraction refinement cycle in search of an appropriate loop invariant, until
they run out of memory. Therefore, it is worthwhile to look for an abstraction

! There is a unique such subsequence for any array.
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of the property checking problem for array processing loops that can be verified
by a bounded model checker (BMC).

Observe that in this program, the assertion will hold if and only if, after
the last index containing the minimum value min, no other index in a contains
the value min + 1. This can be conservatively checked by examining for each
pair of array indices, say k and k + j, j > 0, whether a[k + j] = a[k] + 1. The
computation is effected by selecting a pair of indices non-deterministically and
executing in sequence the loop body with the loop index i first instantiated to k
and then to k + j. The resulting value of m can then be checked for the condition
m < alk] Am < a[k + j]. As we shall see later, it is helpful to think in terms of
iteration numbers instead of array indices; the correspondence between the two
for the present example is that the value at index i of the array is accessed at
iteration number i + 1.

In other words, we compute m for every pair of iterations of the loop, and check
if m satisfies the property for the chosen iterations. For example, the value of m
computed for the iterations numbered 2 and 3 of the loop is 4, and the property
restricted to these two iterations, m < a[l] Am < a[2], is satisfied. On the other
hand, if we change the last two elements to 3 and 5 then the property fails for
the original program. However, we can now find a pair of iterations, namely 4
and 6, such that value of m calculated on the basis of just these two iterations will
be 3, and it will not satisfy the corresponding property m < a[3] Am < a[5], since
a[3] is 2. In summary, if executing the loop for every sequence of two iterations
[i1, 2], i2 > i1, establishes the property restricted to these iterations, then the
property will also hold for the entire loop. Read contrapositively, if the given
program does not satisfy the assertion, then there must be a sequence of two
iterations for which the property will not hold. This is true irrespective of the size
or the contents of the array in the program. Loops which exhibit this feature for
iteration sequences of length k (k is 2in this example) will be called shrinkable
loops with a shrink-factor k.

We create a second program, shown in Fig. 1(b), that over-approximates
the behaviour of the original with respect to the property being checked. The
while loop is substituted with a loop that executes the non-deterministically
chosen iteration sequence stored in the two-element array it. The while
loop in the original program, schematically denoted as while (C) B, is
replaced by a for loop that is equivalent to the unrolled program frag-
ment i=it[0]-1;1f(C){B;i=it[1]1-1;if(C) B}. We call this for loop (or its
unrolled equivalent) the residual loop for the iteration sequence it. The break
statement ensures that the chosen iteration numbers do not result in an out-of-
bounds access of the array, and the assume statement ensures that exactly two
iterations are chosen. Similarly, the given property is also substituted by a residual
property quantified over array indexes corresponding to the same chosen iteration
sequence. CBMC is able to verify the property on this transformed program, as
the original loop, even with a changed bound of 1000, is now reduced to only two
iterations. We call this method property checking by loop shrinking. Needless to
say, the method can only be applied to a program if its shrinkability and shrink-
factor are known. We develop a method to determine both using a BMC.
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Thus the central idea, demonstrated in the rest of the paper, is that over-
approximation using shrinkability is an effective technique to verify properties
of programs that iterate over arrays of large or unknown size. Specifically, our
contributions are:

1. We introduce and formalize a concept called shrinkability for loops that pro-
cess arrays. We show formally that a shrinkable loop with shrink-factor k£ can
be over-approximated by a loop that executes only k non-deterministically
chosen iterations.

2. We provide an algorithm to find the shrink-factor k& for which the loop is
shrinkable.

3. We describe an implementation of the proposed abstraction.

4. We report experimental results showing the effectiveness of the technique on
SV-COMP 2017 [2] benchmarks in the ArraysReach category.

2 Background

We shall present our ideas in the context of imperative programs that consist of
assignment statements, conditional statements, while loops, and function calls.
We assume that conditional expressions have no side effects. We restrict ourselves
to goto-less programs with single-entry single-exit loops. This makes for an easier
formal treatment of our method without losing expressibility.

Let Var be the set of variables in a program P and Val be the set of possible
values which the variables in Var can take. A program state is a valuation of the
variables in Var that is consistent with their declared types. It is represented by
amap o : Var — Val. o(v) denotes the value of v in the program state o.

Property checking will be expressed in a formalism called a Hoare triple and
denoted as {p}P{¢}. Here ¢ and ¢ are first order formulas representing sets
of states, and P is a program. A Hoare triple is said to be wvalid if and only if
starting from an initial state satisfying ¢, the execution of P terminates in a
final state that satisfies ¥. In this paper we shall only consider programs that
are deterministic and guaranteed to terminate. A fact that we shall make use of
is that in the special case when ¢ represents a single program state o. Since our
programs are deterministic, ¥ also will be a unique single state. Therefore, the
invalidity of {o} P{y} is equivalent to the validity of {o} P{—%}.

An iteration sequence is a strictly ascending sequence of numbers, repre-
senting iteration counts. Iterations of a loop are counted starting from 1. The
notation i: T will represent a sequence whose first element is ¢ and the sequence
comprising the rest of the elements is T. Given sequences U and T, we shall
use U C T to mean that U is a strict subsequence of T. Further, we shall write
Pi(T) to denote the set of all k-sized subsequences of a sequence T. For example,
if T=11,2,5] then Po(T) = {[1,2],[2,5],[1, 5]}

Loop acceleration [19] is a commonly used technique for finding loop invari-
ants. It captures the effect of a loop through closed-form expressions that give
the value of variables at the beginning of an iteration in terms of the initial state
and the iteration count. Variables whose values can be expressed in this manner
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are called accelerable. For example, in the program of Fig. 1, the value of the
variable i in the beginning of an iteration j is expressible as j-1. We assume
that we have available tools [12] to identify accelerable variables and their cor-
responding accelerating expressions. While our approach does not require us to
identify all accelerable variables, the precision of the result does depend on the
identification of as many accelerable variables as possible.

Our technique makes good use of bounded model checkers (BMCs). Industrial
strength BMCs exist [8] and are widely used to detect property violations in
safety critical software. Given a program P and a property ¥, a BMC searches
for a counterexample to v in executions of P whose length is bounded by some
integer n. If it finds a counterexample to 1) within the bound, then it reports the
program as being unsafe. However, if it does not find a counter example within
the given bound, then the program cannot be regarded as either being safe or
unsafe. BMCs are, therefore, very effective in finding bugs but not in proving
properties.

3 Programs and Properties of Interest

We focus on programs that process arrays in loops that we assume always termi-
nate. The property to be checked is encoded in a fragment of code that follows
the array processing loop. If the property is expressed as a loop, we denote it
in our discussion as a universally or existentially quantified formula over the
elements of the array. As an illustration, the property checked in the motivating
example is Vj.0 < j < N = m < a[j]. Similarly, the program min2 of Fig.3
checks for the property 35.0 < j < S Amin = a[j]. In particular, we consider
program fragments R ; @ ; ¥, in which R is a simple loop possibly manipu-
lating arrays, @ is a loop free (possibly empty) sequence of statements and
is the property to be checked. We call R ; @ as an array processing loop. In
addition, we assume R has an upper bound on number of iterations which can
be computed through static analysis [10]. The property ¢ is assumed to have
at most one quantifier. We assume that the array-processing loop and the loop
which checks the property have the same number of iterations. Finally, since
the quantified variable ranges over a finite domain (iteration counts of a finite
loop), it is useful to think of ¥ as a set of quantifier-free formulas, connected by
conjunction in the case of V and disjunction in the case of 3.

1 i=1; 7 1=3;

2 if (1 < N) { s if (1 < N) {

3 if (m >= af[i]l-1) m = a[i]; 9 if (m >= a[i]l-1) m = ali];
4 i++; 10 i++;

5 } else n } else goto loop_exit;

6 goto loop_exit; 2 loop_exit: ;

Fig. 2. Residual loop for iteration sequence [2,4] for the program in Fig. 1
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3.1 Residual Loop and Residual Property

Consider a program P consisting of an array processing loop L = while(C){B}Q
followed by code that checks the property 1. Let T'=[j1,j2, ..., jn] be an arbi-
trary iteration sequence of the loop. We define the residual loop for the iteration
sequence T, denoted as Ly, as the statements {S;,;5;,;...5;,; Lloop_exit:Q},
where each S;, is {A4;, ; if(C){B} ; else goto loop_exit;}. Here A, is the
sequence of statements assigning to each accelerable variable the correspond-
ing expression defining its value at the beginning of iteration j.. Obviously, for
T = j: T with T being nonempty, Ly = Sj; L. As an illustration, the code
fragment in Fig. 2 is the residual loop for the iteration sequence [2,4] for the pro-
gram in Fig. 1(a). If the loop iterates for a maximum of N times, then [1,2,..., N]
will be called the complete iteration sequence of the loop. It is obvious that, the
residual loop Ly 2. n] represents an unrolling of L and the two are semantically
equivalent. Similarly, for the iteration sequence T'={[j1, j2, ..., jm] and the prop-
erty ¥, we define the residual property ¥ 1 as a conjunction or disjunction of a set
of clauses {¥;,,¢j,, ..., ¥}

Let us represent the set of initial states at the beginning of the loop L as .
Then the set of states at the beginning of an iteration numbered ¢ would be given
by sp(S1; Sa; ...Si—1, @), the strongest post-condition of Sy; Sa; ...S;—1 wrt . How-
ever, we sometimes have to estimate these set of states in the context of an arbi-
trary iteration sequence T that contains iteration ¢ and in which the sequence of
iterations preceding i is not exactly known. Therefore, instead of the earlier exact
calculation, we over-approximate the set of states at the beginning of iteration 7,
denoted ¢;, through the recurrences 1 = ¢, and ¢; = sp(S;—1,pi—1) U pi_1.
The additional term ¢;_; in the union accounts for the possibility that the itera-
tion ¢ — 1 may not precede ¢ in T, and therefore the set of states at the beginning
of ¢ should also include the states at the beginning of ¢ — 1.

i|int i, min, al[S]; i|int i, m, al[S];

:lmin = a[0]; i=1; :lm = a[0]; i=0;

;lwhile (i< S) { ;lwhile (i < S){

4 if (a[i] < min) min = aflil; 4 if(m >= a[i]-1) m = al[i];
5 it++; 5 i++;

6| } 6| }

7lassert 3j€[0..S—1].(alj]==min); 7lassert Vj€[0..S—1].(m<alj]+d);

(a) Program min2 (b) Program Imin

Fig. 3. Examples showing property loops

4 Shrinkability of Loops

We now characterize the conditions under which the behaviour of an array-
processing loop L with respect to a property ¢ can be over-approximated by
a residual loop Ly with respect to the corresponding residual property vy,
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where the iteration sequence U consists of fewer (non-deterministically chosen)
iterations than the iterations in the original program, i.e. ULC [1,2,..., N].

Definition 1. (Shrinkable loops) Consider a program consisting of a loop L and
a property ¢ to be checked. Let T represent the complete sequence of iterations
of the loop. The loop is said to be shrinkable with respect to ¢ and with a shrink-
factor k, 0 < k < |T|, if and only if, starting from any state o € ¢, the loop L
satisfies 1 whenever the residual loops Ly of each k-length subsequence U of T
satisfy the corresponding residual property V. Formally:

Vo € : (VU e PR(T) :{o}Lv{pv}) = {o}L{y}) (1)

It will often be useful to read the formal description above in a contrapositive
manner, i.e. starting from a state in ¢, if the loop L fails to satisfy 1, then the
failure is also witnessed by a k-length sequence U whose residual loop Ly also
fails to satisfy the corresponding residual property 1 yy. Note that executions of
both L and Ly begin with the same state in ¢.

A shrinkable loop with a shrink-factor k will be called k-shrinkable. If we
know that a loop is k-shrinkable, we can construct an abstract program that
non-deterministically chooses an iteration sequence of size k, runs the residual
loop and then checks the corresponding residual property. If the residual prop-
erty holds, then shrinkability guarantees the correctness of the original program.
However, a counter-example in the abstract program does not necessarily imply
a violation of the property in the original program, except in situations described
below.

In the absence of loop-carried dependences [1], the values assigned to variables
that are not accelerable, in any iteration are independent of the values assigned
in any other iteration. In addition, consider the case when the array elements
accessed in ith iteration of the array-processing loop are also asserted in ;. In
this situation, if the original program P violates the property v, in particular the
clause, say t;, then the program consisting of the residual loop L, constructed
on the basis of the only iteration 7, will also violate the residual clause 9| ;1. Thus
a loop without loop-carried dependences is 1-shrinkable. More significantly, if the
property being tested for such programs is universal, the converse is also true, i.e.
if the residual loop corresponding to a sequence consisting of a single iteration
violates its residual property, then the original program will also not satisfy its
specified property.

Note that according to Definition 1, if a program P satisfies its property
1, then the loop constituting the program is k-shrinkable for any shrink-factor
k > 0. Similarly, a loop with a bound of m iterations is trivially m-shrinkable.
Obviously, if the shrink-factor is small, then the abstract program with a smaller
length iteration sequence loads the verifier to a lesser extent and thus offers
greater chances of verifier returning with an answer. Therefore, we are interested
in finding shrink-factors that are much smaller than the loop bound.

However, finding out whether a loop is shrinkable is difficult as we illustrate
through an example. Consider the two programs min2 and 1min in Fig. 3 which
are similar in structure and in the nature of what they compute. The program
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min2 computes the minimum of the array and is correct with respect to the
asserted property. Thus the loop in the program is k-shrinkable for all k& from
1 to S. The second program lmin is similar to our motivating example with a
property that asserts that the final value of m does not exceed any array element
by more than a value d. The reader can verify that this property does not hold
for d < S — 1.2 It turns out that the loop in 1min is shrinkable with a shrink-
factor k = d + 2. This illustrates the difficulty of analytically finding whether
a given loop is shrinkable, and based on the development in rest of this section,
we shall suggest an empirical method in Sect. 5.

4.1 Identifying Shrinkable Loops

While Definition 1 lays down the consequences of a loop being shrinkable, it does
not provide a convenient method to decide whether a loop is shrinkable and find
the shrink-factor. To get around this problem, we first extend the notion of
shrinkability from loops to arbitrary iteration sequences. We then identify the
conditions under which the shrinkability of smaller iteration sequences (that are
checked explicitly) would imply the shrinkability of larger iteration sequences
and eventually of the entire loop.

Definition 2. (Shrinkable iteration sequence) Consider a program consisting of
a loop L and a property 1 to be checked. Let T be an iteration sequence, and let
j be the first iteration in T. The sequence T is k-shrinkable with respect to v,
0 < k < |TJ, if and only if, starting from every state o € ;, the residual loop Lt
satisfies the residual property 1 whenever the residual loops Ly of each k-length
subsequences U of T satisfy the corresponding residual property ¥ y. Formally:

Vo € g (VU € Pr(T) : {o}Lu{yv}) = {o}Lr{vr}) (2)

The only difference between the notion of shrinkability of a loop and an
iteration sequence is the starting state o, which, in this case, is from the set ;.
Recall that ¢; is an over-approximation of the set of states at the beginning of
iteration j in the residual loop of any iteration sequence that contains j. As in
the case of loops, by k-shrinkable sequence we shall mean a shrinkable sequence
with shrink-factor k. It is obvious that, if the sequence consisting of all iterations
of a loop is k-shrinkable then the loop itself is k-shrinkable.

As an illustration of an iteration sequence that is not shrinkable, consider the
program 1lmin in Fig. 3(b) with d = 0. Consider the array a with its initial two
elements as {0,1} and the iteration sequence T = [1,2]. The residual loop of T
computes m = 1 for which the residual property 1+ does not hold (m > a[0]).
However, the residual loop for every 1-length sequence satisfies its residual prop-
erty, and thus T is not 1-shrinkable. Also notice that when d = 0, the program
is the same as the motivating example in Fig.1 except for array initialisation.
Thus, from the observations in Sect. 1, every iteration sequence of length 3 is
2-shrinkable.

2 Observe that, starting with the second element of the array, if the value of each
element exceeds the value of the previous element by 1, then m will exceed the first
element by S — 1.
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4.2 Conditions Guaranteeing Shrinkability of Loops

We are interested in a method which guarantees that a loop is shrinkable by
examining iteration sequences up to a given length. More specifically, we are
interested in a pair of numbers n and a k, such that the k-shrinkability of all
sequences of length between k + 1 and n would imply the k-shrinkability of any
sequence longer than n—in particular, the complete sequence of iterations com-
prising the loop. If we can identify the conditions under which we can find such
a pair, then our strategy would be to establish the k-shrinkability of sequences
up to n empirically, and the k-shrinkability of all iteration sequences with lengths
greater than n will follow.

Since empirical verification of k-shrinkability for all subsequences of length
between k+ 1 and n would be costly, we shall consider the case where n = k+1,
i.e. we shall empirically find a k£ such that all k£ + 1 length iteration sequences
are k-shrinkable. The identified conditions will then ensure the k-shrinkability of
sequences larger than k£ + 1. Notice that the generalization from &k + 1 to larger
sequences does not happen unconditionally. As an example, consider the program
lmin in Fig.3(b). For d=2, all the iteration sequences of size 3 are 2-shrinkable
but not all sequences of size 4 are 2-shrinkable.

To derive the required conditions, let us examine what it takes to ensure
the k-shrinkability of a sequence of length k + 2, given the k-shrinkability of all
sequences of length k+ 1. For simplicity of exposition, we shall limit ourselves to
conjunctive properties. The treatment for disjunctive properties is very similar,
and we shall merely touch upon it later in this section.

Consider an iteration sequence T of size k + 2, represented as j : T’. Obvi-
ously, T’ being of size k + 1, is k-shrinkable. Taking a contrapositive view of the
condition for shrinkability, assume that starting from o, the residual property ¥ 1
is violated for the program Ly i.e. {o}Lr{—%r} is true. Given that all sequences
of length k+1 are k-shrinkable, it suffices to find a subsequence T” = T of length
k+1 such that {o} Ly~ {—t 7~} is true. k-shrinkability will then ensure that there
is a k-length subsequence U C T” C T such that {c}Ly{—ty}. Let the state
after the iteration j in the sequence be o’. Clearly {0’} L {—tp) V —¢1/} is
true.

1. Consider the case when 17/ is violated. Since T’ is k-shrinkable, it is possible
to find a k-length subsequence U within T’ such that starting from o', vy
would be violated after Ly. Now consider the iteration sequence T = j: U.
Clearly, starting from o, ¥~ would be violated after executing Ly, and
thus the k + 1-length sequence that we want is T”.

2. Now suppose that ¢ is violated only because the clause ;] is violated.
There are two subcases to be considered. In the first, assume that the violation
of 4,1 also shows up in the state after iteration k + 1. In this case the 7"
that we want is the (k + 1)-length prefix of T.

3. The interesting case is when the violation of ¢ 1 is solely because of ¢}, and
this violation of 1[;; does not show up in the state after iteration k + 1. In
this case, the definition of shrinkability, in its current form, does not enable
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us to produce the required sequence T”. To remedy this, notice that for
the subsequence T, there is an iteration in the past, namely j, whose clause
;) has been violated. If we revise the definition of k-shrinkability of iteration
sequences (Definition 2) to ensure that this violation also shows up at the end
of some k-length subsequence U’ of T’, then we are done. The required k + 1-
length subsequence T in this case would be j : U’ for which {o} L+ {-9) 7~}
would be satisfied.

We call the modification introduced above as past-preservation. The revised
definition of shrinkability that includes past-preservation is presented below.

Definition 3. (Shrinkable iteration sequence, revised) Consider a program con-
sisting of a loop L and a property 1 to be checked. Let T be an iteration sequence,
and let j be the first iteration in T. In addition, let i stand for any iteration before
j. The sequence T is k-shrinkable with respect to a property v, 0 < k < |T|, if and
only if, starting from every state o € @; the residual loop Lt satisfies r A4
whenever the residual loops Ly of each k-length subsequences U of T satisfy the
corresponding property Yy A ;1. In other words:

Vo €, Y0 <i<j: (YU € Pu(T): {o}Lu{vu Avr)}) = {o}Lr{vr Ay} (3)

A contrapositive reading of the revised condition for shrinkability of T says
that if an execution of L with initial state o results in a violation of its residual
property ¢ or the clause ¢(;; corresponding to a past iteration ¢, then there
exists a k-length subsequence U of T such that execution of Ly with the same
initial state also violates 1 ¢y or ¢;;1. Henceforth we will consider this to be the
definition of shrinkability of iteration sequences.

As a technical point, notice that we include 0 as a possible value of a past iter-
ation. Otherwise, any sequence that starts with iteration 1, would have an empty
set of past iterations and the condition of k-shrinkability would be vacuously true
for the sequence. We therefore include 0 as a past-iteration and define ¥4 to
be true. A pleasing consequence of this is when the iteration sequence consists of
all the iterations of a loop, the revised definition that includes past-preservation
also coincides with the definition of shrinkability of loops (Definition 1).

Consider the example Imin in Fig.3(b) with S = 5 and d = 1. Not all
sequences of length two are 1-shrinkable by the revised definition. To see this,
consider the case of an array a as {2,1,2,3,4}. Let T be [4,5] and take past
iteration 7 as 1. Let m be 2in a state o. Then Yri1=m < al0] +1 =m < 3.
Clearly, starting from state o, for the residual loops of size 1 subsequences U,
i.e. [4] and [5], the resulting m will be 3 and 2 respectively and v}, A ¢y is
satisfied. But starting from the same state o, the residual loop L, will produce
m = 4, and therefore ¢ ;1 A7 is not satisfied. On the other hand, it is easy to
see that, for the same d, all the sequences of size 4 are 3-shrinkable.

We now formally prove the result that we have been working towards: For a
loop to be k-shrinkable, it is enough if every iteration sequence of size k + 1 is
k-shrinkable. Our method of determining shrinkable and the shrink-factor will
make use of this important result.
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Theorem 1. An array processing loop is k-shrinkable with respect to a property
Y, if every iteration sequence of size k + 1 is k-shrinkable with respect to .

Proof. To show that the loop is k-shrinkable, it is enough to show that the
complete iteration sequence of the loop is k-shrinkable according to Definition 3.
However, we shall show a stronger condition that all sequences of size greater
than k are k-shrinkable. The proof is by induction on the length n of an iteration
sequence T of the loop. For the base case n = k + 1, the k-shrinkability of T
is a given in the statement of the theorem. Now let n be greater than k£ + 1
and assume as the induction hypothesis that every sequence of length less than
n is k-shrinkable. Let T = j : T’. As usual, we take a contrapositive view
of the shrinkability condition and assume that for some past iteration i of T,
starting from a state o € ¢;, the property ¢;] A fails after executing Lz i.e.
{o}Lr{—s1 V =7} is true. We show that there exists a k-sized subsequence
UL T such that {o}Ly{—¢;;)V -y} is true.

Since Ly = Sj; Ly and ¢p = 1/)[J] A Y7, we have {O’}Sj;LT/{—'ﬁ)[i] V
=5 V ). Assume that starting with o, the state reached after execut-
ing S;, the loop body for the iteration j, is o1, i.e. {c}S;j{o1}. We then have
{o} Lo { =iV =} NH{o1} Lo { =y V 7 }. We show the existence of the
desired U by assuming that the first disjunct is true. Since ¢ and j are both
past iterations for T, the proof in the case in which only the second disjunct is
true is similar. Assume that the first iteration of 7" is j'. Obviously o1 € ¢;.
Since T is k-shrinkable, we must have a k-sized subsequence U’ T’ such that
{o1} Ly {—p vV =y} is true. Tt follows that {o}S;; Ly {—¢};) V ¢y} and
therefore {o}Sj; Ly {—p) V —~bp;1 V by} are also true. Let T" be j : U’. Obvi-
ously, 7"  T. Since the size of T" is k+ 1, T" is k-shrinkable by the induction
hypothesis and therefore there exists a k-sized subsequence U = T"C T such
that {o} Ly{—=%p;) V =¥y} holds. ]

For a disjunctive property 1, the definition (3) of sequence shrinkability,
changes as follows:

Vo € ¢;,¥0 < i <j: (QU € Pe(T): {o}Lv{vu Vi) = {o}Le{tr vV}  (4)

Theorem 1 applies to disjunctive properties as well, and the proof is similar.

5 Determining Shrinkability and Property Checking

We now show how Theorem 1 can be used to empirically determine whether a
given loop is shrinkable and also find the corresponding shrink-factor. Starting
with 1, we repeatedly construct the program shown in Fig. 4 for successive values
of k, the candidate shrink-factor, and feed it to a bounded model checker for
verification. If the program is verified to be correct for some value of k, then
Theorem 1 guarantees that the loop in the given program is k-shrinkable. The
constructed program depends on k, the loop L and the property to be verified,
1. The process stops when we either find a k for which the loop is shrinkable
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(success), or we reach a predefined limit [ that is dependent on the available
time and computing resources (failure). As we shall see in Sect. 6, the shrink-
factors for shrinkable loops are usually small. This is a favourable situation,
since programs with a smaller shrink-factors are relatively easier to verify than
programs with larger shrink-factors.

5.1 Checking Shrinkability of an Iteration Sequence

Recall that according to Theorem 1, a loop is k-shrinkable, if every iteration
sequence of length k + 1 is k shrinkable. In addition, with our assumption that
the loop has a statically computable upper bound of number of iterations, the
number of such iteration sequences will be finite. Given a candidate k, the pro-
cedure check_loop in Fig. 4 non-deterministically chooses an iteration sequence
T of length k+1, and attempts to verify that 7T is k-shrinkable. This is done in
the procedure check_iter_seq, which encodes the criterion for sequence shrink-
ability, as given by Definition 3. The construction shown applies to conjunctive
properties; disjunctive properties can be handled in a similar manner.

check_iter_seq(T)
{

j = h T; 1 = ;
check_1oop (k) Jj ead(T); 1 nondet () ;

{
choose an arbitrary
iteration-sequence
T of size k+1
check_iter_seq(T);

1
2
3
4 assume (0 <= 1 < j);

5 X_initial= nondet (); c = true;
6 for each k sized UCT {

7 X = X_initial; Ly; c=¢(i)A\¢Yu
3 if (!c) break;

4 o B W W =

o }
! 10 X = X_initial ; Lp; r=’¢1(i)/\1,/)'1'
(a) Checking loop shrinkability n|  assert(c==r);

(b) Checking sequence shrinkability

Fig. 4. Program construction for determining shrinkability. Note that X and X_initial
are vectors of variables, and nondet (), accordingly, generates a vector of values.

Assume that the given program consists of an array processing loop L of
the form while(C){B}; @ followed by the assertion assert(¢). Let X denote the
vector of variables which may be modified (by resolving dereferences, if any, using
a safe points-to-analysis) in the loop body B. Recall that the implication in the
criterion for shrinkability is required to hold for all states in ¢;, where j is the
head of sequence 7. The states in ¢; are over-approximated by assigning non-
deterministic values to X (through X_initial). Thus our process of determining
shrinkability is conservative and a future extension to this work would be a static
analysis to obtain a better approximation of ;.

The loop in lines 6-9 checks the antecedent (YU € Pi(T).{o} Lu{tv Api})
in the implication in the shrinkability condition (Definition 3), and stores the
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result in c. This loop executes a maximum of k + 1 times, the number of sub-
sequences of T' of size k. Line 10 checks the consequent {o}L7{t7 A t;1} of
the same implication, and stores it in r. Finally line 11 checks the condition for
shrinkability, given by the implication ¢ = r itself. Observe that the residual
loop for each subsequence U and the residual loop for the sequence T are all
evaluated in the same state denoted by the values of the variables in X_initial.
It is clear that the program shown in Fig.4 can be automatically constructed
for any given k, L, and 1.

The fact that shrinkable loops usually have a low shrink-factor has two conse-
quences for the procedure to determine shrinkability: (i) it allows us to keep the
number [ till which a program is tested for shrinkability at a low value without
the fear of missing out many shrinkable programs, and (ii) since the for loop in
lines 6-9 has a bound of k£ + 1, and k is smaller than [, the shrinkability testing
procedure is fairly efficient.

5.2 Property Checking for Shrinkable Loops

Once we discover that the loop of a program is k-shrinkable, we construct an
abstract program that consists of a program fragment to non-deterministically
choose a k-sized iteration sequence T, a residual loop Lr, and a residual property
1. The abstract program is submitted to a BMC for verification. The moti-
vating example of Fig. 1 illustrates the nature of the abstract program, and it is
easy to generalize and automate the process of abstraction to arbitrary programs
that are within the scope of our method.

Since the quantified property is also encoded as a loop, the residual property
can also be constructed as a residual of this loop. Consider a program with a loop
L for which the residual has to be constructed with respect to a k-length itera-
tion sequence. Assume that the maximum iteration count of the loop is m. Let
ale] be an arbitrary expression involving an array a of size n. Also assume that
the index expression e is accelerable and is of the form f(i), where i € [1..m]
represents a particular loop iteration, and f is the acceleration function. The
abstract program non-deterministically chooses a k-length iteration sequence,
whose elements are in the range [1..m]. The iteration sequence is concretely rep-
resented as an array. A loop iterates over all the values of the iteration sequence.
The expression ale] in the loop body is replaced by the corresponding accelerable
expression a[f(i)].

To make this clearer, consider the example in Fig. 5(a). Assume that the size
p of the array is more than (n+1)/2. The loop initializes the array element a[t]
with the value 2*t. Assume that the loop is k-shrinkable for some property. The
maximum iteration count m for the loop is (n 4 1)/2. The code in Fig.5(b),
written in a C-like notation, is an abstract description of the residual loop. The
call to init initializes the array T with a non-deterministically chosen k-length
iteration sequence. The C-style comment indicates the constraints on the chosen
iteration sequence T. The conditions 1 < T[I-1] < T[l] and 0 < 2% (T[I]1-1) <n
together ensure that the iteration sequence consists of increasing values in the
range [1...m], and the condition T[I]-1 < p ensures that the chosen values do
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not cause an out-of-bounds access of the array. The for loop covering lines 7 to
11 iterates over the elements in T. Inside the loop body, i and j are computed
through acceleration functions applied to the iteration numbers picked from T.

In practice, the constraints on the values in T would be enforced program-
matically, and this is shown in Fig.5(c). Here an increasing sequence of values
are chosen, and the constraint that the chosen values are in the range [1..m] is
enforced through the the conditional break. Similarly, the constraint that the
index of a does not exceed its bound is enforced through the assume at line 8.
Finally, assume (1==k) ensures that the residual indeed iterates k times and does
not break out of the loop earlier.

Our method can also be used when the program consists of a cascaded series
of simple loops that can be coalesced into one simple loop. To elaborate, let the
program be {Q1; R1; Q2; Ro; Q3; Rs}, where the @;s are loop-free statements and
the R;s are simple loops of the form while (C;) {B;}. Our method can handle
such a program, if it can be transformed to a semantically equivalent program
Q; while (C) {By; Bg; B3} for some loop-free statements, @, and condition C.
Even this simple strategy enabled us to verify 50 of the 81 programs with non-
nested multiple loops in the SV-COMP 2017 benchmark suite. However, our
method, in its present form, cannot handle nested loops.

i|int al[p]l,1i=0,t=0,T[k]; 1|int alpl, T[k], 1, i=0, t=0;
2 init (T) ; 2 init (T) ;
i|int alpl; 3| //NlEL. k-1, sl //NVleEl. k-1, 1<T[I-11<TI[l]
2lint 1=0,t=0; |4 // 1<T[-1]1<TI[I] 4| for (1=0;1<k;1++) {
slwhile (i < n) |s|// 0<2x(T[l]1-1)<n 5 o= TI[1l]; 1 = (3-1)%2;
4 { o // THI-1<p of t = 3J-1;
5 alt] = 1i; 71 for 7 in T { 7 if (! (i < n)) break;
6 1i+=2; t++; |3 i = (3-1)+2; 8 alassume (0<=t<p),t] = 1i;
7]} 9 t = j-1; altl=i; 9 i+=2; t++;
10 i+=2; t++; 0] }
(a) Given program al} 1| assume (1==k) ;
(b) Abstract description of residual (c) Residual as generated by the tool

Fig. 5. Example illustrating the residual of a shrinkable loop. Program in (b) is an
abstract description of the residual, presented for ease of explanation

6 Implementation and Measurements

The proposed abstraction has been implemented in a tool called Veridbs [7].
Within the scope of our method, i.e. a single loop followed by the property to
be checked, the tool supports most C constructs including pointers, structure,
arrays, heaps and non-recursive function calls. It uses LABMC [12] to discover
index expressions that can be accelerated and CBMC 5.8 as the bounded model
checker to determine shrinkability of the loop and to check the residual property
on the abstracted program. If a loop is not found shrinkable within a candidate
shrink-factor of 5, we report the shrinkability of the loop to be unknown. Given a
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program with a shrinkable loop, if the verification of the corresponding abstract
program succeeds on the residual property, the tool declares the original program
to be correct with respect to the given property. On the other hand, if the
verification of the abstract program fails and the loop in the program has no loop-
carried dependencies, the original program is declared to be incorrect. Otherwise
the tool indicates its inability to decide on the correctness of the program.

6.1 Experiments

An early version of the tool Veridbs competed in the SV-COMP 2017 verifica-
tion competition [2], where it ranked third amongst the 17 participating tools
in the ArraysReach category. We have re-run the current version on the same
benchmark. We ran the experiment on a machine with two i7-4600U cores @2.70
GHz and 8 GB RAM. ArraysReach consisted of 135 programs, of which 95 are
correct and the remaining 40 incorrect with respect to their properties. Table
(a) of Fig. 6 categorizes these programs. 42 of the 135 programs were beyond the
scope of VeriAbs because they either contained nested loops (12 programs) or
contained multiple loops which were not collapsible (30 programs). Out of the
remaining 93 programs, 89 programs were 1-shrinkable, 2 were 2-shrinkable, and
while our tool could not find the shrinkability of the remaining 2 programs, we
manually found those to be non-shrinkable.

Figure 6(b) gives the verification results of the 91 shrinkable programs. All
correct programs except one were verified successfully. Moreover, none of the 26
incorrect programs were declared to be correct, demonstrating the soundness of
our tool. 23 of these 26 incorrect programs also had no loop carried dependency,
and thus the tool could rightly declare these as being incorrect. For the remaining
3 programs our tool remained indecisive. The timing data shows the average
time taken in verifying each program. As expected, the bulk of time is taken in
determining shrinkability, as the BMC has to verify O(k?) residual programs to
determine that the shrink-factor is k, while property checking of the abstract
program involves a loop with just k iterations. Given the limits of the machine
configuration, the timings are reasonable.

Programs True |False|Total Results on #Cases|Average time per program
With nested loops |5 |7 12 shrinkable programs (in seconds)
With non-collapsible u 6 30 Checking |Total
multiple loops shrinkability
Shrinkable 65 |26 |91 Property declared correct |64 30.60 39.68
Shrinkability LI 2 Property declared incorrect|23 10.72 19.73
unknown Unable to decide 4 227.26 236.06
Total 95 140 |135 Total 91 34.22 43.27

(a) Programs categories (b) Property verification results

Fig. 6. Experimental results for SV-COMP 2017 ArraysReach benchmarks
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An interesting property of Veriabs is that, while it is limited by its ability
to deal only with shrinkable loops, once a loop is discovered to be shrinkable,
the method is impervious to either the existence or the size of loop bounds—
increasing the loop bound does not cause an otherwise verifiable program to
timeout. Comparison with the two tools that fared better than VeriAbs in the
competition, namely ceagle [24] and smack [6], reveals interesting information.
We selected four correct programs, one from each of the following categories,
array copy, array initialisation, two index copying and finding minimum, of the
test suite, and increased the array size considerably (from 100000 to 10000000).
While both tools succeeded on the programs with the original array sizes, smack
started timing out after the increase and ceagle either crashed or declared the
programs to be incorrect. We surmise that the two tools are based on bounded
model checking without any abstraction. In this respect, our tool performs better
than these two tools that were placed ahead of ours in the competition.

7 Related Work

The various approaches to handle arrays have their roots in the types of static
analyses used for property verification, namely: abstract interpretation, predicate
abstraction, bounded model checking and theorem proving.

In abstract interpretation, arrays are handled using array smashing, array
expansion and array slicing. In array smashing, all elements of an array are
clubbed as a single anonymous element, with writes treated as weak updates. As
a result it is imprecise. It cannot be used, for example, to verify the motivating
example. In array expansion, array elements are explicated as a collection of
scalar variables, and the resulting programs have fewer number of weak updates
than array smashing. However, it works well only for small-sized arrays. A mix
of smashing and expansion has been used in [4,5] to prove that the program
does not perform executions with undefined behaviours such as out-of-bounds
array accesses. In array slicing, the idea is to track partitions of arrays based
upon some criteria inferred from programs [11,16,17]. Each partition is treated
as an independent smashed element. The approach is further refined in [14] to
introduce the notion of fluid updates, where a write operation may result in a
strong update of one partition of the array and weak update of other partitions.
In contrast to these approaches, our abstraction is based not only on the program
but also on the associated property. By declaring an array-processing loop as
k-shrinkable, we guarantee that an erroneous behaviour of the program with
respect to the property can indeed be replayed on some k elements of the array.

Methods based on predicate abstraction go through several rounds of coun-
terexample guided abstraction refinement (CEGAR). In each round a suitable
invariant is searched based on the counter-example using Craig interpolants [21].
Tools like SATABS [9] and CPAchecker [3] are based on this technique. To han-
dle arrays, the approach relies on finding appropriate quantified loop invariants.
However generating interpolants for scalar programs is by itself a hard problem.
With the inclusion of arrays, which require universally quantified interpolants,
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the problem becomes even harder [20,22]. Our method, in contrast, does not rely
on the ability to find invariants. Instead, we find a bound on the number of loop
iterations, and, in turn, the number of array elements that have to be accessed
in a run of abstract program.

Theorem proving based methods generate a set of constraints, typically Horn
clauses. The clauses relate invariants at various program points and the invari-
ants are predicates over arrays. The constraints are then fed to a solver in order
to find a model. However, these methods also face the same difficulty of synthe-
sizing quantified invariants over arrays. A technique, called k-distinguished cell
abstraction, addresses this problem by abstracting the array to only k elements. A
1-distinguished cell abstraction, for example, abstracts a predicate P(a) involv-
ing an array a by P’(i,a;), where i and a; are scalars. The relation between the
two predicates is that P’(i, a;) holds whenever P(a) holds and the value of a[i] is
a;. The resulting constraints are easier to solve using a back end solver such as
Z3 [13]. This technique and its variants appear in [22,23] and in [15], where the
term skolem constants is used instead of distinguished cells. We experimented
with VAPHOR, a tool based on [23]. By way of comparison, we present two exam-
ples, one with a 3 property and the other with a V property. The first program
computes the minimum of an array and asserts that the minimum is the same as
some element in the array. The second program copies all but 1 elements from
one large array to another. It then asserts that the copied elements are pairwise
equal. While our tool could verify both examples, vAPHOR declared the first pro-
gram to be incorrect with 1 and 2 distinguished cell abstraction and timed out
on the second program.

A method that is properly subsumed by our method is [18]. This uses only
one distinguished element called a witness element, and transforms a program to
a loop free scalar program. This program is model-checked using a BMC. This
approach works well on what authors call full array processing loops and such
loops are a proper subset of our 1-shrinkable loops.

8 Conclusion

We have proposed a fully automatic approach for property checking over array
processing programs using loop shrinking. The approach enables us to verify
properties over large or even unbounded loops by converting them to loops with
a small finite bound. Towards this, we have defined a notion called shrinkabil-
ity of a loop, and showed that arrays processed by k-shrinkable loops can be
abstracted using only k£ elements. The abstracted program can then be checked
using any bounded model checker as back-end. An important contribution of
our method is an automated method to find out the required bound k. Although
there are approaches that are based on abstracting an array by fewer elements,
none of these provide a way to find out the number of elements that are suffi-
cient to reason about the array. Our experiments have shown that the approach
is powerful enough to handle a variety of array processing programs. As future
work, we want to add a suitable refinement step to address false positives and
extend our method to support nested loops and multi-dimensional arrays.
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