
But Why Does It Work? A Rational
Protocol Design Treatment of Bitcoin

Christian Badertscher1(B) , Juan Garay2, Ueli Maurer1, Daniel Tschudi3 ,
and Vassilis Zikas4

1 ETH Zurich, Zürich, Switzerland
{christian.badertscher,maurer}@inf.ethz.ch
2 Texas A&M University, College Station, USA

garay@tamu.edu
3 Aarhus University, Aarhus, Denmark

tschudi@cs.au.dk
4 University of Edinburgh and IOHK, Edinburgh, UK

vassilis.zikas@ed.ac.uk

Abstract. An exciting recent line of work has focused on formally inves-
tigating the core cryptographic assumptions underlying the security of
Bitcoin. In a nutshell, these works conclude that Bitcoin is secure if and
only if the majority of the mining power is honest. Despite their great
impact, however, these works do not address an incisive question asked
by positivists and Bitcoin critics, which is fuelled by the fact that Bit-
coin indeed works in reality: Why should the real-world system adhere
to these assumptions?

In this work we employ the machinery from the Rational Protocol
Design (RPD) framework by Garay et al. [FOCS 2013] to analyze Bit-
coin and address questions such as the above. We show that under the
natural class of incentives for the miners’ behavior—i.e., rewarding them
for adding blocks to the blockchain but having them pay for mining—
we can reserve the honest majority assumption as a fallback, or even,
depending on the application, completely replace it by the assumption
that the miners aim to maximize their revenue.

Our results underscore the appropriateness of RPD as a “rational
cryptography” framework for analyzing Bitcoin. Along the way, we devise
significant extensions to the original RPD machinery that broaden its
applicability to cryptocurrencies, which may be of independent interest.

1 Introduction

Following a number of informal and/or ad hoc attempts to address the security
of Bitcoin, an exciting recent line of work has focused on devising a rigorous
cryptographic analysis of the system [2,13,14,27]. At a high level, these works

D. Tschudi—Work done while author was at ETH Zurich.
V. Zikas—Work done in part while the author was at RPI.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 34–65, 2018.
https://doi.org/10.1007/978-3-319-78375-8_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_2&domain=pdf
http://orcid.org/0000-0002-1353-1922
http://orcid.org/0000-0001-6188-1049

But Why Does It Work? 35

start by describing an appropriate model of execution, and, within it, an abstrac-
tion of the original Bitcoin protocol [23] along with a specification of its security
goals in terms of a set of intuitive desirable properties [13,14,27], or in terms of a
functionality in a simulation-based composable framework [2]. They then prove
that (their abstraction of) the Bitcoin protocol meets the proposed specifica-
tion under the assumption that the majority of the computing power invested in
mining bitcoins is by devices which mine according to the Bitcoin protocol, i.e.,
honestly. This assumption of honest majority of computing power—which had
been a folklore within the Bitcoin community for years underlying the system’s
security—is captured by considering the parties who are not mining honestly as
controlled by a central adversary who coordinates them trying to disrupt the
protocol’s outcome.

Meanwhile, motivated by the fact that Bitcoin is an “economic good” (i.e.,
BTCs are exchangeable for national currencies and goods) a number of works
have focused on a rational analysis of the system [7–9,15,22,24,28–32]. In a
nutshell, these works treat Bitcoin as a game between the (competing) rational
miners, trying to maximize a set of utilities that are postulated as a natural
incentive structure for the system. The goal of such an analysis is to investigate
whether or not, or under which assumptions on the incentives and/or the level of
collaboration of the parties, Bitcoin achieves a stable state, i.e., a game-theoretic
equilibrium. However, despite several enlightening conclusions, more often than
not the prediction of such analyses is rather pessimistic. Indeed, these results
typically conclude that, unless assumptions on the amount of honest computing
power—sometimes even stronger than just majority—are made, the induced
incentives result in plausibility of an attack to the Bitcoin mining protocol, which
yields undesired outcomes such as forks on the blockchain, or a considerable
slowdown.

Yet, to our knowledge, no fork or substantial slowdown that is attributed
to rational attacks has been observed to date, and the Bitcoin network keeps
performing according to its specification, even though mining pools would, in
principle, be able to launch collaborative attacks given the power they control.1

In the game-theoretic setting, this mismatch between the predicted and observed
behavior would be typically interpreted as an indication that the underlying
assumptions about the utility of miners in existing analysis do not accurately
capture the miners’ rationale. Thus, two main questions still remain and are
often asked by Bitcoin skeptics:

Q1. How come Bitcoin is not broken using such an attack?

Or, stated differently, why does it work and why do majorities not collude to
break it?

Q2. Why do honest miners keep mining given the plausibility of such
attacks?

1 We refer to forks of the Bitcoin chain itself, not to forks that spin-off a new currency.

36 C. Badertscher et al.

In this work we use a rigorous cryptographic reasoning to address the above
questions. In a nutshell, we devise a rational-cryptography framework for captur-
ing the economic forces that underly the tension between honest miners and (pos-
sibly colluding) deviating miners, and explain how these forces affect the miners’
behavior. Using this model, we show how natural incentives (that depend on the
expected revenue of the miners) in combination with a high monetary value of
Bitcoin, can explain the fact that Bitcoin is not being attacked in reality even
though majority coalitions are in fact possible. In simple terms, we show how nat-
ural assumptions about the miners’ incentives allow to substitute (either entirely
or as a fallback assumption) the honest-majority assumption. To our knowledge,
this is the first work that formally proves such rational statements that do not
rely on assumptions about the adversary’s computing power. We stress that the
incentives we consider depend solely on costs and rewards for mining—i.e., min-
ing (coinbase) and transaction fees—and, in particular, we make no assumption
that implicitly or explicitly deters forming adversarial majority coalitions.

What enables us to address the above questions is utilizing the Rational Pro-
tocol Design (RPD) methodology by Garay et al. [11] to derive stability notions
that closely capture the idiosyncrasies of coordinated incentive-driven attacks
on the Bitcoin protocol. To better understand how our model employs RPD to
address the above questions, we recall the basic ideas behind the framework.

Instead of considering the protocol participants—in our case, the Bitcoin
miners—as rational agents, RPD considers a meta-game, called the attack game.
The attack game in its basic form is a two-agent zero-sum extensive game of
perfect information with a horizon of length two, i.e., two sequential moves.2 It
involves two players, called the protocol designer D—who is trying to come up
with the best possible protocol for a given (multi-party) task—and the attacker
A—who is trying to come up with the (polynomial-time) strategy/adversary that
optimally attacks the protocol. The game proceeds in two steps: First, (only) D
plays by choosing a protocol for the (honest) players to execute; A is informed
about D’s move and it is now his term to produce his move. The attacker’s
strategy is, in fact, a cryptographic adversary that attacks the protocol proposed
by the designer.

The incentives of both A and D are described by utility functions, and their
respective moves are carried out with the goal of maximizing these utilities.3 In
a nutshell, the attacker’s utility function rewards the adversary proportionally
to how often he succeeds in provoking his intended breach, and depending on its
severity. Since the game is zero-sum, the designer’s utility is the opposite of the
attacker’s; this captures the standard goal of cryptographic protocols, namely,
“taming” the adversary in the best possible manner.

Based on the above game, the RPD framework introduces the following nat-
ural security notion, termed attack-payoff security, that captures the quality of

2 This is often referred to as a Stackelberg game in the game theory literature [26].
3 Notice, however, the asymmetry: The designer needs to come up with a protocol

based on speculation of what the adversary’s move will be, whereas the attacker
plays after being informed about the actual designer’s move, i.e., about the protocol.

But Why Does It Work? 37

a protocol Π for a given specification when facing incentive-driven attacks aim-
ing to maximize the attacker’s utility. Informally, attack-payoff security ensures
that the adversary is not willing to attack the protocol Π in any way that
would make it deviate from its ideal specification. In other words, the protocol
is secure against the class of strategies that maximize the attacker’s utility. In
this incentive-driven setting, this is the natural analogue of security against mali-
cious adversaries.4 For cases where attack payoff security is not feasible, RPD
proposes the notion of attack-payoff optimality, which ensures that the protocol
Π is a best response to the best attack.

A useful feature of RPD (see below) is that all definitions build on Canetti’s
simulation-based framework (either the standalone framework [5] or the UC
framework [6]), where they can be easily instantiated. In fact, there are several
reasons, both at the intuitive and technical levels, that make RPD particularly
appealing to analyze complex protocols that are already running, such as Bit-
coin. First, RPD supports adaptive corruptions which captures the scenario of
parties who are currently running their (mining) strategy changing their mind
and deciding to attack. This is particularly useful when aiming to address the
likelihood of insider attacks against a protocol which is already in operation. For
the same reason, RPD is also suitable for capturing attacks induced by com-
promised hardware/software and/or bribing [4] (although we will not consider
bribing here). Second, the use of a central adversary as the attacker’s move
ensures that, even though we are restricting to incentive-driven strategies, we
allow full collaboration of cheaters. This allows, for example, to capture mining
pools deciding to deviate from the protocol’s specification.

At the technical level, using the attack-game to specify the incentives takes
away many of the nasty complications of “rational cryptography” models. For
example, it dispenses with the need to define cumbersome computational versions
of equilibrium [10,17–19,21,25], since the actual rational agents, i.e., D and A, are
not computationally bounded. (Only their actions need to be PPT machines.)
Furthermore, as it builds on simulation-based security, RPD comes with a com-
position theorem allowing for regular cryptographic subroutine replacement. The
latter implies that we can analyze protocols in simpler hybrid-worlds, as we usu-
ally do in cryptography, without worrying about whether or not their quality or
stability will be affected once we replace their hybrids by corresponding crypto-
graphic implementations.

Our contributions. In this work, we apply the RPD methodology to analyze
the quality of Bitcoin against incentive-driven attacks, and address the existen-
tial questions posted above. As RPD is UC-based, we use the Bitcoin abstraction
as a UC protocol and the corresponding Bitcoin ledger functionality from [2] to
capture the goal/specification of Bitcoin. As argued in [2], this functionality
captures all the properties that have been proposed in [13,27].

We define a natural class of incentives for the attacker by specifying util-
ities which, on one hand, reward him according to Bitcoin’s standard reward
4 In fact, if we require this for any arbitrary utility function, then the two notions—

attack-payoff security and malicious security—coincide.

38 C. Badertscher et al.

mechanisms (i.e., block rewards and transaction fees) for blocks permanently
inserted in the blockchain by adversarial miners, and, on the other hand, penal-
ize him for resources that he uses (e.g., use of mining equipment and electricity).
In order to overcome the inconsistency of rewards being typically in Bitcoins and
costs being in real money, we introduce the notion of a conversion rate CR con-
verting reward units (such as BTC) into mining-cost units (such as US Dollar)
This allows us to make statements about the quality of the protocol depending
on its value measured in a national currency.

We then devise a similar incentive structure for the designer, where, again,
the honest parties are (collectively) rewarded for blocks they permanently insert
into the blockchain, but pay for the resources they use. What differentiates
the incentives of the attacker from the designer’s is that the latter is utmost
interested in preserving the “health” of the blockchain, which we also reflect
in its utility definition. Implicit in our formulation is the assumption that the
attacker does not gain reward from attacking the system, unless this attack has
a financial gain.5

Interestingly, in order to apply the RPD methodology to Bitcoin we need to
extend it in non-trivial ways, to capture for example non-zero-sum games—as
the utility of the designer and the attacker are not necessarily opposites—and to
provide stronger notions of security and stability. In more detail, we introduce
the notion of strong attack payoff security, which mandates that the attacker
will stick to playing a passive strategy, i.e., stick to Bitcoin (but might abuse
the adversary’s power to delay messages in the network). We also introduce
the natural notion of incentive compatibility (IC) which mandates that both
the attacker and the designer will have their parties play the given protocol.
Observe that incentive compatibility trivially implies strong attack payoff secu-
rity, and the latter implies the standard attack payoff security from the original
RPD framework assuming the protocol is at least correct when no party devi-
ates. These extensions to RPD widen its applicability and might therefore be
of independent interest. We note that although we focus on analysis of Bitcoin
here, the developed methodology can be adapted to analyze other main-stream
cryptocurrencies.

Having laid out the model, we then use it to analyze Bitcoin. We start
our analysis with the simpler case where the utilities do not depend on the
messages—i.e., transactions—that are included into the blocks of the blockchain:
when permanently inserting a block into the blockchain, a miner is just rewarded
with a fixed block-reward value. This can be seen as corresponding to the Bit-
coin backbone abstraction proposed in [13], but enriched with incentives to mine
blocks. An interpretation of our results for this setting, listed below, is that they
address blockchains that are not necessarily intended to be used as cryptocur-
rency ledgers. Although arguably this is not the case for Bitcoin, our analysis
already reveals several surprising aspects, namely, that in this setting one does
not need to rely on honest majority of computing power to ensure the quality

5 In particular, a fork might be provoked by the attacker only if it is expected to
increase his revenue.

But Why Does It Work? 39

of the system. Furthermore, these results offer intuition on what is needed to
achieve stability in the more complete case, which also incorporates transaction
fees. Summarizing, we prove the following statements for this backbone-like set-
ting, where the contents of the blocks do not influence the player’s strategies
(but the rewards and costs do):

– Bitcoin is strongly attack-payoff secure, i.e., no coordinated coalition has an
incentive to deviate from the protocol, provided that the rest of the parties
play it. Further, this statement holds no matter how large the coalition (i.e.,
no matter how large the fraction of corrupt computing power) and no matter
how high the conversion rate is. This means that in this backbone-like setting
we can fully replace the assumption of honest majority of computing power
by the above intuitive rational assumption.6

– If the reward for mining a block is high enough so that mining is on aver-
age profitable, then the Bitcoin protocol is even incentive-compatible with
respect to local deviations. In other words, not only colluding parties (e.g.,
mining pools) do not have an incentive to deviate, but also the honest miners
have a clear incentive to keep mining. Again, this makes no honest-majority
assumption. Furthermore, as a sanity check, we also prove that this is not
true if the conversion rate drops so that miners expect to be losing revenue by
mining. The above confirms the intuition that after the initial bootstrapping
phase where value is poured into the system (i.e., CR becomes large enough),
such a ledger will keep working according to its specification for as long as
the combination of conversion rate and block-reward is high enough.

With the intuition gained from the analysis in the above idealized setting, we
next turn to the more realistic setting which closer captures Bitcoin, where block
contents are messages that have an associated fee. We refer to these messages as
transactions, and use the standard restrictions of Bitcoin on the transaction fees:
every transaction has a maximum fee and the fee is a multiple of the minimum
division.7 We remark that in all formal analyses [2,13,27] the transactions are
considered as provided as inputs by an explicit environment that is supposed
to capture the application layer that sits on top of the blockchain and uses it.
As such, the environment will also be responsible for the choice of transaction
fees and the distribution of transactions to the miners. For most generality,
we do not assume as in [13,27] that all transactions are communicated by the
environment to all parties via a broadcast-like mechanism, but rather that they
are distributed (i.e., input) by the environment to the miners, individually, who
might then forward them using the network (if they are honest) or not. This
more realistic transaction-submission mechanism is already explicit in [2].

We call this model that incorporates both mining rewards and transaction
fees into the reward of the miner for a block as the full-reward model. Interest-
ingly, this model allows us to also make predictions about the Bitcoin era when
6 It should be noted though that our analysis considers, similarly to [2,13,27], a fixed

difficulty parameter. The extension to variable difficulty is left as future research.
7 For Bitcoin the minimum division is 1 satoshi = 10−8 BTC, and there is typically a

cap on fees [3].

40 C. Badertscher et al.

the rewards for mining a block will be much smaller than the transaction fees
(or even zero).

We stress that transactions in our work are dealt with as messages that have
an explicit fee associated with them, rather than actions which result in transfer-
ring BTCs from one miner to another. This means that other than its associated
fee, the contents of a transaction does not affect the strategies of the players
in the attack game. This corresponds to the assumption that the miners, who
are responsible for maintaining the ledger, are different than the users, which,
for example, translate the contents of the blocks as exchanges of cryptocur-
rency value, and which are part of the application/environment. We refer to this
assumption as the miners/users separation principle. This assumption is explicit
in all existing works, and offers a good abstraction to study the incentives for
maintaining the ledger—which is the scope of our work—separately from the
incentives of users to actually use it. Note that this neither excludes nor trivially
deters “forking” by a sufficiently powerful (e.g., 2/3 majority) attacker; indeed,
if some transaction fees are much higher than all others, then such an attacker
might fork the network by extending both the highest and the second highest
chain with the same block containing these high-fee transactions, and keep it
forked for sufficiently long until he cashes out his rewards from both forks.

In this full-reward model, we prove the following statements:

– First, we look at the worst-case environment, i.e., the one that helps the
adversary maximize its expected revenue. We prove that in this model Bitcoin
is still incentive compatible, hence also strongly attack payoff secure. In fact,
the same is true if the environment makes sure that there is a sufficient supply
of transactions to the honest miners and to the adversary, such that the fees
are high enough to build blocks that reach exactly the maximal rewarding
value (note that not necessarily the same set of transactions have to be known
to the participants). For example, as long as many users submit transactions
with the heaviest possible fee (so-called full-fee transactions), then the system
is guaranteed to work without relying on an honest majority of miners. In a
sense, the users can control the stability of the system through transaction
fees.

– Next, we investigate the question of whether or not the above is true for
arbitrary transaction-fee distributions. Not surprisingly, the answer here is
negative, and the protocol is not even attack-payoff secure (i.e, does not even
achieve its specification). The proof of this statement makes use of the above
sketched forking argument. On the positive side, our proof suggests that in the
honest-majority setting where forking is not possible (except with negligible
probability), the only way the adversary is incentivized to deviate from the
standard protocol is to withhold the transactions he is mining on to avoid
risking to lose the fees to honest parties.

Interpreting the above statements, we can relax the assumption for security
of Bitcoin from requiring an honest majority to requiring long-enough presence
of sufficiently many full-fee transactions, with a fallback to honest majority.

But Why Does It Work? 41

– Finally, observing that the typically large pool of transactions awaiting val-
idation justifies the realistic assumption that there is enough supply to the
network (and given the high adoption, this pool will not become small too
fast), we can directly use our analysis, to propose a possible modification
which would help Bitcoin, or other cryptocurrencies, to ensure incentive com-
patibility (hence also strong attack-payoff security) in the full-reward model
in the long run: The idea is to define an exact cumulative amount on fees
(or overall reward) to be allowed for each block. If there are enough high-fee
transactions, then the blocks are filled up with transactions until this amount
is reached. As suggested by our first analysis with a simple incentive struc-
ture, ensuring that this cap is non-decreasing would be sufficient to argue
about stability; however, it is well conceivable that such a bound could be for-
mally based on supply-and-demand in a more complex and economy-driven
incentive structure and an interesting future research direction is to precisely
define such a proposal together with the (economical) assumptions on which
the security statements are based. We note that the introduction of such a
rule would typically only induce a “soft fork,” and would, for a high-enough
combination of conversion rate and reward bound, ensure incentive compati-
bility even when the flat reward per block tends to zero and the main source
of rewards would be transaction fees, as it is the plan for the future of Bitcoin.

2 Preliminaries

In this section we introduce some notation and review the basic concepts and
definitions from the literature, in particular from [11] and [2] that form the basis
of our treatment. For completeness, an expanded version of this review can be
found in the full version [1]. Our definitions use and build on the simulation-
based security definition by Canetti [6]; we assume some familiarity with its
basic principles.

Throughout this work we will assume an (at times implicit) security param-
eter κ. We use ITM to the denote the set of probabilistic polynomial time (PPT)
interactive Turing machines (ITMs). We also use the standard notions of neg-
ligible, noticeable, and overwhelming (e.g., see [16]) were we denote negligible
(in κ) functions as negl(κ). Finally, using standard UC notation we denote by
EXECΠ,A,Z (resp. EXECF,S,Z) the random variable (ensemble if indexed by
κ) corresponding to the output of the environment Z witnessing an execution
of protocol Π against adversary A (resp. an ideal evaluation of functionality F
with simulator S).

2.1 The RPD Framework

The RPD framework [11] captures incentive-driven adversaries by casting attacks
as a meta-game between two rational players, the protocol designer D and the
attacker A, which we now describe. The game is parameterized by a (multi-party)
functionality F known to both agents D and A which corresponds to the ideal

42 C. Badertscher et al.

goal the designer is trying to achieve (and the attacker to break). Looking ahead,
when we analyze Bitcoin, F will be a ledger functionality (cf. [2]). The designer
D chooses a PPT protocol Π for realizing the functionality F from the set of all
probabilistic and polynomial-time (PPT) computable protocols.8 D sends Π to A
who then chooses a PPT adversary A to attack protocol Π. The set of possible
terminal histories is then the set of sequences of pairs (Π,A) as above.

Consistently with [11], we denote the corresponding attack game by GM,
where M is referred to as the attack model, which specifies all the public param-
eters of the game, namely: (1) the functionality, (2) the description of the relevant
action sets, and (3) the utilities assigned to certain actions (see below).

Stability in RPD corresponds to a refinement of a subgame-perfect equilibrium
(cf. [26, Definition 97.2]), called ε-subgame perfect equilibrium, which considers as
solutions profiles in which the parties’ utilities are ε-close to their best-response
utilities (see [11] for a formal definition). Throughout this paper, we will only
consider ε = negl(κ); in slight abuse of notation, we will refer to negl(κ)-subgame
perfect equilibrium simply as subgame perfect.

The utilities. The core novelty of RPD is in how utilities are defined. Since
the underlying game is zero-sum, it suffices to define the attacker’s utility. This
utility depends on the goals of the attacker, more precisely, the security breaches
which he succeeds to provoke, and is defined, using the simulation paradigm, via
the following three-step process:

First, we modify the ideal functionality F to obtain a (possibly weaker) ideal
functionality 〈F〉, which explicitly allows the attacks we wish to model. For
example, 〈F〉 could give its simulator access to the parties’ inputs. This allows
to score attacks that aim at input-privacy breaches.

Second we describe a scoring mechanism for the different breaches that are of
interest to the adversary. Specifically, we define a function vA mapping the joint
view of the relaxed functionality 〈F〉 and the environment Z to a real-valued
payoff. This mapping defines the random variable (ensemble) v

〈F〉,S,Z
A as the

result of applying vA to the views of 〈F〉 and Z in a random experiment describing
an ideal evaluation with ideal-world adversary S; in turn, v

〈F〉,S,Z
A defines the

attacker’s (ideal) expected payoff for simulator S and environment Z, denoted
by U

〈F〉
IA (S,Z), so the expected value of vA

〈F〉,S,Z . The triple M = (F, 〈F〉, vA)
constitutes the attack model.

The third and final step is to use U
〈F〉
IA (S,Z) to define the attackers utility,

uA(Π,A), for playing an adversary A against protocol Π, as the expected payoff
of the “best” simulator that successfully simulates A in its (A’s) favorite envi-
ronment. This best simulator is the one that translates the adversary’s breaches
against Π into breaches against the relaxed functionality 〈F〉 in a faithful man-
ner, i.e., so that the ideal breaches occur only if the adversary really makes
them necessary for the simulator in order to simulate. As argued in [11], this
corresponds to the simulator that minimizes the attacker’s utility. Formally, for
a functionality 〈F〉 and a protocol Π, denote by CA the class of simulators that

8 Following standard UC convention, the protocol description includes its hybrids.

But Why Does It Work? 43

are “good” for A, i.e, CA = {S ∈ ITM | ∀Z : EXECΠ,A,Z ≈ EXEC〈F〉,S,Z}.9

Then the attacker’s (expected) utility is defined as:

uA(Π,A) = sup
Z∈ITM

{
inf

S∈CA

{
U

〈F〉
IA (S,Z)

}}
.

For A and Π with CA = ∅, the utility is ∞ by definition, capturing the fact that
we only want to consider protocols which at the very least implement the relaxed
(i.e., explicitly breachable) functionality 〈F〉. Note that as the views in the above
experiments are in fact random variable ensembles indexed by the security param-
eter κ, the probabilities of all the relative events are in fact functions of κ, hence
the utility is also a function of κ. Note also that as long as CA = ∅ is non-empty, for
each value of κ, both the supremum and the infimum above exist and are finite and
reachable by at least one pair (S, Z), provided the scoring function assigns finite
payoffs to all possible transcripts (for S ∈ CA) (cf. [11]).

Remark 1 (Event-based utility [11]). In many applications, including those in our
work, meaningful payoff functions have the following, simple representation: Let
(E1, . . . , E�) denote a vector of (typically disjoint) events defined on the views
(of S and Z) in the ideal experiment corresponding to the security breaches
that contribute to the attacker’s utility. Each event Ei is assigned a real number
γi, and the payoff function v�γ

A assigns, to each ideal execution, the sum of γi’s
for which Ei occurred. The ideal expected payoff of a simulator is computed
according to our definition as

U
〈F〉
IA (S,Z) =

∑
Ei∈ �E,γi∈�γ

γi Pr[Ei],

where the probabilities are taken over the random coins of S, Z, and 〈F〉.

Building on the above definition of utility, [11] introduces a natural notion
of security against incentive-driven attackers. Intuitively, a protocol Π is attack-
payoff secure in a given attack model M = (F, ·, vA), if the utility of the best
adversary against this protocol is the same as the utility of the best adversary in
attacking the F-hybrid “dummy” protocol, which only relays messages between
F and the environment.

Definition 1 (Attack-payoff security [11]). Let M = (F, 〈F〉, vA, vD) be an
attack model inducing utilities uA and uD on the attacker and the designer, respec-
tively,10 and let φF be the dummy F-hybrid protocol. A protocol Π is attack-
payoff secure for M if for all adversaries A ∈ ITM,

uA(Π,A) ≤ uA(φF ,A) + negl(κ).

9 This class is finite for every given value of the security parameter, Π, and A.
10 In [11], by default uD = −uA as the game is zero-sum.

44 C. Badertscher et al.

Intuitively, this security definition accurately captures security against an
incentive-driven attacker, as in simulating an attack against the dummy F-
hybrid protocol, the simulator never needs to provoke any of the “breaching”
events. Hence, the utility of the best adversary against Π equals the utility of
an adversary that does not provoke any “bad event.”

2.2 A Composable Model for Blockchain Protocols

In [2], Badertscher et al. present a universally composable treatment of the Bit-
coin protocol, ΠB, in the UC framework. Here we highlight the basic notions
and results and refer to the full version [1] for details.

The Bitcoin ledger. The ledger functionality GB
ledger maintains a ledger state

state, which is a sequence of state blocks. A state block contains (application-
specific) content values—the “transactions.” For each honest party pi, the ledger
stores a pointer to a state block—the head of the state from pi’s point of view—
and ensures that pointers increase monotonically and are not too far away from
the head of the state (and that it only moves forward). Parties or the adversary
might submit transactions, which are first validated by means of a predicate
ValidTxB, and, if considered valid, are added to the functionality’s buffer. At
any time, the GB

ledger allows the adversary to propose a candidate next-block
for the state. However, the ledger enforces a specific extend policy specified by
an algorithm ExtendPolicy that checks whether the proposal is compliant with
the policy. If the adversary’s proposal does not comply with the ledger policy,
ExtendPolicy rejects the proposal. The policy enforced by the Bitcoin ledger can
be succinctly summarized as follows:

– Ledger’s growth. Within a certain number of rounds the number of added
blocks must not be too small or too large.

– Chain quality. A certain fraction of the proposed blocks must be mined hon-
estly and those blocks satisfy special properties (such as including all recent
transactions).

– Transaction liveness. Old enough (and valid) transactions are included in the
next block added to the ledger state.

The Bitcoin protocol. In [2] it was proved that (a [13]-inspired abstraction of)
Bitcoin as a synchronous-UC protocol [20], called the ledger protocol and denoted
by ΠB, realizes the above ledger. ΠB uses blockchains to store a sequence of
transactions. A blockchain C is a (finite) sequence of blocks B1, . . . ,B�. Each
block Bi consist of a pointer si, a state block sti, and a nonce ni. string. The
chain C�k is C with the last k blocks removed. The state �st of the blockchain C =
B1, . . . ,B� is defined as a sequence of its state blocks, i.e., �st := st1|| . . . ||st�.

The validity of a blockchain C = B1, . . . ,B� where Bi = 〈si, sti, ni〉 is
decided by a predicate isvalidchainD(C). It combines two types of validity: chain-
level, aka syntactic, validity—which, intuitively requires that valid blocks need to
be solving a proof-of-work-type puzzle for a hash function H : {0, 1}∗ → {0, 1}κ

But Why Does It Work? 45

and difficulty d—and state-level, aka semantic, validity, which specifies whether
the block’s contents, i.e., transactions, are valid, with respect to a blockchain-
specific predicate.

The Bitcoin protocol ΠB is executed in a hybrid world where parties have
access to a random oracle functionality FRO (modeling the hash function H),
a multicast asynchronous network using channels with bounded delay FN-MC,
and a global clock Gclock. Each party maintains a (local) current blockchain. It
receives the transactions from the environment (and circulates them), and adds
newly received valid transactions to a block that is then mined-on using the
algorithm extendchainD. The idea of the algorithm is to find a proof of work—by
querying the random oracle FRO—which allows to extend the local chain with a
valid block. After each mining attempt the party uses the network to multicast
their current blockchain. Parties always adopt the longest chain that they see
starting from a pre-agreed genesis block. The protocol (implicitly) defines the
ledger state to be a certain prefix of the contents of the longest chain held by
each party. More specifically, if a party holds a valid chain C that encodes the
sequence of state blocks �st, then the ledger state is defined to be �st

�T , i.e., the
party outputs a prefix of the encoded state blocks of its local longest chain. T is
chosen such that honest parties output a consistent ledger state.

The flat model of computation. In this paper, we state the results in the
synchronous flat model (with fixed difficulty) by Garay et al. [13]. This means
we assume a number of parties, denoted by n, that execute the Bitcoin protocol
ΠB, out of which t parties can get corrupted. For simplicity, the network FN-MC

guarantees delivery of messages sent by honest parties in round r to be available
to any other party at the onset of round r + 1. Moreover, every party will be
invoked in every round and can make at most one “calculation” query to the
random oracle FRO in every round (and an unrestricted number of “verification”
queries to check the validity of received chains)11, and use the above diffusion
network FN-MC once in a round to send and receive messages. To capture these
restrictions in a composable treatment, the real-world assumptions are enforced
by means of a “wrapper” functionality, Wflat, which adequately restricts access
to Gclock,FRO and FN-MC as explained in [2].

Denote by ρ the fraction of dishonest parties (i.e., t = ρ · n) and define
p := d

2κ which is the probability of finding a valid proof of work via a fresh query
to FRO (where d is fixed but sufficiently small, depending on n). Let αflat =
1− (1−p)(1−ρ)·n be the mining power of the honest parties, and βflat = p · (ρ ·n)
be the mining power of the adversary.

Theorem 1. Consider ΠB in the Wflat(Gclock,FRO,FN-MC)-hybrid world. If,
for some λ > 1, the honest-majority assumption

αflat · (1 − 4αflat) ≥ λ · βflat

11 This fine-grained round model with one hash query was already used by Pass
et al. [27]. The extension to a larger, constant upper bound of calculation queries
per round as in [13] is straightforward for the results in this work.

46 C. Badertscher et al.

holds in any real-world execution, then protocol ΠB UC-realizes GB
ledger for some

specific range of parameters (given in [2]).

3 Rational Protocol Design of Ledgers

In this section we present our framework for rational analysis of the Bitcoin proto-
col. It uses as basis the framework for rational protocol design (and analysis—RPD
framework for short) by Garay et al. [11], extending it in various ways to better cap-
ture Bitcoin’s features. (We refer to Sect. 2 and to the full version for RPD’s main
components and security definitions.) We note that although our analysis mainly
focuses on Bitcoin, several of the extensions have broader applicability, and can be
used for the rational analysis of other cryptocurrencies as well.

RPD’s machinery offers the foundations for capturing incentive-driven
attacks against multi-party protocols for a given specification. In this section
we show how to tailor this methodology to the specific task of protocols aimed
to securely implement a public ledger. The extensions and generalizations of the
original RPD framework we provide add generic features to the RPD frame-
work, including the ability to capture non-zero-sum attack games—which, as we
argue, are more suitable for the implementation of a cryptocurrency ledger—and
the extension of the class of events which yield payoff to the attacker and the
designer.

The core hypothesis of our rational analysis is that the incentives of an
attacker against Bitcoin—which affect his actions and attacks—depend only on
the possible earnings or losses of the parties that launch the attack. We do not
consider, for example, attackers that might create forks just for the fun of it. An
attacker might create a “fork” in the blockchain if he expects to gain something
by doing so. In more detail, we consider the following events that yield payoff
(or inflict a cost) for running the Bitcoin protocol:

– Inserting a block into the blockchain. It is typical of cryptocurrencies that when
a party manages to insert a block into the ledger’s state, then it is rewarded
for the effort it invested in doing so. In addition, it is typical in such protocols
that the contents of the blocks (usually transactions) have some transaction
fee associated with them. (For simplicity, in our initial formalization (Sects. 3
and 4) we will ignore transaction fees in our formal statements, describing
how they are extended to also incorporate also such fees in Sect. 5.)

– Spending resources to mine a block. These resources might be the electricity
consumed for performing the mining, the investment on mining hardware and
its deterioration with time, etc.

Remark 2 (The miners/users separation principle). We remark that the scope
of our work is to analyze the security of cryptocurrencies against incentive-
driven attacks by the miners, i.e., the parties that are responsible for maintaining
the blockchain. In particular, consistently with [2,13,27] we shall consider the
inputs to the protocol as provided by a (not-necessarily rational) environment,
which in particular captures the users of the system. As a result, other than the

But Why Does It Work? 47

transaction fees, we will assume that the contents of the ledger do not affect
the miners’ strategies, which we will refer to as the miners/users separation
principle. This principle captures the case where the users do not collude with
the miners—an assumption implicit in the above works. We leave the full rational
analysis of the protocol, including application layers for future research.

There are several challenges that one needs to overcome in deriving a formal
treatment of incentive-driven attacks against Bitcoin. First, the above reward
and cost mechanisms are measured in different “units.” Specifically, the block
reward is a cryptocurrency convention and would therefore be measured in the
specific cryptocurrency’s units, e.g., BTCs in the case of the Bitcoin network.
On the other hand, the cost for mining (e.g., the cost of electricity, equipment
usage, etc.) would be typically measured in an actual currency. To resolve this
mismatch—and refrain from adopting a specific currency—we introduce a vari-
able CR which corresponds to the conversion rate of the specific cryptocurrency
unit (e.g., BTCs) to the cost unit (e.g., euros or US dollars). As we shall see in
the next section, using such an explicit exchange rate allows us to make state-
ments about the quality of the Bitcoin network that depend on its price—as
they intuitively should. For example, we can formally confirm high-level state-
ments of the type: “Bitcoin is stable—i.e., miners have incentive to keep mining
honestly—as long as its price is high enough” (cf. Sect. 4).

Furthermore, this way we can express all payoffs in terms of cost units:
Assume that it takes r rounds for a miner (or a collection of miners) to insert
a block into the state. Denote by mcost the cost for a single mining attempt
(in our case a single RO query), and by breward the fraction of cryptocurrency
units (e.g., BTCs) that is given as a reward for each mined block.12 Then, the
payoff for the insertion of a single block is breward · CR− qr · mcost, where qr is
the number of queries to the RO that were required to mine this block during r
rounds.

The second challenge is with respect to when should a miner receive the
reward for mining. There are several reasons why solving a mining puzzle—
thereby creating a new block—does not necessary guarantee a miner that he will
manage to insert this block into the blockchain, and therefore be rewarded for it,
including the possibility of collisions—more than one miner solving the puzzle—
or, even worse, adversarial interference—e.g., network delays or “selfish mining.”
And even if the miner is the only one to solve the puzzle in a given round, he
should only be rewarded for it if his block becomes part of the (permanent) state
of the blockchain—the so-called blockchain’s “common prefix.”

To overcome this second challenge we rely on the RPD methodology. In
particular, we will use the ideal experiment where parties have access to the
global ledger functionality, where we can clearly identify the event of inserting
a block into the state, and decide, by looking into the state, which miner added
which block.13

12 Currently, for the Bitcoin network, this is 1/4 of the original reward (12.5 BTCs).
13 In [2], each block of the state includes the identifier of the miner who this block is

attributed to.

48 C. Badertscher et al.

In order to formalize the above intuitions and apply the RPD methodology
to define the utilities in the attack game corresponding to implementing a ledger
against an incentive-driven adversary, we need to make some significant adap-
tations and extensions to the original framework, which is what we do next. We
then (Sect. 3.2) use the extended framework to define the attack-model for the
Bitcoin protocol, and conclude the section by giving appropriate definitions of
security and stability in this model.

3.1 Extending the RPD Framework

We describe how to extend the model from [11] to be able to use it in our context.

Black-box simulators. The first modification is adding more flexibility to how
utilities are defined. The original definition of ideal payoff U

〈F〉
IA (S,Z) computes

the payoff of the simulator using the joint view of the environment and the
functionality. This might become problematic when attempting to assign cost to
resources used by the adversary—the RO queries in our scenario, for example.
Indeed, these queries are not necessarily in this joint view, as depending on the
simulator, one might not be able to extract them.14 To resolve this we modify the
definition to restrict it to black-box simulators, resulting in CA being the class
of simulators that use the adversary as a black box. This will ensure that the
queries to the RO are part of the interaction of the simulator with its adversary,
and therefore present in the view of the simulator. Further, we include this part
of the simulator’s view in the definition of the scoring function vA, which is
defined now as a mapping from the joint view of the relaxed functionality 〈F〉,
the environment Z, and the simulator S to a real-valued payoff.

Non-zero-sum attack games. The second modification is removing the
assumption that the attack game is zero-sum. Indeed, the natural incentive of the
protocol designer in designing a Ledger protocol is not to optimally “tame” its
attacker—as in [11]—but rather to maximize the revenue of the non-adversarially
controlled parties while keeping the blockchain healthy, i.e., free of forks. This
is an important modification as it captures attacks in which the adversary pre-
serves his rate of blocks inserted into the state, but slows down the growth of
the state to make sure that honest miners accrue less revenue in any time inter-
val. For example, the so called “selfish-mining” strategy [9] provokes a slowdown
since honest mining power is invested into mining on a chain which is not the
longest one (as the longest chain is kept private as long as possible by the party
that does the selfish-mining).

To formally specify the utility of the designer in such a non-zero-sum attack
game, we employ a similar reasoning as used in the original RPD framework for
defining the attacker’s utility. The first step, relaxing the functionality, can be
omitted provided that we relaxed it sufficiently in the definition of the attacker’s
utility. In the second step, we define the scoring mechanism for the incentives

14 Indeed, in the ideal simulation of the Bitcoin protocol presented in [2], there is no
RO in the ideal world.

But Why Does It Work? 49

of the designer as a function vD mapping the joint view of the relaxed function-
ality 〈F〉, the environment Z, and the simulator S to a real-valued payoff, and
define the designer’s (ideal) expected payoff for simulator S with respect to the
environment Z as

U
〈F〉
ID (S,Z) = E(v〈F〉,S,Z

D),

where v
〈F〉,S,Z
D describes (as a random variable) the payoff of D allocated by S

in an execution using directly the functionality 〈F〉.
The third and final step is the trickiest. Here we want to use the above ideal

expected payoff to define the expected payoff of a designer using protocol Π
when the attacker is playing adversary A. In order to ensure that our definition
is consistent with the original definition in [11]—which applied to (only) zero-
sum games—we need to make sure that the utility of the designer increases as
the utility of the attacker decreases and vice versa. Thus, to assign utility for
the designer to a strategy profile (Π,A), we will use the same simulators and
environments that were used to assign the utility for the attacker. Specifically,
let SA denote the class of simulators that are used to formulate the utility of the
adversary, and let ZA denote the class of environments that maximize this utility
for simulators in SA

15, then

SA =
{

S ∈ CA s.t. sup
Z∈ITM

{U
〈F〉
IA (S,Z)} = uA(Π,A)

}
(1)

and

ZA =
{

Z ∈ ITM s.t. for some S ∈ SA : U
〈F〉
IA (S,Z)} = uA(Π,A)

}
. (2)

It is easy to verify that this choice of simulator respects the utilities being
opposite in a zero-sum game as defined in [11], thereby preserving the results
following the original RPD paradigm.

Lemma 1. Let vD = −vA and let U
〈F〉
ID (S,Z) defined as above. For some S ∈ SA

and some Z ∈ ZA, define uD(Π,A) := U
〈F〉
ID (S,Z). Then uD(Π,A) = −uA(Π,A).

Proof. Since vD = −vA, we have that for all Z,S ∈ ITM,

U
〈F〉
ID (S,Z) = −U

〈F〉
IA (S,Z). (3)

However, by definition, since S ∈ SA, we have

uA(Π,A) = U
〈F〉
IA (S,Z) 3= −U

〈F〉
ID (S,Z) = −uD(Π,A).

�

The above lemma confirms that for a zero-sum attack game we can take any
pair (S,Z) ∈ SA ×ZD in the definition of uD(Π,A) and it will preserve the zero-
sum property (and hence all the original RPD results). This is so because all these
15 Recall that as argued in Sect. 2.1, these sets are non-empty provided CA �= ∅.

50 C. Badertscher et al.

simulators induce the same utility −uA(Π,A) for the designer. However, for our
case of non-zero-sum games, each of those simulator/environment combinations
might induce a different utility for the designer. To choose the one which most
faithfully translates the designer’s utility from the real to the ideal world we use
the same line of argument as used in RPD for defining the attacker’s utility:
The best (i.e., the most faithful) simulator is the one which always rewards the
designer whenever his protocol provokes some profitable event; in other words,
the one that maximizes the designer’s expected utility. Similarly, the natural
environment is the one that puts the protocol in its worst possible situation, i.e.,
the one that minimizes its expected gain; indeed, such an environment will ensure
that the designer is guaranteed to get his allocated utility. The above leads to
the following definition for the designer’s utility in non-zero-sum games:

uD(Π,A) := inf
Z∈ZA

{
sup
S∈SA

{
U

〈F〉
ID (S,Z)

}}
.

For completeness, we set uD(Π,A) = −∞ if CA = ∅, i.e., if the protocol does
not even achieve the relaxed functionality. This is not only intutive—as CA = ∅
means that the designer chose a protocol which does not even reach the relaxed
goal—but also analogous to how RPD defines the attacker’s utility for protocols
that do not achieve their relaxed specification.16

Finally, the attack model for non-zero-sum games is defined as the quadruple
M = (F, 〈F〉, vA, vD).

3.2 Bitcoin in the RPD Framework

Having formulated the above extensions to the RPD framework, we are ready
to apply the methodology to analyze Bitcoin.

Basic foundations. We explain in more depth on how to implement the core
steps of RPD. First, we define the Ledger functionality from [2] as Bitcoin’s ideal
goal (see Sect. 2.2). Following the three steps of the methodology, we start by
defining the relaxed version of the Ledger, denoted as GB

weak-ledger. Informally,
the relaxed Ledger functionality operates as the original ledger with the following
modifications:

The state is a tree: Instead of storing a single ledger state state as a straight-
line blockchain-like structure, GB

weak-ledger stores a tree state-tree of state
blocks where for each node the direct path from the root defines a possi-
ble ledger state that might be presented to any of the honest miners. The
functionality maintains for each registered party pi ∈ P a pointer pti to a
node in the tree which defines pi’s current-state view. Furthermore, instead
of restricting the adversary to only be able to set the state “slackness” to be
not larger than a specific parameter, GB

weak-ledger offers the command set-

pointer which allows the adversary to set the pointers of honest parties
16 Recall that RPD sets uA(Π, A) = ∞ if A cannot be simulated, i.e., if CA = ∅.

But Why Does It Work? 51

within state-tree with the following restriction: The pointer of an honest
party can only be set to a node whose distance to the root is at least the
current-pointer node’s.

Relaxed validity check of transactions: All submitted transactions are
accepted into the buffer buffer without validating against state-tree.
Moreover, transactions in buffer which are added to state-tree are not
removed as they could be reused at another branch of state-tree.

Ability to create forks: This relaxation gives the simulator the explicit power
to create a fork on the ledger’s state. This is done as follows: The command
next-block—which, recall, allows the simulator to propose the next block—
is modified to allow the simulator to extend an arbitrary leaf of a sufficiently
long rooted path of state-tree. Thus, when state-tree is just a single
path, this command operates as in the original ledger from [2]. Additionally,
in the relaxed ledger, the simulator is also allowed to add the next block to
an intermediate, i.e., non-leaf node of state-tree. This is done by using
an extra command fork which, other than extending the chain from the
indicated block provides the same functionality as next-block.

Relaxed state-extension policy: As explained in Sect. 2.2, the extend pol-
icy is a compliance check that the ledger functionality performs on blocks
that the simulator proposes to be added to the ledger’s state. This is to
ensure that they satisfy certain conditions. This is the mechanism which the
ledger functionality uses to enforce, among others, common generic-ledger
properties from the literature, such as the chain quality or the chain growth
properties, and for Bitcoin ledgers the transaction-persistence/stability prop-
erties [13,27]. of the ledger state, or on transaction persistence/stability [13].
The relaxed ledger uses a much more permissive extend policy, denoted as
weakExtendPolicy, derived from ExtendPolicy with the following modifications:
Intuitively, in contrast to ExtendPolicy, the weaker version does not check
if the adversary inserts too many or too few blocks, and it does not check
if all old-enough transactions have been included. There is also no check
of whether enough blocks are mined by honest parties, i.e., that there are
enough blocks with coin-base transactions from honest parties. In other words,
weakExtendPolicy does not enforce any concrete bounds on the chain qual-
ity or the chain growth properties of the ledger state, or on transaction
persistence/stability. It rather ensures basic validity criteria of the resulting
ledger state.
More formally, instead of state, it takes state-tree and a pointer pt as
input. It first computes a valid default block �Ndf which can be appended at
the longest branch of state-tree. It then checks if the proposed blocks �N
can be safely appended to the node pt (to yield a valid state). If this is the
case it returns (�N, pt); otherwise it returns �Ndf and a pointer to the leaf of
the longest branch in state-tree.

The formal description of the relaxed ledger functionality is found in the full
version [1]. This completes the first step of the RPD methodology.

52 C. Badertscher et al.

The second step is defining the scoring function. This is where our applica-
tion of RPD considerably deviates from past works [11,12]. In particular, those
works consider attacks against generic secure multi-party computation protocols,
where the ideal goal is the standard secure function evaluation (SFE) function-
ality (cf. [6]). The security breaches are breaking correctness and privacy [11] or
breaking fairness [12]. These can be captured by relaxing the SFE functional-
ity to allow the simulator to request extra information (breaking privacy), reset
the outputs of honest parties to a wrong value (breaking correctness), or cause
an abort (breaking fairness.) The payoff function is then defined by looking at
events corresponding to whether or not the simulator provokes these events, and
the adversary is given payoff whenever the best simulator is forced to provoke
them in order to simulate the attack.

However, attacks against the ledger that have as an incentive increasing the
revenue of a coalition are not necessarily specific events corresponding to the
simulator sending special “break” commands. Rather, they are events that are
extracted from the joint views (e.g., which blocks make it to the state and when).
Hence, attacks to the ledger correspond to the simulator implicitly “tweeking” its
parameters. Therefore, in this work we take the following approach to define the
payoffs of the attacker and designer. In contrast to the RPD examples in [11,12],
which use explicit events that “downgrade” the ideal functionality for defining
utility, we directly use more intuitive events defined on the joint view of the
environment, the functionality, and the simulator. The reason is that as we have
assumed that the only rationale is to increase one’s profit, the incentives in case
of cryptocurrencies are as follows: whenever a block is mined, the adversary gets
rewarded. A “security breach” is relevant if (and only if) the adversary can get
a better reward by doing so.

Defining concrete utility functions. Defining the utility functions lies at the
core of a rational analysis of a blockchain protocol like Bitcoin. The number
of aspects that one would like to consider steers the complexity of a concrete
analysis, the ultimate goal being to reflect exactly the incentive structure of the
actual blockchain ecosystem. Our extended RPD framework for blockchain pro-
tocols provides a guideline to defining utility functions of various complexity and
to conduct the associated formal analysis. Recall that the utility functions are
the means to formalize the assumed underlying incentive structure. As such, our
approach is extensible: if certain relevant properties or dynamics are identified or
believed (such as reflecting a doomsday risk of an attacker or a altruistic moti-
vation of honest miners), one can enrich the incentive structure by reflecting the
associated events and rewards in the utility definition, or by making the costs
and rewards time-dependent variables. The general goal of this line of research
on rational aspects of cryptocurrencies is to eventually arrive at a more detailed
model and, if the assumptions are reasonable, to have more predictive models
for reality.

Below we define a first, relatively simple incentive model to concretely show-
case our methodology. We conduct the associated rational analysis in the next

But Why Does It Work? 53

section and observe that, although being a simplified model, we can already draw
interesting conclusions from such a treatment.

Utility of the attacker. Informally, this particular utility is meant to capture
the average revenue of the attacker. Consider the following sequence of events
defined on the views of the environment, the relaxed ledger functionality, and the
black-box simulator of the entire experiment (i.e., until the environment halts)
for a given adversary A:

1. For each pair (q, r)∈N2 define event W A
q,r as follows: The simulator makes q

mining queries in round r, i.e., it receives q responses on different messages
to the RO in round r.17

2. For each pair (b, r) ∈ N2 define event IAb,r as follows: The simulator inserts
b blocks into the state of the ledger in round r, such that all these blocks
were previously queries to the (simulated) random oracle by the adversary.
More formally, IAb,r occurs if the function extend policy (of the weak ledger)
is successfully invoked and outputs a sequence of b non-empty blocks (to be
added to the state), where for each of these blocks the following properties
hold: (1) The block has appeared in the past in the transcript between the
adversary and the simulator, and (2) the contents of the block have appeared
on this transcript prior to the block’s first appearance, as a query from the
adversary to its (simulated) RO. We note in passing that this event definition
ensures that the simulator (and therefore also the adversary) does not earn
reward by adaptively corrupting parties after they have done the work/query
to mine a block but before their block is added into the state. In other words,
the adversary only gets rewarded for state blocks which corrupted parties
mined while they where already under the adversary’s control.

Now, using the simplified event-based utility definition (Remark 1) we define
the attacker’s utility for a strategy profile (Π,A) in the attack game as:18

uB
A (Π,A) = sup

Z∈ITM

{
inf

SA∈CA

{ ∑
(b,r)∈N2

b · breward · CR · Pr[IAb,r]

−
∑

(q,r)∈N2

q · mcost · Pr[W A
q,r]

}}
.

We remark that although the above sums are in principle infinite, in any
specific execution these sums will have only as many (non-zero) terms as the
number of rounds in the protocol. Indeed, if the experiment finishes in r′ rounds
then for any r > r′, Pr[IA

b,r] = Pr[WA
q,r] = 0 for all b ∈ N. Furthermore, we assume

that breward, CR and mcost are O(1), i.e., independent of the security parameter.
17 Observe that since our ideal world is the Gclock-hybrid synchronous world, the round

structure is trivially extracted from the simulated ideal experiment by the protocol
definition and the clock value. Furthermore, the adversary’s mining queries can be
trivially extracted by its interaction with the black-box simulator.

18 Recall that we assume synchronous execution as in [2] where the environment gets
to decide how many rounds it wishes to witness.

54 C. Badertscher et al.

The above expression can be simplified to the following more useful expres-
sion. Let BA denote the random variables corresponding to the number of blocks
contributed to the ledger’s state by adversarial miners and QA denote the number
of queries to the RO performed by adversarial miners (throughout the execution
of the random experiment). Then the adversary’s utility can be described using
the expectations of these random variables as follows:

uB
A (Π,A) = sup

Z∈ITM

{
inf

SA∈CA

{
breward · CR · E(BA) − mcost · E(QA)

}}
.

Utility of the designer. Since the game is not zero-sum we also need to for-
mally specify the utility of the protocol designer. Recall that we have assumed
that, analogously to the attacker, the designer accrues utility when honest min-
ers insert a block into the state, and spends utility when mining—i.e., querying
the RO. In addition, what differentiates the incentives of the designer from that
of an attacker is that his most important goal is to ensure the “health” of the
blockchain, i.e., to avoid forks. To capture this, we will assign a cost for the
designer to the event the simulator is forced to request the relaxed ledger func-
tionality to fork, which is larger than his largest possible gain. This yields the
following events that are relevant for the designer’s utility.

1. For each pair (q, r) ∈ N2 define WΠ
q,r as follows: The honest parties, as a set,

make q mining queries in round r.19

2. For each pair (b, r) ∈ N2 define IΠ
b,r as follows: The honest parties jointly insert

b blocks into the state of the ledger in round r; that is, the simulator inserts
b blocks into the state of the ledger in round r, such that for each of these
blocks, at least one of the two properties specified in the above definition of
IAb,r does not hold.20

3. For each r ∈ N define Kr as follows: The simulator uses the fork command
in round r.

The utility of the designer is then defined similarly to the attacker’s, where
we denote by SA the class of simulators that assign to the adversary his actual
utility (cf. Eq. 1):

uB
D (Π,A) = inf

Z∈Z

{
sup

SA∈SA

{ ∑
(b,r)∈N2

b · CR · (breward· Pr[IΠ
b,r] − 2polylog(κ) · Pr[Kr])

−
∑

(q,r)∈N2

q · mcost · Pr[WΠ
q,r]

}}
.

19 Note that although there is no RO in the ideal model of [2], whenever a miner would
make such a query in the Bitcoin protocol, the corresponding dummy party sends a
special maintain-ledger command to the Ledger functionality, making it possible
for us to count the mining queries also in the ideal world.

20 By definition, these two properties combined specify when the adversary should be
considered the recipient of the reward.

But Why Does It Work? 55

At first glance, the choice of 2polylog(κ) might seem somewhat arbitrary. How-
ever, it is there to guarantee that if the ledger state forks (recall that this reflects
a violation of the common-prefix property) with noticeable probability, then
the designer is punished with this super-polynomially high penalty to make his
expected payoff negative as κ grows. On the other hand, if the probability of
such a fork is sufficiently small (e.g. in the order of 2−Ω(κ)), then the loss in util-
ity is made negligible. This, combined with the fact that our stability notions
will render negligible losses in the utility irrelevant, will allow the designer the
freedom to provide slightly imperfect protocols, i.e., protocols where violations
of the common-prefix property occur with sufficiently small probability.

We will denote by MB the Bitcoin attack model which has GB
ledger as the

goal, 〈GB
ledger〉 as the relaxed functionality, and scoring functions for the attacker

and designer inducing utilities uB
A and uB

D , respectively.

3.3 Attack-Payoff Security and Incentive Compatibility

The definition of the respective utilities for designer and attacker completes
the specification of an attack game. Next, we define the appropriate notions of
security and stability as they relate to Bitcoin and discuss their meaning.

We start with attack-payoff security [11], which, as already mentioned, cap-
tures that the adversary would have no incentive to make the protocol deviate
from a protocol that implements the ideal specification (i.e., from a protocol that
implements the ideal [non-relaxed] ledger functionality), and which is useful in
arguing about the resistance of the protocol against incentive-driven attacks.
However, in the context of Bitcoin analysis, one might be interested in achieving
an even stronger notion of incentive-driven security, which instead of restricting
the adversary to strategies that yield payoff as much as the ideal ledger GB

ledger

from [2] would, restricts him to play in a coordinated fashion but passively,
i.e., follow the mining procedure mandated by the Bitcoin protocol, including
announcing each block as soon as it is found, but ensure that no two corrupt
parties try to solve the same puzzle (i.e., use the same nonce).

One can think of the above strategy as corresponding to cooperating mining-
pools which run the standard Bitcoin protocol. Nonetheless, as the adversary
has control over message delays, he is able to make sure that whenever he finds
a new block in the same round as some other party, his own block will be the one
propagated first21, and therefore the one that will be added to the blockchain.
Note that a similar guarantee is not there for honest miners as in the event of
collisions—two miners solve a puzzle in the same round—the colliding miners
have no guarantee about whose block will make it. We will refer to such an
adversary that sticks to the Bitcoin mining procedure but makes sure his blocks
are propagated first as front running.

Definition 2 (Front-running, passive mining adversary). The front-
running adversarial strategy Afr is specified as follows: Upon activation in round

21 This can be thought of as a “rushing” strategy with respect to network delays.

56 C. Badertscher et al.

r > 0, Afr activates in a round-robin fashion all its (passively) corrupted parties,
say p1, . . . , pt. When party pi generated some new message to be sent through
the network, Afr immediately delivers m to all its recepients.22 In addition, upon
any activation, any message submitted to the network FN-MC by an honest party
is maximally delayed.

Note that there might be several front-running, passive mining strategies,
depending on which parties are corrupted and (in case of adaptive adversaries)
when. We shall denote the class of all such adversary strategies by Afr. We are
now ready to provide the definition of (strong) attack-payoff security for Bitcoin.
The definition uses the standard notion of negl-best-response strategy from game
theory: Consider a two-player game with utilities u1 and u2, respectively. A
strategy for m1 of p1 is best response to a strategy m2 of p2 if for all possible
strategies m′

1, u1(m′
1,m2) ≤ u1(m1,m2)+negl(κ). For conciseness, in the sequel

we will refer to negl-best-response simply as best-response strategies.

Definition 3. A protocol Π is strongly attack-payoff secure for attack model
MB if for some A ∈ Afr the attacker playing A is a (negl-)best-response to the
designer playing Π.

Remark 3. It is instructive to see that for such a weak class of adversaries the
usual blockchain properties hold with very nice parameters23: first, the common-
prefix property is satisfied except with negligible probability (as no intentional
forks are provoked by anyone). Second, the fraction of honest blocks (in an

interval of say k blocks) is roughly α
α+β

p<<1
≈ (1−ρ)np

(1−ρ)np+ρnp = (1 − ρ) and thus,
in expectation, the chain quality corresponds to the relative mining power of
honest parties. Finally, since the adversary does contribute his mining power to
the main chain, the number of rounds it takes for the chain to grow by k blocks

is in expectation k
α+β

p<<1
≈ k

np .

Security thus means that if the honest parties stick to their protocol then the
adversary has no incentive to deviate. However, unlike in [11], where the game
is zero-sum, in a non-zero-sum setting it does not imply that the designer has
an incentive to stick to the protocol. This means that the definition is useful to
answer the question whether, assuming the network keeps mining, some of the
miners have an incentive to deviate from the protocol, but it does not address the
question of why the honest miners would keep mining. To address this question,
we adopt the notion of incentive compatibility (IC).

Informally, a protocol being incentive-compatible means that both the
attacker and the designer are willing to stick to it. In other words, it is strongly
attack-payoff secure—i.e., the adversary will run it if the honest parties do—and

22 I.e., Afr sets the delay of the corresponding transmissions to 0.
23 Recall the notation introduced in Sect. 2.2: n denotes the number of parties, ρ the

fraction of corrupted parties, α and β denote honest and dishonest mining power,
respectively, and p is the probability of a fresh RO-query to return a correct PoW
solution.

But Why Does It Work? 57

if the adversary plays it passively (and front-running), then the honest miners
will have an incentive to follow the protocol—i.e., the protocol is the designer’s
best response to a passive front-running adversary. We note that requiring IC for
Bitcoin for the class of all possible protocols would imply a proof that Bitcoin
is not only a protocol that the miners wish to follow, but also that there is no
other protocol that they would rather participate in instead. This is clearly too
strong a requirement, even more so in the presence of results [13,28] that argue
that there are alternative “fairer” blockchain protocols which improve on the
miners’ expected revenue. Thus, we can only hope to make such statements for
a subclass of possible protocols, and therefore devise a version of IC which is
parameterized by the set of all acceptable deviations (i.e., alternative protocols)
˝. For full generality, we also parameterize it with respect to the class of accept-
able adversaries A, but stress that all statements in this work are for the class
of all (PPT) adversaries.

Towards providing the formal definition of IC, we first give the straightfor-
ward restriction of equilibrium (in our case, subgame-perfect equilibrium) to a
subset of strategies.

Definition 4. Let ˝ and A be sets of possible strategies for the designer and the
attacker, respectively. We say that a pair (Π,A) ∈ (˝,A) is a (˝,A)-subgame
perfect equilibrium in the attack game defined by model M, if it is a (negl(κ)-)
subgame-perfect equilibrium on the restricted attack game where the set of all
possible deviations of the designer (resp., the attacker) is ˝ (resp., A).

The formal definition of (parameterized) IC is then as follows:

Definition 5. Let Π be a protocol and ˝ be a set of polynomial-time protocols
that have access to the same hybrids as Π. We say that Π is ˝-incentive com-
patible (˝-IC for short) in the attack model M iff for some A ∈ Afr, (Π,A) is
a (˝, ITM)-subgame-perfect equilibrium in the attack game defined by M.

4 Analysis of Bitcoin Without Transaction Fees

In this section, we present our RPD analysis of Bitcoin for the concrete incentive
structure defined in the previous section. We note that this incentive structure
does not, in particular, reflect rewards that stem from transaction fees and hence
the reward per block is constant. First, in Sect. 4.1, we prove that Bitcoin is
strongly attack-payoff secure—i.e., if the designer plays it, the attacker is better
off sticking to it as well (but in a front-running fashion). The result is independent
of the distribution of computing power to honest vs adversarial miners and
independent of the conversion rate or the values of breward and mcost.

Subsequently, in Sect. 4.2, we investigate the role of mining costs vs conver-
sion rate vs block rewards for the stability (i.e., IC) of Bitcoin in the presence
of such incentive-driven coordinated coalitions (e.g., utility-maximizing mining
pools.) We devise conditions on these values that either make the utility of honest
parties negative—hence make playing the Bitcoin protocol a sub-optimal choice

58 C. Badertscher et al.

of the protocol designer, or yield high enough utility for mining that makes Bit-
coin optimal among all possible deviations from the standard protocol that are
still compatible with the Bitcoin network (i.e., produce valid blockchains); com-
bining this with the results from Sect. 4.1, we deduce that for this latter range
of parameters Bitcoin is incentive-compatible.

4.1 Attack-Payoff Security of Bitcoin (Without Fees)

The attack-payoff security of Bitcoin without fees is stated in the following
theorem.

Theorem 2. The Bitcoin protocol is strongly attack-payoff secure in the attack
model MB.

Proof. The theorem follows as a direct corollary of the following general lemma.

Lemma 2. Given any adversarial strategy, there is a front-running, semi-honest
mining adversary A that achieves better utility. In particular, the adversarial
strategy A makes as many RO-queries per round as allowed by the real-world
restrictions, and one environment that maximizes its utility is the environment
Z that activates A as the first ITM in every round until A halts.

Proof intuition. The proof of the lemma consists of three steps. First, we ana-
lyze Bitcoin in the real world. By invoking the subroutine-replacement theorem
from [11, Theorem 6], we are able to work in a hybrid world where we can
easily compute the relevant values, such as the number of blocks an adversary
can mine in a given interval of rounds (the hybrid world is the so-called state-
exchange hybrid world of [2]). Second, we show by a generic argument that this
real-world analysis is sufficient to compute the payoffs for the attacker (which
is defined on the transcript in the ideal world). Last but not least, we make a
case distinction whether the adversary has expected utility smaller than zero (in
which he does not corrupt any party and does not participate in the network),
or whether mining Bitcoin is profitable for the attacker. In both cases, we prove
that for any attacker A, we can devise a front-running and semi-honest mining
adversary which gets higher utility. The formal proof of the lemma is found in
the full version [1]. �

4.2 Incentive Compatibility of Bitcoin (Without Fees)

We proceed by investigating how the IC of Bitcoin depends on the relation
between rewards and the conversion rate. Concretely, we describe a sufficient
condition for IC (Theorem 4) and a condition that makes it non-IC (Theorem 3).
We start with the negative result, which, informally, says that if the expected
costs are too high with respect to the expected rewards, then Bitcoin is not
IC (although it is strongly attack-payoff secure as proved above). As above,
we denote by p the probability of solving a proof of work (and hence being
a candidate to extend the ledger state) using one query to the random oracle
(or equivalently, that a query to the state-exchange functionality successfully
extends a state).

But Why Does It Work? 59

Theorem 3. For n > 0 and breward · CR < mcost
p the Bitcoin protocol is not

incentive compatible.

The proof is a straightforward calculation of the utility for the designer per
round. Under the above condition, this expectation is less than 0, since they
spend (on average) more on queries than what the reward compensates. Hence,
the best response would be a protocol that does nothing.

While the above condition implies that the Bitcoin protocol is not a stable
solution for all choices of the rewards, costs, and CR, we next provide conditions
under which the standard Bitcoin protocol is in fact a stable solution in the
attack game. For this, we need to compare it to arbitrary alternative strategies
that produce valid blocks for the Bitcoin network. Informally, our condition for
IC requires that CR and breward are sufficiently higher than the costs.

Theorem 4. Consider the real world consisting of the random oracle function-
ality FRO, the diffusion network FN-MC, and the clock Gclock, and let Wflat(·) be
the wrapper that formalizes the restrictions of the flat model.24 Consider the class
˝isvalidchainH,d(·) of protocols Π that are defined for the Wflat(Gclock,FRO,FN-MC)-
hybrid world and which are compatible with the Bitcoin network, i.e., which obey
the following two restrictions:

1. With probability 1, the real-world transcript (i.e., the real-world UC-execution
of Π, any environment and adversary) does not contain a chain C with
isvalidchainH,d(C) = 0 and this chain was an output to the network from an
uncorrupted protocol instance running Π.

2. Upon input (read, sid) to a protocol instance, the return value is (read,

sid, �st
�T

) (for some integer T), where �st
�T

denotes the prefix of the state �st
encoded in the longest valid chain C received by this protocol instance.

With respect to the class ˝isvalidchainH,d(·), the Bitcoin protocol is an incentive-
compatible choice for the protocol designer if Bitcoin is profitable as in Lemma 3,
i.e., if we are in the region breward · CR > n·mcost

p , and if

breward · CR >
mcost

p · (1 − p)n−1
. (4)

Remark 4. Formula 4 constitutes a stronger requirement than the mere condi-
tion that mining should be profitable (which we treat separately in Lemma 3
for completeness). The theorem says that the probability that a fixed miner is
uniquely successful stands in a reasonable relation to the mining cost and block
rewards to achieve a stable solution. While Bitcoin would already yield positive
utility to the protocol designer in the case of breward · CR > n·mcost

p , we have for
large n, mcost

p · n ≤ mcost
p · (1

1−p)n−1 (for p ∈ (0, 1)).

24 Recall from [2] that we model restrictions by using functionality wrappers. The
above implemented restrictions correspond to the so-called flat model of Bitcoin,
where each party gets one query to the random oracle per round and can send and
receive one vector of messages in each round.

60 C. Badertscher et al.

Proof intuition. The proof follows by demonstrating, in a sequence of claims,
that the actual choices of the Bitcoin protocol (i.e., our abstraction of it) are
optimal under the conditions of the theorem. This includes proving that the
assumed resources cannot be employed in a way that would yield better payoff
to the protocol designer. Intuitively, if the protocol has to be compatible with
the Bitcoin network (i.e., it has to produce valid chains with probability 1), and
invest its resources to achieve the optimum reward vs. query ratio in a setting
where it knows it is running against front-running adversary running Bitcoin
(such as mining pools). Optimality under the theorem’s condition follows by
deducing a couple of useful properties from the fact that the protocol has to work
potentially independently (per round) and by computing (and maximizing) the
distribution of the possible query-vs.-reward ratios. The formal proof is found
in the full version [1]. �

We note that the above conditions are not necessarily tight. Thus one might
wonder whether we can prove or disprove their tightness, and in the latter case
investigate tight conditions for the statements to hold. We conclude this section
with the following lemma which serves as first partial attempt to investigate this
gap. The lemma implies that there might be potential to prove (partial) IC even
for values of the parameters that fall in the gap between the above theorems.
We leave the thorough investigation of this gap in terms of stability as a future
research direction.

Lemma 3. If breward · CR > n·mcost
p then the Bitcoin protocol yields, with over-

whelming probability, a positive utility for the protocol designer in the presence of
front-running adversaries, i.e., the Bitcoin protocol is profitable in such a setting.

5 Analysis of Bitcoin with Transaction Fees

Recall that in our formal treatment a chain C encodes a ledger state �st. A ledger
state is a sequence of individual state-blocks, i.e., �st = st1|| . . . ||st�. In addition,
each state-block st ∈ �st (except the genesis state) of the state encoded in the
blockchain has the form st = Blockify(�N) where �N is a vector of transactions,
i.e., �N = tx1, . . . , txk. A transaction txi can be seen as the abstract content of a
block. Our above analysis assumes that the contents of the blocks do not affect
the incentives of the attacker and the designer. In the real-world execution of
Bitcoin, however, this is not the case as the contents of the blocks are money-
like transactions and have transaction fees associated with them. We model these
using positive-valued function tx �→ f(tx) mapping individual transactions to a
positive real value that are integer multiples of 1 Satoshi (equals 10−8 Bitcoin).25

For sake of brevity, we will also denote by f̂(st) :=
∑

tx∈st f(tx) the sum of all
fees contained in the state block st. The fees have to be considered when defining
the utilities in a rational analysis since they are added to the (flat) block reward
and the total sum is given as a reward to the miner who inserts the block into

25 Note that this modeling aspect is not sensitive to the basic unit of measurement.

But Why Does It Work? 61

the ledger state. Hence, this section treats the case where overall block rewards
can be a dynamic quantity. In fact, the plan for Bitcoin is to eventually drop
the block rewards at which point mining will be incentivized exclusively by the
associated transaction fees. In this section we study the security and stability of
the Bitcoin network incorporating also such fees.

5.1 Utility Functions with Fees

We first have to change the definition of the utility functions to incorporate that
the attacker and the designer receive a different reward when inserting a block
into the ledger state. The difference are the transactions fees. To this end, we
first introduce a set TZ which contains all transactions that are submitted by
the environment (and in particular not by the adversary), and then define the
relevant events to capture fees in our model.26

– In an execution, let TZ be the set of transactions such that tx ∈ TZ if and only
if tx first appeared as an input from the environment (i.e., the first occurrence
of tx is in a command (submit, tx) in this execution).

– For each (μ, r) ∈ N2 the event F A
r,μ is defined as follows: F A

r,μ denotes the event
that the total sum of the transaction fees f(tx) of all tx ∈ TZ contained in the
blocks that the adversary adds to the state in round r is equal to μ · 10−8 · CR
cost units.27

– For each (μ, r) ∈ N2 let the event F D
r,μ be defined as follows: F D

r,μ is the event
that the total sum of the transaction fees f(tx) of all tx ∈ TZ contained
in the blocks that the honest miners (jointly) add to the state in round r is
equivalent to μ · 10−8 · CR cost units.

Since it is the environment that decides on the block-content, the sum of the
fees in each block is effectively a random variable whose distribution is induced
by the environment. The utilities of the attacker and designer that incorporate
fees are defined as follows (we use ûB

A and ûB
D to denote the utilities when fees

are added to the incentives):

ûB
A (Π,A) = sup

Z∈ITM

{
inf

SA∈CA

{
breward · CR · E(BA) − q · mcost · E(QA)

+
∑

(μ,r)∈N2

μ · 10−8 · CR · Pr[F A
r,μ]

}}

26 Note that we assume that only transactions submitted by the environment can yield
fees, since the environment models “the application layer”. In particular, if the adver-
sary creates a transaction on his own and includes it in his next mined block, then
this should not assign him any payoff.

27 Recall that CR is the conversion of one cryptocurrency unit (e.g., one bitcoin) to one
cost unit (e.g., one US dollar).

62 C. Badertscher et al.

and

ûB
D (Π,A) = inf

Z∈Z

{
sup

SA∈SA

{ ∑
(b,r)∈N2

b · CR · (breward · Pr[IDb,r] − 2polylog(κ) · Pr[Kr])

−
∑

(q,r)∈N2

q · mcost · Pr[W D
q,r] +

∑
(μ,r)∈N2

μ · 10−8 · CR · Pr[F D
r,μ]

}}
.

Note that the multiplicative factor 10−8 is there to allow us to set μ to the
integer multiple of one Satoshi that the fee yields. We will denote by M̂B the
Bitcoin attack model which has GB

ledger as the goal, 〈GB
ledger〉 as the relaxed func-

tionality, and scoring functions for the attacker and designer inducing utilities
ûB
A and ûB

D .

Upper bounds on fees and total reward for blocks. In reality, transaction
fees and the overall reward of a block are naturally bounded (either by size limits
or by restricting the total value of the system).28 In the following, we assume
that for all tx, f(tx) ≤ maxfee, and that the sum of fees per block is bounded,
yielding an upper bound on the total profit per block: For all state blocks st
we require that breward + f̂(st) ≤ maxblock, where maxfee and maxblock are
(strictly) positive multiples of one Satoshi.

Restrictions on the availability of transactions. So far in our treatment,
the environment induces a distribution on the available transactions and is in
principle unrestricted in doing so. For example, the set TZ is not bounded in size
except by the running time of Z. As will become apparent below in Theorem 5,
putting no restrictions on the set TZ can still lead to meaningful statements
that apply, for example, to applications that are believed to generate an (a
priori) unbounded number of transactions. However, to model different kinds of
scenarios that appear in the real world, we have to develop a language that allows
us to speak about limited availability of transactions. To this end, we introduce
parameterized environments ZD. More precisely, let D be an oracle which takes
inputs (NextTxs, r) and returns a vector �Tr = (tx1, pi1), . . . , (txk, pik

). We say
that an environment is D-respecting, if, in every round r, the environment queries
the oracle D and only transactions tx ∈ �Tr are added to TZ . We further require
that Z submits (submit, txi) to party pk in round r if and only if (txi, pk) ∈ �Tr.
For simplicity, we call D simply a distribution. The utility for the attacker in
such environments is taken to be the supremum as above, but only over all
D-respecting environments.

5.2 Analysis of Bitcoin (with Fees)

The following theorem says that if we look at unrestricted environments, then
Bitcoin is still incentive compatible. This is a consequence of Theorems 2 and 4
and proven formally in the full version [1].
28 For example, the number of total Bitcoins is limited and the block-size is bounded.

But Why Does It Work? 63

Theorem 5. Consider arbitrary environments and let the sum of the transac-
tion fees per block be bounded by maxblock > 0. Then the Bitcoin protocol is
strongly attack-payoff secure in the attack model M̂B. It is further incentive-
compatible with respect to the class of protocols that are compatible with the
Bitcoin network under the same conditions as in Theorem 4), i.e., if

breward · CR >
mcost

p · (1 − p)n−1
.

The previous statement is void in case the flat block reward is 0. However, for
certain types of distributions D, namely, the ones that provide sufficient high-
fee transactions to the participants, it will remain in an equilibrium state. The
statement is proven in the full version [1].

Theorem 6. Consider distributions D with the following property: In every
round, D outputs a vector of transactions such that any party gets as input a list
of transactions to build a valid next state block st to extend the longest chain and
such that f̂(st) = maxblock holds (where maxblock > 0). Then, with respect to
D-respecting environments, the Bitcoin protocol is strongly attack-payoff secure
in the attack model M̂B. It is further incentive compatible with respect to the
class of protocols that are compatible with the Bitcoin network (as defined in
Theorem 4) if maxblock · CR > mcost

p·(1−p)n−1 .

However, if an application cannot provide enough transactions, it becomes
problematic, as the following counterexample shows.

Theorem 7. There exist distributions D such that the Bitcoin protocol is neither
attack-payoff secure nor strongly attack-payoff secure with respect to D-respecting
environments.

Proof. The proof is straightforward and follows from a general observation:
assume there is just a single transaction in the network which has been received
only by a corrupted party pi. Then, the adversary does not publish this transac-
tion to the network. If he does not, then he will be the one claiming the reward
with probability one, which is his best choice. Hence, he does not follow the pro-
tocol (as the semi-honest front-running adversary would do) and hence it cannot
be strongly attack-payoff secure.

Furthermore, the protocol is also not attack-payoff secure. If the honest-
majority assumption does not hold, and thus an adversary can fork the ledger
state, he would exercise his power to create a ledger state where it is a corrupted
party who mines the block containing the only transaction in the system as this
will yield better reward than simply mining on empty blocks. �

Fallback security. Note that because cryptographic security trivially implies
attack-payoff security for all possible environments and utilies, we can easily
derive a fallback security notion: If the majority of miners mines honestly, then
we get attack-payoff security; and even if this fails, we still get attack-payoff
security under the assumption that the distribution of the fees and the relation
between rewards vs costs vs conversion rate are as in Theorem 5 or 6.

64 C. Badertscher et al.

References

1. Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it
work? A rational protocol design treatment of bitcoin. Cryptology ePrint Archive,
Report 2018/138 (2018). https://eprint.iacr.org/2018/138

2. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

3. Github: Bitcoin Core Version 0.12.0. Wallet: Transaction Fees. https://github.com/
bitcoin/bitcoin/blob/v0.12.0/doc/release-notes.md#wallet-transaction-fees

4. Bonneau, J.: Why buy when you can rent? In: Clark, J., Meiklejohn, S., Ryan,
P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604,
pp. 19–26. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-
4 2

5. Canetti, R.: Security and composition of multiparty cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

6. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

7. Carlsten, M., Kalodner, H.A., Weinberg, S.M., Narayanan, A.: On the instability of
bitcoin without the block reward. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 154–167. ACM Press, October
2016

8. Eyal, I.: The miner’s dilemma. In: 2015 IEEE Symposium on Security and Privacy,
pp. 89–103. IEEE Computer Society Press, May 2015

9. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In:
Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5 28

10. Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard
communication networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
419–436. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-
2 25

11. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational protocol
design: cryptography against incentive-driven adversaries. In: 54th FOCS, pp. 648–
657. IEEE Computer Society Press, October 2013

12. Garay, J.A., Katz, J., Tackmann, B., Zikas, V.: How fair is your protocol? A utility-
based approach to protocol optimality. In: Georgiou, C., Spirakis, P.G. (eds.) 34th
ACM PODC, pp. 281–290. ACM, July 2015

13. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

14. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol.
10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
63688-7 10

15. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.:
On the security and performance of proof of work blockchains. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp.
3–16. ACM Press, October 2016

https://eprint.iacr.org/2018/138
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://github.com/bitcoin/bitcoin/blob/v0.12.0/doc/release-notes.md#wallet-transaction-fees
https://github.com/bitcoin/bitcoin/blob/v0.12.0/doc/release-notes.md#wallet-transaction-fees
https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-662-53357-4_2
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-642-11799-2_25
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-63688-7_10

But Why Does It Work? 65

16. Goldreich, O.: Foundations of Cryptography: Volume 1, Basic Tools. Cambridge
University Press, Cambridge (2003)

17. Gradwohl, R., Livne, N., Rosen, A.: Sequential rationality in cryptographic proto-
cols. In: 51st FOCS, pp. 623–632. IEEE Computer Society Press, October 2010

18. Halpern, J.Y., Pass, R., Seeman, L.: Computational extensive-form games. In: EC
(2016)

19. Katz, J.: Bridging game theory and cryptography: recent results and future direc-
tions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8 15

20. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable syn-
chronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 27

21. Kol, G., Naor, M.: Games for exchanging information. In: Ladner, R.E., Dwork,
C. (eds.) 40th ACM STOC, pp. 423–432. ACM Press, May 2008

22. Luu, L., Teutsch, J., Kulkarni, R., Saxena, P.: Demystifying incentives in the con-
sensus computer. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 706–719.
ACM Press, October 2015

23. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). http://
bitcoin.org/bitcoin.pdf

24. Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish
mining and combining with an eclipse attack. In: S&P (2016)

25. Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.: Fairness with an honest minority
and a rational majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
36–53. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 3

26. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

27. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

28. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Schiller, E.M., Schwarzmann,
A.A. (eds.) 36th ACM PODC, pp. 315–324. ACM, July 2017

29. Rosenfeld, M.: Analysis of bitcoin pooled mining reward systems. CoRR (2011)
30. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in

bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–
532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 30

31. Schrijvers, O., Bonneau, J., Boneh, D., Roughgarden, T.: Incentive compatibility
of bitcoin mining pool reward functions. In: Grossklags, J., Preneel, B. (eds.) FC
2016. LNCS, vol. 9603, pp. 477–498. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-662-54970-4 28

32. Teutsch, J., Jain, S., Saxena, P.: When cryptocurrencies mine their own business.
In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 499–514.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4 29

https://doi.org/10.1007/978-3-540-78524-8_15
https://doi.org/10.1007/978-3-642-36594-2_27
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-642-00457-5_3
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-662-54970-4_30
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1007/978-3-662-54970-4_29

	But Why Does It Work? A Rational Protocol Design Treatment of Bitcoin
	1 Introduction
	2 Preliminaries
	2.1 The RPD Framework
	2.2 A Composable Model for Blockchain Protocols

	3 Rational Protocol Design of Ledgers
	3.1 Extending the RPD Framework
	3.2 Bitcoin in the RPD Framework
	3.3 Attack-Payoff Security and Incentive Compatibility

	4 Analysis of Bitcoin Without Transaction Fees
	4.1 Attack-Payoff Security of Bitcoin (Without Fees)
	4.2 Incentive Compatibility of Bitcoin (Without Fees)

	5 Analysis of Bitcoin with Transaction Fees
	5.1 Utility Functions with Fees
	5.2 Analysis of Bitcoin (with Fees)

	References

