Skip to main content

Pollinator Trapping in Carnivorous Plants

  • Living reference work entry
  • First Online:
Co-Evolution of Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 115 Accesses

Abstract

Carnivorous plants use insects not only as prey for nutrient supplementation but also as pollinators for sexual reproduction. Consequently, when these plants have flowers and trap leaves simultaneously, there is a risk that they will trap mutualistic pollinators. Pollinator trapping can have various fitness consequences for carnivorous plants depending on which factors are limiting their fitness at a given time. Thus, plants that are pollen limited will be negatively impacted by pollinator trapping, whereas those that are nutrient limited will benefit from this. Carnivorous plants have evolved diverse characteristics to manage pollinator trapping based on these fitness-limiting factors. In this chapter, I discuss these characteristics with a particular focus on visual and chemical traits resulting from the production of secondary metabolites and biological factors to gain an understanding of the evolutionary ecology of pollinator trapping in carnivorous plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Thompson JN (1981) Reversed animal-plant interactions: the evolution of insectivorous and ant-fed plants. Biol J Linn Soc 16:147–155. https://doi.org/10.1111/j.1095-8312.1981.tb01647.x

    Article  Google Scholar 

  2. Darwin C (1875) Insectivorous plants. Murray, London

    Book  Google Scholar 

  3. Ellison AM, Adamec L (2018) Introduction: what is a carnivorous plants? In: Carnivorous plants: physiology, ecology and evolution. Oxford University Press, Oxford, pp 3–5

    Google Scholar 

  4. Ellison AM (2006) Nutrient limitation and stoichiometry of carnivorous plants. Plant Biol 8:740–747. https://doi.org/10.1055/s-2006-923956

    Article  CAS  PubMed  Google Scholar 

  5. Thum M (1988) The significance of carnivory for the fitness of Drosera in its natural habitat. Oecologia 75:472–480. https://doi.org/10.1007/BF00377091)

    Article  PubMed  Google Scholar 

  6. Zamora R, Gomez JM, Hodar JH (1997) Responses of a carnivorous plant to prey and inorganic nutrients in a Mediterranean environment. Oecologia 111:443–451. https://doi.org/10.1007/s004420050257

    Article  PubMed  Google Scholar 

  7. Ne’eman G, Ne’eman R, Ellison AM (2006) Limits to reproductive success of Sarracenia purpurea (Sarraceniaceae). Am J Bot 93:1660–1666. https://doi.org/10.3732/ajb.93.11.1660

    Article  PubMed  Google Scholar 

  8. Ellison AM, Gotelli NJ (2001) Evolutionary ecology of carnivorous plants. Trends Ecol Evol 16:623–629. https://doi.org/10.1016/S0169-5347(01)02269-8

    Article  Google Scholar 

  9. Fleischmann A, Schlauer J, Smith SA, Givnish TJ (2018) Evolution of carnivory in angiosperms. In: Carnivorous plants: physiology, ecology and evolution. Oxford University Press, Oxford, pp 22–41

    Google Scholar 

  10. Juniper BE, Robins RJ, Joel DM (1989) The carnivorous plants. Academic, New York

    Google Scholar 

  11. Zamora R (1999) Conditional outcomes of interactions: the pollinator-prey conflict of an insectivorous plant. Ecology 80:786–795. https://doi.org/10.1890/0012-9658(1999)080[0786:COOITP]2.0.CO;2

    Article  Google Scholar 

  12. Jürgens A, Sciligo A, Witt T, El-Sayed AM, Suckling DM (2012) Pollinator-prey conflict in carnivorous plants. Biol Rev 87:602–615. https://doi.org/10.1111/j.1469-185X.2011.00213.x

    Article  PubMed  Google Scholar 

  13. Cross AT, Davis AR, Fleischmann A, Horner JD, Jürgens A, Merritt DJ, Murza GL, Turner SR (2018) Reproductive biology and pollinator-prey conflicts. In: Ellison AM, Adamec L (eds) Carnivorous plants: physiology, ecology, and evolution. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780198779841.003.0022

    Chapter  Google Scholar 

  14. Horner JD (2014) Phenology and pollinator-prey conflict in the carnivorous plant, Sarracenica alata. Am Midl Nat 171:153–156. https://doi.org/10.1674/0003-0031-171.1.153

    Article  Google Scholar 

  15. Wiens D (1978) Mimicry in plants. In: Evolutionary biology. Springer US, Boston, pp 365–403. https://doi.org/10.1007/978-1-4615-6956-5_6)

    Chapter  Google Scholar 

  16. Schaefer HM, Ruxton GD (2008) Fatal attraction: carnivorous plants roll out the red carpet to lure insects. Biol Lett 4:153–155. https://doi.org/10.1098/rsbl.2007.0607

    Article  PubMed  PubMed Central  Google Scholar 

  17. Potts L, Krupa JJ (2016) Does the dwarf sundew (Drosera brevifolia) attract prey? Am Midl Nat 175:233–241. https://doi.org/10.1674/0003-0031-175.2.233

    Article  Google Scholar 

  18. Murza GL, Heaver JR, Davis AR (2006) Minor pollinator–prey conflict in the carnivorous plant, Drosera anglica. Plant Ecol 184:43–52. https://doi.org/10.1007/s11258-005-9050-y

    Article  Google Scholar 

  19. Jürgens A, Witt T, Sciligo A, El-Sayed AM (2015) The effect of trap colour and trap-flower distance on prey and pollinator capture in carnivorous Drosera species. Funct Ecol 29:1026–1037. https://doi.org/10.1111/1365-2435.12408

    Article  Google Scholar 

  20. El-Sayed AM, Byers JA, Suckling DM (2016) Pollinator-prey conflicts in carnivorous plants: when flower and trap properties mean life or death. Sci Rep 6:21065. https://doi.org/10.1038/srep21065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anderson B (2010) Did Drosera evolve long scapes to stop their pollinators from being eaten? Ann Bot 106:653–657. https://doi.org/10.1093/aob/mcq155

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tagawa K, Watanabe M, Yahara T (2018) Pollinator trapping in selfing carnivorous plants, Drosera makinoi and D. toyoakensis (Droseraceae). Ecol Res 33:487–494. https://doi.org/10.1007/s11284-018-1572-6

    Article  Google Scholar 

  23. Bertol N, Paniw M, Ojeda F (2015) Effective prey attraction in the rare Drosophyllum lusitanicum, a flypaper-trap carnivorous plant. Am J Bot 102:689–694. https://doi.org/10.3732/ajb.1400544

    Article  PubMed  Google Scholar 

  24. Molano-Flores B, Primer S, Annis J, Feist MA, Coons J, Digges R (2018) Reproductive ecology of three rare North American Pinguicula species. Plant Species Biol 33:129–139. https://doi.org/10.1111/1442-1984.12204

    Article  Google Scholar 

  25. García MB, Antor RJ, Villar L (1994) Phenomorphology and reproductive biology of Pinguicula longifolia Ramond ex DC. subsp. longifolia (Lentibulariaceae), a carnivorous endemic plant of the Pyrenees. Acta Bot Gall 141:343–349. https://doi.org/10.1080/12538078.1994.10515167

    Article  Google Scholar 

  26. Molau U (1993) Reproductive ecology of the three Nordic Pinguicula species (Lentibulariaceae). Nord J Bot 13:149–157. https://doi.org/10.1111/j.1756-1051.1993.tb00025.x

    Article  Google Scholar 

  27. Villegas SG, Alcalá RE (2018) Reproductive ecology of the carnivorous plant Pinguicula moranensis (Lentibulariaceae). Plant Biol 20:205–212. https://doi.org/10.1111/plb.12652

    Article  CAS  PubMed  Google Scholar 

  28. Karlsson PS, Thorén LM, Hanslin HM (1994) Prey capture by three Pinguicula species in a subarctic environment. Oecologia 99:188–193. https://doi.org/10.1007/BF00317100

    Article  CAS  PubMed  Google Scholar 

  29. Zamora R (1990) The feeding ecology of a carnivorous plant (Pinguicula nevadense): prey analysis and capture constraints. Oecologia 84:376–379. https://doi.org/10.1007/BF00329762

    Article  PubMed  Google Scholar 

  30. Antor RJ, Garcia MB (1994) Prey capture by a carnivorous plant with hanging adhesive traps: Pinguicula longifolia. Am Midl Nat 131:128–135. https://doi.org/10.2307/2426615

    Article  Google Scholar 

  31. Alcalá RE, Domínguez CA (2003) Patterns of prey capture and prey availability among populations of the carnivorous plant Pinguicula moranensis (Lentibulariaceae) along an environmental gradient. Am J Bot 90:1341–1348. https://doi.org/10.3732/ajb.90.9.1341)

    Article  PubMed  Google Scholar 

  32. Adlassnig W, Lendl T, Peroutka M, Lang I (2010) Deadly glue – adhesive traps of carnivorous plants. In: Biological adhesive systems. Springer Vienna, Vienna, pp 15–28. https://doi.org/10.1007/978-3-7091-0286-2_2

    Chapter  Google Scholar 

  33. Kato M (1993) Floral biology of Nepenthes gracilis (Nepenthaceae) in Sumatra. Am J Bot 80:924–927. https://doi.org/10.1002/j.1537-2197.1993.tb15313.x

    Article  Google Scholar 

  34. Adam JH (1998) Reproductive biology of Bornean Nepenthes (Nepenthaceae) species. J Trop For Sci 10:456–471. https://doi.org/10.2307/43582492)

    Article  Google Scholar 

  35. Chua LSL (2000) The pollination biology and breeding system of Nepenthes macharlanei (Nepnthaceae). J Trop For Sci 12:635–642. https://doi.org/10.2307/43582397)

    Article  Google Scholar 

  36. Handayani T (2017) Flower morphology, floral development and insect visitors to flowers of Nepenthes mirabilis. Biodiversitas J Biol Divers 18:1624–1631. https://doi.org/10.13057/BIODIV/D180441)

    Article  Google Scholar 

  37. Moran JA (1993) Visitors to the flowers of the pitcher plant Nepenthes rafflesiana. Brunei Museum J 8:73–75

    Google Scholar 

  38. Adam JH (1997) Prey spectra of Bornean Nepenthes species (Nepenthaceae) in relation to their habitat. Pertanika J Trop Agric Sci 20:121–134

    Google Scholar 

  39. Rembold K, Fischer E, Wetzel MA, Barthlott W (2010) Prey composition of the pitcher plant Nepenthes madagascariensis. J Trop Ecol 26:365–372. https://doi.org/10.1017/S026646741000012X

    Article  Google Scholar 

  40. Moran JA (1996) Pitcher dimorphism, prey composition and the mechanisms of prey attraction in the pitcher plant Nepenthes rafflesiana in Borneo. J Ecol 84:515–525. https://doi.org/10.2307/2261474

    Article  Google Scholar 

  41. Di Giusto B, Grosbois V, Fargeas E, Marshall DJ, Gaume L (2008) Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Borneo. J Biosci 33:121–136. https://doi.org/10.1007/s12038-008-0028-5

    Article  PubMed  Google Scholar 

  42. Di Giusto B, Bessière J-M, Guéroult M, Lim LBL, Marshall DJ, Hossaert-McKey M, Gaume L (2010) Flower-scent mimicry masks a deadly trap in the carnivorous plant Nepenthes rafflesiana. J Ecol 98:845–856. https://doi.org/10.1111/j.1365-2745.2010.01665.x

    Article  CAS  Google Scholar 

  43. Schnell DE (1983) Notes on the pollination of Sarracenia flava L. (Sarraceniaceae) in the Piedmont province of North Carolina. Rhodora 85:405–420. https://doi.org/10.2307/23311077)

    Article  Google Scholar 

  44. Bodri MS, Gaspard AM (2006) The pollination biology of Sarracenia alata Wood (Sarraceniaceae) in Louisiana. Bartonia 63:1–9. https://doi.org/10.2307/41610117)

    Article  Google Scholar 

  45. Green ML, Horner JD (2007) The relationship between prey capture and characteristics of the carnivorous pitcher plant, Sarracenia alata Wood. Am Midl Nat 158:424–431. https://doi.org/10.1674/0003-0031(2007)158[424:TRBPCA]2.0.CO;2

    Article  Google Scholar 

  46. Bhattarai GP, Horner JD (2009) The importance of pitcher size in prey capture in the carnivorous plant, Sarracenia alata Wood (Sarraceniaceae). Am Midl Nat 161:264–272. https://doi.org/10.1674/0003-0031-161.2.264

    Article  Google Scholar 

  47. Judd WW (1959) Studies of the Byron Bog in Southwestern Ontario: X. Inquilines and victims of the pitcher-plant, Sarracenia purpurea L. Can Entomol 91:171–180. https://doi.org/10.4039/Ent91171-3

    Article  Google Scholar 

  48. Heard SB (1998) Capture rates of invertebrate prey by the pitcher plant, Sarracenia purpurea L. Am Midl Nat 139:79–89. https://doi.org/10.1674/0003-0031(1998)139[0079:CROIPB]2.0.CO;2

    Article  Google Scholar 

  49. Cresswell JE (1991) Capture rates and composition of insect prey of the pitcher plant Sarracenia purpurea. Am Midl Nat 125:1–9. https://doi.org/10.2307/2426363

    Article  Google Scholar 

  50. Franklin E, Evans D, Thornton A, Moody C, Green I, Diaz A (2017) Exploring the predation of UK bumblebees (Apidae, Bombus spp.) by the invasive pitcher plant Sarracenia purpurea: examining the effects of annual variation, seasonal variation, plant density and bumblebee gender. Arthropod Plant Interact 11:79–88. https://doi.org/10.1007/s11829-016-9468-2

    Article  Google Scholar 

  51. Youngsteadt E, Irwin RE, Fowler A, Bertone MA, Giacomini SJ, Kunz M, Suiter D, Sorenson CE (2018) Venus flytrap rarely traps its pollinators. Am Nat 191:539–546. https://doi.org/10.1086/696124

    Article  PubMed  Google Scholar 

  52. Egan PA, van der Kooy F (2013) Phytochemistry of the carnivorous sundew genus Drosera (Droseraceae) – future perspectives and ethnopharmacological relevance. Chem Biodivers 10:1774–1790. https://doi.org/10.1002/cbdv.201200359

    Article  CAS  PubMed  Google Scholar 

  53. Kováčik J, Klejdus B, Repčáková K (2012) Phenolic metabolites in carnivorous plants: inter-specific comparison and physiological studies. Plant Physiol Biochem 52:21–27. https://doi.org/10.1016/J.PLAPHY.2011.11.007

    Article  PubMed  Google Scholar 

  54. Ichiishi S, Nagamitsu T, Kondo Y, Iwashina T, Kondo K, Tagashira N (1999) Effects of macro-components and sucrose in the medium on in vitro red-color pigmentation in Dionaea muscipula Ellis and Drosera spathulata Labill. Plant Biotechnol 16:235–238. https://doi.org/10.5511/plantbiotechnology.16.235

    Article  CAS  Google Scholar 

  55. Bennett KF, Ellison AM (2009) Nectar, not colour, may lure insects to their death. Biol Lett 5:469–472. https://doi.org/10.1098/rsbl.2009.0161

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gilbert KJ, Nitta JH, Talavera G, Pierce NE (2018) Keeping an eye on coloration: ecological correlates of the evolution of pitcher traits in the genus Nepenthes (Caryophyllales). Biol J Linn Soc 123:321–337. https://doi.org/10.1093/biolinnean/blx142

    Article  Google Scholar 

  57. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510. https://doi.org/10.1146/annurev.ento.46.1.471

    Article  CAS  PubMed  Google Scholar 

  58. Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40. https://doi.org/10.1007/BF00190398

    Article  CAS  PubMed  Google Scholar 

  59. Camlitepe Y, Aksoy V (2010) First evidence of fine colour discrimination ability in ants (Hymenoptera, Formicidae). J Exp Biol 213:72–77. https://doi.org/10.1242/jeb.037853

    Article  CAS  PubMed  Google Scholar 

  60. Ogawa Y, Falkowski M, Narendra A, Zeil J, Hemmi JM (2015) Three spectrally distinct photoreceptors in diurnal and nocturnal Australian ants. Proc R Soc B Biol Sci 282:20150673. https://doi.org/10.1098/rspb.2015.0673

    Article  Google Scholar 

  61. Foot G, Rice SP, Millett J (2014) Red trap colour of the carnivorous plant Drosera rotundifolia does not serve a prey attraction or camouflage function. Biol Lett 10:20131024. https://doi.org/10.1098/rsbl.2013.1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Annis J, Coons J, Helm C, Molano-Flores B (2018) The role of red leaf coloration in prey capture for Pinguicula planifolia. Southeast Nat 17:433–437. https://doi.org/10.1656/058.017.0308

    Article  Google Scholar 

  63. Chittka L, Waser NM (1997) Why red flowers are not invisible to bees. Isr J Plant Sci 45:169–183. https://doi.org/10.1080/07929978.1997.10676682

    Article  Google Scholar 

  64. Gould KS (2004) Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J Biomed Biotechnol 2004:314–320. https://doi.org/10.1155/S1110724304406147

    Article  PubMed  PubMed Central  Google Scholar 

  65. Archetti M, Doring TF, Hagen SB, Hughes NM, Leather SR, Lee DW, Lev-Yadun S, Manetas Y, Ougham H, Schaberg P, Thomas H (2009) Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol Evol 24:166–173. https://doi.org/10.1016/J.TREE.2008.10.006

    Article  PubMed  Google Scholar 

  66. Schaefer HM, Rentzsch M, Breuer M (2008) Anthocyanins reduce fungal growth in fruits. Nat Prod Commun 3:1934578X0800300. https://doi.org/10.1177/1934578X0800300808

    Article  Google Scholar 

  67. Tellez P, Rojas E, Van Bael S (2016) Red coloration in young tropical leaves associated with reduced fungal pathogen damage. Biotropica 48:150–153. https://doi.org/10.1111/btp.12303

    Article  Google Scholar 

  68. Karageorgou P, Buschmann C, Manetas Y (2008) Red leaf color as a warning signal against insect herbivory: honest or mimetic? Flora Morphol Distrib Funct Ecol Plants 203:648–652. https://doi.org/10.1016/J.FLORA.2007.10.006

    Article  Google Scholar 

  69. Menzies IJ, Youard LW, Lord JM, Carpenter KL, van Klink JW, Perry NB, Schaefer HM, Gould KS (2016) Leaf colour polymorphisms: a balance between plant defence and photosynthesis. J Ecol 104:104–113. https://doi.org/10.1111/1365-2745.12494

    Article  CAS  Google Scholar 

  70. Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984) Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am Nat 124:479–497. https://doi.org/10.1086/284289

    Article  Google Scholar 

  71. Millett J, Foot GW, Thompson JC, Svensson BM (2018) Geographic variation in Sundew (Drosera) leaf colour: plant-plant interactions counteract expected effects of abiotic factors. J Biogeogr 45:582–592. https://doi.org/10.1111/jbi.13141

    Article  Google Scholar 

  72. Moon DC, Rossi A, Stokes K, Moon J (2008) Effects of the pitcher plant mining moth Exyra semicrocea on the hooded pitcher plant Sarracenia minor. Am Midl Nat 159:321–326. https://doi.org/10.1674/0003-0031(2008)159[321:EOTPPM]2.0.CO;2

    Article  Google Scholar 

  73. Matthews DL (2009) The sundew plume moth, Buckleria parvulus (Barnes & Lindsey) (Lepidoptera: Pterophoridae). South Lepid News 31:74–77

    Google Scholar 

  74. Miles DH, Kopol U, Mody NV, Hedin PA (1975) Volatiles in Sarracnia flava. Phytochemistry 14:845–846

    Article  CAS  Google Scholar 

  75. Fleischmann A (2016) Olfactory prey attraction in Drosera. Carniv. Plant News 45:19–25

    Google Scholar 

  76. Knudsen J, Eriksson R, Gerchenzon J, Stahl B (2006) Diveristy and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  77. Kreuzwieser J, Scheerer U, Kruse J, Burzlaff T, Honsel A, Alfarraj S, Georgiev P, Schnitzler J, Ghirardo A, Kreuzer I, Hedrich R, Rennenberg H (2014) The Venus flytrap attracts insects by the release of volatile organic compounds. J Exp Bot 65:755–766. https://doi.org/10.1093/jxb/ert455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jürgens A, El-Sayed AM, Suckling DM (2009) Do carnivorous plants use volatiles for attracting prey insects? Funct Ecol 23:875–887. https://doi.org/10.1111/j.1365-2435.2009.01626.x

    Article  Google Scholar 

  79. Callaway RM (1995) Positive interactions among plants. Bot Rev 61:306–349. https://doi.org/10.1007/BF02912621

    Article  Google Scholar 

  80. Feldman TS, Morris WF, Wilson WG (2004) When can two plant species facilitate each other’s pollination? Oikos 105:197–207. https://doi.org/10.1111/j.0030-1299.2004.12845.x

    Article  Google Scholar 

  81. Moeller DA (2004) Facilitative interactions among plants via shared pollinators. Ecology 85:3289–3301. https://doi.org/10.1890/03-0810

    Article  Google Scholar 

  82. Johnson SD, Peter CI, Nilsson LA, Ågren J (2003) Pollination success in a deceptive orchid is enhanced by co-occurring rewarding magnet plants. Ecology 84:2919–2927. https://doi.org/10.1890/02-0471

    Article  Google Scholar 

  83. Anderson B, Johnson SD (2006) The effects of floral mimics and models on each others’ fitness. Proc R Soc B Biol Sci 273:969–974. https://doi.org/10.1098/rspb.2005.3401)

    Article  Google Scholar 

  84. Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. https://doi.org/10.1139/z90-092

    Article  Google Scholar 

  85. Gibson TC (1991) Differential escape of insects from carnivorous plant traps. Am Midl Nat 125:55–62. https://doi.org/10.2307/2426369

    Article  Google Scholar 

  86. Heiling AM, Herberstein ME (2004) Predator-prey coevolution: Australian native bees avoid their spider predators. Proc Biol Sci 271(Suppl 4):S196–S198. https://doi.org/10.1098/rsbl.2003.0138

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tagawa K, Watanabe M, Yahara T (2018) Hoverflies can sense the risk of being trapped by carnivorous plants: an empirical study using Sphaerophoria menthastri and Drosera toyoakensis. J Asia Pac Entomol 21:944–946. https://doi.org/10.1016/j.aspen.2018.07.014

    Article  Google Scholar 

  88. Yokoi T, Fujisaki K (2009) Hesitation behaviour of hoverflies Sphaerophoria spp. to avoid ambush by crab spiders. Naturwissenschaften 96:195–200. https://doi.org/10.1007/s00114-008-0459-8

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Tagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Tagawa, K. (2020). Pollinator Trapping in Carnivorous Plants. In: Merillon, JM., Ramawat, K. (eds) Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-76887-8_56-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76887-8_56-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76887-8

  • Online ISBN: 978-3-319-76887-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics