Skip to main content

Estimation of Probability Density Function of Digital Substrate Noise in Mixed Signal System

  • Conference paper
  • First Online:
International Conference on Wireless, Intelligent, and Distributed Environment for Communication (WIDECOM 2018)

Abstract

The substrate noise generated in the mixed signal-integrated circuits, which encapsulates the analog, the RF, and the memory parts, is assumed to possess the non-Gaussian cyclostationary nature. This noise creates interference among the various parts of mixed signal circuits and even within the memory circuits itself. To estimate the PDF parameters of non-Gaussian noise, which is modeled by Cauchy’s distribution function (kind of non-Gaussian), the non-Gaussian noise is modeled by the non-Gaussian mixture density. The PDF parameters are estimated using the maximum log likelihood function, and the priori and post priori updates are used for updating the PDF parameters. The substrate noise in a CMOS inverter and in a chain of five CMOS inverters is estimated first, and then this has been considered as an example of non-Gaussian cyclostationary noise for PDF estimation. The probability density function (PDF) of non-Gaussian cyclostationary noise is analytically estimated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Mukherjee, A. Sengupta, Estimating the probability density function of a nonstationary non-Gaussian noise. IEEE Trans. Ind. Electron. 57(4), 1429–1435 (2010)

    Article  Google Scholar 

  2. R.A. Redner, H.F. Walker, Mixture densities maximum likelihood and the EM algorithms. SIAM Rev. 26(2), 195–239 (1984)

    Article  MathSciNet  Google Scholar 

  3. N. Jung Hsu, F. Jay Breidt, Exact maximum likelihood estimation for non-Gaussian moving averages. Stat. Sin. 19, 545–560 (2009)

    MathSciNet  MATH  Google Scholar 

  4. W. Liu, P.P. Pokharel, J.C. Principe, Correntropy: Properties and applications in non-Gaussian signal processing. IEEE Trans. Signal Process. 55(11), 5286–5298 (2007)

    Article  MathSciNet  Google Scholar 

  5. Y. Zhao, X. Zhuang, S.J. Ting, Gaussian mixture density modeling of non-Gaussian source for autoregressive process. IEEE Trans. Signal Process. 43(4), 894–903 (1995)

    Article  Google Scholar 

  6. D. Sengupta, S.M. Kay, Efficient estimation of parameters non-Gaussian autoregressive processes. IEEE Trans. Acoust. Speech Signal Process 37(6), 785–794 (1989)

    Article  Google Scholar 

  7. F. Gini, A radar application of a modified Cram’er-Rao bound: Parameter estimation in non-Gaussian clutter. IEEE Trans. Signal Process 46(7), 1945–1953 (1998)

    Article  Google Scholar 

  8. H.S. Ahn, K.H. Ko, Simple pedestrian localization algorithms based on distributed wireless sensor network. IEEE Trans. Ind. Electron 56(10), 4296–4302 (2009)

    Article  Google Scholar 

  9. W.H. Zhu, T. Lamarche, Velocity estimation by using position and acceleration sensors. IEEE Trans. Ind. Electron 54(5), 2706–2715 (2007)

    Article  Google Scholar 

  10. W. Panusittikorn, M.C. Lee, P.I. Ro, Modeling and sliding mode control of friction-based object transport using two-mode ultrasonic excitation. IEEE Trans. Ind. Electron 51(4), 917–926 (2004)

    Article  Google Scholar 

  11. P.K. Singh, S. Sharma, Analysis of substrate coupling in design mixed signal VLSI circuit for 0.18 μm technology using resistive macromodel method. Appl. Math. Inf. Sci. Int. J 9(6), 3003–3008 (2015)

    Google Scholar 

  12. P.K. Singh, S. Sharma, Substrate coupling of RF CMOS on lightly doped substrate for nanoscale mixed-signal design. J. Comput. Theor. Nanosci. 11(4), 1184–1188 (Apr. 2014)

    Article  Google Scholar 

  13. P.K. Singh, S. Sharma, Analytical parametric modeling of nanoscale surrounding gate MOSFET based on the Poisson’s equation. J. Comput. Theor. Nanosci. 10, 557–560 (2013)

    Article  Google Scholar 

  14. P.K. Singh, S. Sharma, Substrate noise analysis of full adder circuit using nanometer Technology for High-Ohmic Substrate. J. Comput. Theor. Nanosci 9, 2245–2249 (2012)

    Article  Google Scholar 

  15. P.K. Singh, S. Sharma, Low power narrow band inductively source degenerated LNA in presence of substrate noise. Int. J. Appl. Sci. Eng. Technol., Maxwell Scientific Publisher 5(16), 4190–4194 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sharma, M., Singh, P.K., Singh, T., Sharma, S. (2018). Estimation of Probability Density Function of Digital Substrate Noise in Mixed Signal System. In: Woungang, I., Dhurandher, S. (eds) International Conference on Wireless, Intelligent, and Distributed Environment for Communication. WIDECOM 2018. Lecture Notes on Data Engineering and Communications Technologies, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-75626-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75626-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75625-7

  • Online ISBN: 978-3-319-75626-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics