Skip to main content

Principal Modes of Maxwell’s Equations

  • Chapter
  • First Online:
Book cover The Generalized Multipole Technique for Light Scattering

Abstract

This chapter reviews the use of principal modes—states which are maximally correlated between two subspaces and hence form pairs unique up to phase factors—in solving Maxwell’s equations and analysing these solutions for nanoparticles and structures. The mathematical structure of this method allows a computationally efficient generalisation of Mie’s analytical approach for the sphere to obtain semi-analytical solutions for general geometries with smooth interfaces. We apply this method to investigate a range of single and multiple particle metallic structures in the linear, non-linear and non-local response regimes outside of the quasi-static limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Graham, R. Goodacre, Chem. Soc. Rev. 37, 883 (2008)

    Article  Google Scholar 

  2. T. Aoki, B. Dayan, E. Wilcut, W.P. Bowen, A.S. Parkins, T.J. Kippenberg, K.J. Vahala, H.J. Kimble, Nature 443, 671 (2006)

    Article  ADS  Google Scholar 

  3. B. Lukyanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, C. tow Chong, Nat. Mater. 9, 707 (2010)

    Google Scholar 

  4. N. Liu, L. Langguth, T. Weiss, J. Kstel, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)

    Article  ADS  Google Scholar 

  5. J. Schuller, E. Barnard, W. Cai, Y.C. Jun, J. White, M. Brongersma, Nat. Mater. 9, 193 (2010)

    Article  ADS  Google Scholar 

  6. Q. Zhao, J. Zhou, F. Zhang, D. Lippens, Mater. Today 12(12), 60 (2009)

    Article  Google Scholar 

  7. J. Pendry, D. Schuring, D. Smith, Science 312, 1780 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  8. C. Jordan, Buletin de la Société Mathématique de France 3, 103 (1875)

    Article  Google Scholar 

  9. A. Knyazev, A. Jujusnashvili, M. Argentati, J. Funct. Anal. 259, 1323 (2010)

    Article  MathSciNet  Google Scholar 

  10. D. McArthur, B. Hourahine, F. Papoff, Opt. Express 25(4), 4162 (2017). https://doi.org/10.1364/OE.25.004162

  11. A. Doicu, T. Wriedt, Y. Eremin, Light Scattering by Systems of Particles (Springer, Berlin, 2006)

    Google Scholar 

  12. K. Holms, B. Hourahine, F. Papoff, J. Opt. A: Pure Appl. Opt. 11, 054009 (2009)

    Article  ADS  Google Scholar 

  13. A. Aydin, A. Hizal, J. Math. Anal. Appl. 117, 428 (1986)

    Article  MathSciNet  Google Scholar 

  14. V.S. Vladimirov, Equations of Mathematical Physics (MIR, Moscow, 1984)

    Google Scholar 

  15. D.N.G. Roy, L.S. Couchman, Inverse Problems and Inverse Scattering of Plane Waves (Academic Press, New York, 2001). (chap. 6)

    Google Scholar 

  16. A. Doicu, T. Wriedt, J. Opt. Soc. Am. A 16(10), 2539 (1999)

    Article  ADS  Google Scholar 

  17. A. Doicu, T. Wriedt, Opt. Commun. 139, 85 (1997)

    Article  ADS  Google Scholar 

  18. T. Rother, M. Kahnert, A. Doicu, J. Wauer, Prog. Electromagn. Res. 38, 47 (2002)

    Article  Google Scholar 

  19. S. Silver, Microwave antenna theory and design. Technical Report 12, M.I.T. Radiation Laboratory Series (1949)

    Google Scholar 

  20. C. Müller, Grundprobleme Der Mathematischen Theorie Elektromagnetischer Schwingungen (Springer, Berlin, 1957)

    Google Scholar 

  21. A. Knyazev, M. Argentati, SIAM J. Sci. Comput. 23(6), 2008 (2002)

    Google Scholar 

  22. D. McArthur, B. Hourahine, F. Papoff, Phys. Sci. Int. J. 4(4), 564 (2014)

    Article  Google Scholar 

  23. E. Hannan, J. Aust. Math. Soc. 2, 229 (1961/1962)

    Google Scholar 

  24. J. Jackson, Classical Electrodynamics (Wiley, New York, 1999)

    MATH  Google Scholar 

  25. B.F. Farrell, P.J. Ioannou, J. Atmos. Sci. 53, 2025 (1996)

    Article  ADS  Google Scholar 

  26. B. Hourahine, K. Holms, F. Papoff, J. Phys.: Conf. Ser. 367, 012010 (2012)

    Google Scholar 

  27. G. New, J. Mod. Opt. 42, 799 (1995)

    Article  ADS  Google Scholar 

  28. W.J. Firth, A. Yao, Phys. Rev. Lett. 95, 073903 (2005)

    Article  ADS  Google Scholar 

  29. F. Papoff, G. D’Alessandro, G.L. Oppo, Phys. Rev. Lett. 100, 123905 (2008)

    Article  ADS  Google Scholar 

  30. B. Hourahine, F. Papoff, Opt. Express 21, 20322 (2013)

    Article  ADS  Google Scholar 

  31. M.I. Tribelsky, B.S. Lukyanchuk, Phys. Rev. Lett. 97, 263902 (2006)

    Article  ADS  Google Scholar 

  32. J.A. Stratton, L.J. Chu, Phys. Rev. 56, 99 (1939)

    Article  ADS  Google Scholar 

  33. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)

    Google Scholar 

  34. F. Papoff, B. Hourahine, Opt. Express 19, 21432 (2011)

    Article  ADS  Google Scholar 

  35. G. Roll, G. Schweiger, J. Opt. Soc. Am. A 17, 1301 (2000)

    Article  ADS  Google Scholar 

  36. G. Mie, Leipzig Ann. Phys. 330, 377 (1908)

    Article  ADS  Google Scholar 

  37. Y. Han, Z. Wu, Appl. Opt. 40, 2501 (2001)

    Article  ADS  Google Scholar 

  38. M.I. Mishchenko, J.H. Hovernier, L.D. Travis (eds.), Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic Press, San Diego, 2000)

    Google Scholar 

  39. P.G. Etchegoin, E.C. Le Ru, M. Meyer, J. Chem. Phys. 125, 164705 (2006)

    Article  ADS  Google Scholar 

  40. P.G. Etchegoin, E.C. Le Ru, M. Meyer, J. Chem. Phys. 127, 189901 (2007)

    Article  ADS  Google Scholar 

  41. L.D. Landau, J. Phys. USSR 10, 503 (1946). https://doi.org/10.1016/B978-0-08-010586-4.50067-5

  42. H. Okamoto, K. Imura, Prog. Surf. Sci. 84, 199 (2009)

    Article  ADS  Google Scholar 

  43. J. Gielis, Am. J. Bot. 90(3), 333 (2003)

    Article  Google Scholar 

  44. B. Hourahine, F. Papoff, Meas. Sci. Technol. 23, 084002 (2012)

    Article  ADS  Google Scholar 

  45. K. Imura, K. Ueno, H. Misawa, H. Okamoto, D. McArthur, B. Hourahine, F. Papoff, Opt. Express 22, 12189 (2014)

    Article  ADS  Google Scholar 

  46. M. Abb, P. Albella, J. Aizpurua, O. Muskens, Nano Lett. 11, 2457 (2011)

    Article  ADS  Google Scholar 

  47. A. Kubo, K. Onda, H. Petek, Z. Sun, Y. Jung, H. Kim, Nano Lett. 5, 1123 (2005)

    Article  ADS  Google Scholar 

  48. M. Durach, A. Rusina, M. Stockman, Nano Lett. 7, 3145 (2007)

    Article  ADS  Google Scholar 

  49. M. Aeschlimann, M. D. Bayer, T. Brixner, F. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301 (2007)

    Google Scholar 

  50. H. Noh, Y. Chomg, A. Stone, H. Cao, Phys. Rev. Lett. 108, 186805 (2012)

    Article  ADS  Google Scholar 

  51. R. Pierrat, C. Vandenbem, M. Fink, R. Carminati, Phys. Rev. A 87, 041801 (2013)

    Article  ADS  Google Scholar 

  52. J. Jeffers, J. Mod. Opt. 47, 1819 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  53. M. Shraddha, J. Heitz, T. Roger, N. Westerberg, D. Faccio, Opt. Lett. 39, 5345 (2014)

    Article  ADS  Google Scholar 

  54. J. Zhang, K. MacDonald, N. Zheludev, Light: Sci. Appl. 1, e18 (2012)

    Google Scholar 

  55. S.G. Rodrigo, H. Harutyunyan, L. Novotny, Phys. Rev. Lett. 110, 177405 (2013)

    Article  ADS  Google Scholar 

  56. S. Roke, M. Bonn, A. Petukhov, Phys. Rev. B 70, 115106 (2004)

    Article  ADS  Google Scholar 

  57. F. Papoff, D. McArthur, B. Hourahine, Sci. Rep. 5 (2015). https://doi.org/10.1038/srep12040

  58. F.X. Wang, F. Rodríguez, W. Albers, R. Ahorinta, J.E. Sipe, M. Kauranen, Phys. Rev. B 80, 233402 (2009)

    Article  ADS  Google Scholar 

  59. J. Butet, G. Bachelier, I. Russier-Antoine, C. Jonin, E. Benichou, P.F. Brevet, Phys. Rev. Lett. 105, 077401 (2010)

    Article  ADS  Google Scholar 

  60. A. Melnyk, M.J. Harrison, Phys. Rev. B 2(4), 835 (1970)

    Article  ADS  Google Scholar 

  61. R. Ruppin, Phys. Rev. B 11, 2871 (1975)

    Article  ADS  Google Scholar 

  62. C. David, F.G. de Abajo, J. Phys. Chem. 115, 19470 (2011)

    Google Scholar 

  63. C. Cirací, R. Hill, J. Mock, Y. Urzhumov, A. Fernández-Domínguez, S. Maier, J. Pendry, A. Chilkoti, D.R. Smith, Science 337, 1072 (2012)

    Article  ADS  Google Scholar 

  64. A. Moreau, C. Cirací, R. Smith, Phys. Rev. B 87, 045401 (2013)

    Article  ADS  Google Scholar 

  65. T. Christensen, W. Yan, S. Raza, A.P. Jauho, N. Mortensen, M. Wubs, ACS Nano 2, 1745 (2014)

    Article  Google Scholar 

  66. A. Bostrom, G. Kristensson, S. Strom, in Field Representations and Introduction to Scattering, ed. by V. Varadan, A. Lakhtakia, V. Varadan (Elsevir Science, Amsterdam, 1991)

    Google Scholar 

  67. C. Cirací, E. Poutrina, M. Scalora, D.R. Smith, Phys. Rev. B 86, 115451 (2012)

    Article  ADS  Google Scholar 

  68. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Beninchou, P. Brevet, Phys. Rev. B 82, 235403 (2010)

    Article  ADS  Google Scholar 

  69. T. Heinz, in Nonlinear Surface Electromagnetic Phenomena, ed. by H. Ponath, G. Stegeman (Elsevier, Amsterdam, 1991)

    Google Scholar 

  70. J. Dadap, J. Shan, T. Heinz, J. Opt. Soc. Am. B 21, 1328 (2004)

    Article  ADS  Google Scholar 

  71. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Appl. Opt. 37(22), 5271 (1998). https://doi.org/10.1364/AO.37.005271

  72. J.E. Inglesfield, J. Phys. C 14, 3795 (1981)

    Article  ADS  Google Scholar 

  73. G.A. Baraff, M.M. Schlüter, J. Phys. C 19, 4383 (1986)

    Article  ADS  Google Scholar 

  74. J.E. Inglesfield, J. Phys. A 31, 8495 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  75. G. Gouesbet, G. Grehan, J. Opt. A 1, 706 (1999)

    Article  ADS  Google Scholar 

  76. F.J.G. de Abajo, J. Phys. Chem. C 112(46), 17983 (2008). https://doi.org/10.1021/jp807345h

  77. P. Ginzburg, A.V. Zayats, ACS Nano 7(5), 4334 (2013). https://doi.org/10.1021/nn400842m

  78. J.W. Pitera, M. Falta, W.F. van Gunsteren, Biophys. J. 80, 2546 (2001)

    Article  Google Scholar 

  79. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide, 3rd edn. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Hourahine .

Editor information

Editors and Affiliations

1.7  Appendix

1.7  Appendix

In this appendix we compare the validity of the numerical solutions to the scattering problem calculated via three different methods: the discrete source method using QR decomposition to solve (1.4) in a least squares sense (hereafter referred to as QR); construction of the principal modes by

  1. 1.

    Using QR decompositions to find orthonormal bases corresponding to (1.5), (1.6),

  2. 2.

    Forming the scalar product between the unitary matrices, \(U^i\) and \(U^s\),

  3. 3.

    Finding the paired sets of principal modes via a singular value decomposition corresponding to (1.7),

  4. 4.

    Analytically solving for the \(\mathbf { a}^i\) and \(\mathbf { a}^s\) coefficients,

(this approach being referred to as the QR+SVD method); and finally, purely using singular value decompositions to find the orthonormal bases and then the principal modes (referred to as SVD+SVD). In all cases, standard linear algebra routines were used to perform the decompositions and matrix products [79].

Fig. 1.20
figure 20

Sampling points of near field excitation for a rounded gold nanodisc and nanorod. The red points indicate the approximate location of the near field source as it was scanned above the gold nanoparticles at a height of 50nm, for a rod with dimensions (\(l = 400\) nm, \(d = 35\) nm) and a disc (\(d = 800\) nm, \(z = 35\) nm). The blue circles indicate the location of the near field source used for the DSCS calculations. There are 15 sampling points for each particle (the centre of the disc was sampled with 3 different polarisations.) All of the following simulations were performed using these particles

Fig. 1.21
figure 21

Convergence of the DSCS along the generatrix line with increasing rank. The DSCS, in arbitrary units, for the three different algorithms plotted against the far field angle \(\theta \), varied incrementally between 0 and \(\pi \) between the poles of the particle’s symmetry axis showing convergence with increasing rank of the solution matrices for a (a) disc and (b) rod

To provide a fair comparison between the algorithms we limit the rank of the output spaces for each method, via regularisation, to be the same for all methods and then study the effect of incrementing this limit. Simulations were run for two distinct particle types, a nanodisc of radius 400 nm and depth 35 nm and a nanorod of length 400 nm and diameter 35 nm, both with rounded edges. Other than their geometries, the two particles differ in the type of sources used to represent the fields. For the rod, multipole sources are distributed along the symmetry axis in the real space, whereas for the disc the sources are located in the complex space—effectively making these ring sources distributed concentrically along the particle radius. The particles were illuminated by a near field source of wavelength 720 nm comprised of a combination of electric and magnetic point dipoles located 50 nm above the particle surface. The approximate locations of the near field source, which is moved to obtain average values for some tests by using different locations and polarisations of the source, are highlighted in Fig. 1.20.

Firstly, we compare the convergence of the solutions by plotting the DSCS, i.e. the angular variation of the electric field intensity in the far field, for each of the three methods by increasing the rank from an effective minimum. These results were obtained by calculating the light scattered by the excited particles into the far field along the generatrix line, \(\phi =0\), and sampling \(\theta \) at equal intervals between the poles of the symmetry axis for the two particles at 0 and \(\pi \), as shown in Fig. 1.21. We observe that for minimal rank there is an obvious advantage to the principal mode methods, which while not fully converged show the main features of the spectrum at the correct angles. The QR solution however, for both the rod and disc particles, fails to even approximately produce these features of the solution when the rank is minimal. As the rank is increased both Principal Mode methods converge more rapidly than the pure QR solution, which requires the maximum rank considered to show full convergence for the disc, and only an approximate convergence for the rod. Note that with these particular source configurations, the upper bound on the rank obtainable for SVD+SVD and QR+SVD when no limit is imposed is almost half that observed for the QR algorithm.

Table 1.1 Average total computational time for a full solution of the scattering problem at unrestricted rank for a single wavelength near-field excitation of the disc shaped particle using an AMD Opteron 6344 processor with a 2.6 GHz clock speed. Timings are averaged over 5 runs. For the QR+SVD and purely SVD methods we highlight the time taken for the initial calculation and also the subsequent calculations for the same particle where the principal modes are read back in from disc storage

We have observed that for low rank solutions there is a clear advantage to using a method which splits the space into two subspaces, not only for the extra information about the system which this gives, but also for the accuracy of the calculations. There is also another advantage to using the principal mode methods, due to the sequential way in which the surface fields are calculated using SVD+SVD they can be stored to be used again for a different excitation of the same particle. While, for the initial calculation QR proves to be slightly quicker, as shown in Table 1.1, for multiple calculations the SVD+SVD and QR+SVD methods need only calculate the principal mode fields once and the subsequent calculations are then significantly faster by factors of \(\sim \)5 for QR+SVD and \(\sim \)7 for SVD+SVD.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hourahine, B., McArthur, D., Papoff, F. (2018). Principal Modes of Maxwell’s Equations. In: Wriedt, T., Eremin, Y. (eds) The Generalized Multipole Technique for Light Scattering. Springer Series on Atomic, Optical, and Plasma Physics, vol 99. Springer, Cham. https://doi.org/10.1007/978-3-319-74890-0_1

Download citation

Publish with us

Policies and ethics