Skip to main content

Secure Random Number Generation in Continuous Variable Systems

  • Chapter
  • First Online:
Quantum Random Number Generation

Abstract

Intrinsic uncertainty is a distinctive feature of quantum physics, which can be used to harness high-quality randomness. However, in realistic scenarios, the raw output of a quantum random-number generator (QRNG) is inevitably tainted by classical technical noise. The integrity of such a device can be compromised if this noise is tampered with, or even controlled by some malicious parties. In this chapter, we first briefly discuss how the quantum randomness can be characterised via information theoretic approaches, namely by quantifying the Shannon entropy and min-entropy. We then consider several ways where classical side-information can be taken into account via these quantities in a continuous-variable QRNG. Next, we focus on side-information independent randomness that is quantified by min-entropy conditioned on the classical noise. To this end, we present a method for maximizing the conditional min-entropy from a given quantum-to-classical-noise ratio. We demonstrate our approach on a vacuum state CV-QRNG. Lastly, we highlight several recent developments in the quest of developing secure CV-QRNG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Rényi entropy is defined as \(H_{\alpha }(X)=\frac{1}{1-\alpha }\log _2\left[ \sum _{x_i \in X} P_X(x_i)^\alpha \right] \), with respect to a real-valued parameter \( \alpha \ge 0\). Min-entropy comes from taking the limit \(\alpha \rightarrow \infty \).

  2. 2.

    Here for brevity we omit the subscripts for the distributions.

  3. 3.

    SNR is defined as \(10\log _{10}(\sigma ^2_M/\sigma ^2_E)\), where M is the measurement signal and E is the noise.

  4. 4.

    Since the phase between the local oscillator and the vacuum field is arbitrary, it is therefore set as 0.

  5. 5.

    This can be done through an initial private random sequence, followed by recycling part of the generated random bits from the QRNG.

  6. 6.

    The generalization to account for the offset is detailed in Ref. [20].

References

  1. Abellán, C., Amaya, W., Jofre, M., Curty, M., Acín, A., Capmany, J., et al. (2014). Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Optics Express, 22(2), 1645–1654.

    Article  Google Scholar 

  2. Abellán, C., Amaya, W., Mitrani, D., Pruneri, V., & Mitchell, M. W. (2015). Generation of fresh and pure random numbers for loophole-free bell tests. Physical Review Letters, 115(25), 250403.

    Article  Google Scholar 

  3. Barak, B., Shaltiel, R., & Tromer, E. (2003). True random number generators secure in a changing environment (pp. 166–180)

    Google Scholar 

  4. Barker, E., & Kelsey, J. (2012). Recommendation for the entropy sources used for random bit generation. NIST DRAFT Special Publication 800-90B

    Google Scholar 

  5. Bera, M. N., Acín, A., Kuś, M., Mitchell, M. W., & Lewenstein, M. (2017). Randomness in quantum mechanics: Philosophy, physics and technology. Reports on Progress in Physics, 80(12), 124001.

    Article  MathSciNet  Google Scholar 

  6. Born, M. (1926). Quantenmechanik der stoßvorgänge. Zeitschrift für Physik, 38(11–12), 803–827.

    Article  MATH  Google Scholar 

  7. Bustard, P. J., England, D. G., Nunn, J., Moffatt, D., Spanner, M., Lausten, R., et al. (2013). Quantum random bit generation using energy fluctuations in stimulated raman scattering. Optics Express, 21(24), 29350–29357.

    Article  Google Scholar 

  8. Calude, C. S., Dinneen, M. J., Dumitrescu, M., & Svozil, K. (2010). Experimental evidence of quantum randomness incomputability. Physical Review A, 82(2), 022102.

    Article  Google Scholar 

  9. Christensen, B., McCusker, K., Altepeter, J., Calkins, B., Gerrits, T., Lita, A., et al. (2013). Detection-loophole-free test of quantum nonlocality, and applications. Physical Review Letters, 111(13), 130406.

    Article  Google Scholar 

  10. Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Wiley.

    Google Scholar 

  11. De, A., Portmann, C., Vidick, T., & Renner, R. (2012). Trevisan’s extractor in the presence of quantum side information. SIAM Journal on Computing, 41(4), 915–940.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dodis, Y., Ostrovsky, R., Reyzin, L., & Smith, A. (2008). Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing, 38(1), 97–139.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dynes, J. F., Yuan, Z. L., Sharpe, A. W., & Shields, A. J. (2008). A high speed, postprocessing free, quantum random number generator. Applied Physics Letters, 93(3), 031109.

    Article  Google Scholar 

  14. Fiorentino, M., Santori, C., Spillane, S., Beausoleil, R., & Munro, W. (2007). Secure self-calibrating quantum random-bit generator. Physical Review A, 75(3), 032334.

    Article  Google Scholar 

  15. Frauchiger, D., Renner, R., & Troyer, M. (2013). True randomness from realistic quantum devices. arXiv:1311.4547

  16. Gabriel, C., Wittmann, C., Sych, D., Dong, R., Mauerer, W., Andersen, U. L., et al. (2010). A generator for unique quantum random numbers based on vacuum states. Nature Photonics, 4(10), 711–715.

    Article  Google Scholar 

  17. Giustina, M., Versteegh, M. A., Wengerowsky, S., Handsteiner, J., Hochrainer, A., Phelan, K., et al. (2015). Significant-loophole-free test of bell’s theorem with entangled photons. Physical Review Letters, 115(25), 250401.

    Article  Google Scholar 

  18. Guo, H., Tang, W., Liu, Y., & Wei, W. (2010). Truly random number generation based on measurement of phase noise of a laser. Physical Review E, 81(5), 051137.

    Article  Google Scholar 

  19. Hart, J. D., Terashima, Y., Uchida, A., Baumgartner, G. B., Murphy, T. E., & Roy, R. (2017). Recommendations and illustrations for the evaluation of photonic random number generators. APL Photonics, 2(9), 090901.

    Article  Google Scholar 

  20. Haw, J. Y., Assad, S. M., Lance, A. M., Ng, N. H. Y., Sharma, V., Lam, P. K., et al. (2015). Maximization of extractable randomness in a quantum random-number generator. Physical Review Applied, 3, 054004.

    Google Scholar 

  21. Hensen, B., Bernien, H., Dréau, A. E., Reiserer, A., Kalb, N., Blok, M. S., et al. (2015). Loophole-free Bell inequality violation using electron spins separated by 1.3 km. Nature, 526(7575), 682–686

    Article  Google Scholar 

  22. Isida, M., & Ikeda, H. (1956). Random number generator. Annals of the Institute of Statistical Mathematics, 8(1), 119–126.

    Article  MathSciNet  MATH  Google Scholar 

  23. Jennewein, T., Achleitner, U., Weihs, G., Weinfurter, H., & Zeilinger, A. (2000). A fast and compact quantum random number generator. Review of Scientific Instruments, 71(4), 1675–1680.

    Article  Google Scholar 

  24. Kanter, I., Aviad, Y., Reidler, I., Cohen, E., & Rosenbluh, M. (2010). An optical ultrafast random bit generator. Nature Photonics, 4(1), 58–61.

    Article  Google Scholar 

  25. Kinzel, W., & Reents, G. (1996). Physik per computer. Spektrum Akademischer Verlag, Heidelberg, 22, 33–35.

    Google Scholar 

  26. Kolmogorov, A. N. (1963). On tables of random numbers. Sankhyā: The Indian Journal of Statistics, Series A, 369–376

    Google Scholar 

  27. Konig, R., Renner, R., & Schaffner, C. (2009). The operational meaning of min-and max-entropy. IEEE Transactions on Information Theory, 55(9), 4337–4347.

    Article  MathSciNet  MATH  Google Scholar 

  28. Law, Y. Z., Bancal, J. D., Scarani, V., et al. (2014). Quantum randomness extraction for various levels of characterization of the devices. Journal of Physics A: Mathematical and Theoretical, 47(42), 424028.

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, Y., Zhu, M., Luo, B., Zhang, J., & Guo, H. (2013). Implementation of 1.6 Tb s\(^{-1}\) truly random number generation based on a super-luminescent emitting diode. Laser Physics Letters, 10(4), 045001

    Google Scholar 

  30. Lunghi, T., Brask, J. B., Lim, C. C. W., Lavigne, Q., Bowles, J., Martin, A., et al. (2015). Self-testing quantum random number generator. Physical Review Letters, 114(15), 150501.

    Article  Google Scholar 

  31. Ma, X., Xu, F., Xu, H., Tan, X., Qi, B., & Lo, H. K. (2013). Postprocessing for quantum random-number generators: Entropy evaluation and randomness extraction. Physical Review A, 87(6).

    Google Scholar 

  32. Ma, X., Yuan, X., Cao, Z., Qi, B., & Zhang, Z. (2016). Quantum random number generation. npj Quantum Information, 2, 16021

    Google Scholar 

  33. Marangon, D. G., Vallone, G., & Villoresi, P. (2017). Source-device-independent ultrafast quantum random number generation. Physical Review Letters, 118(6), 060503.

    Article  Google Scholar 

  34. Marangon, D., Vallone, G., & Villoresi, P. (2014). Random bits, true and unbiased, from atmospheric turbulence. Scientific Reports, 4, 5490.

    Article  Google Scholar 

  35. Marsaglia, G. (1968). Random numbers fall mainly in the planes. Proceedings of the National Academy of Sciences, 61(1), 25–28.

    Article  MathSciNet  MATH  Google Scholar 

  36. Marsaglia, G. (1998). Diehard test suite

    Google Scholar 

  37. Martin-Löf, P. (1966). The definition of random sequences. Information and Control, 9(6), 602–619.

    Article  MathSciNet  MATH  Google Scholar 

  38. Mauerer, W., Portmann, C., & Scholz, V. B. (2012). A modular framework for randomness extraction based on trevisan’s construction. arXiv:1212.0520

  39. Michel, T., Haw, J. Y., Marangon, D. G., Thearle, O., Vallone, G., Villoresi, P., et al. (2019). Physical Review Applied, 12, 034017

    Google Scholar 

  40. Mitchell, M. W., Abellan, C., & Amaya, W. (2015). Strong experimental guarantees in ultrafast quantum random number generation. Physical Review A, 91(1), 012314.

    Article  Google Scholar 

  41. Oliver, N., Soriano, M. C., Sukow, D. W., & Fischer, I. (2013). Fast random bit generation using a chaotic laser: Approaching the information theoretic limit. IEEE Journal of Quantum Electronics, 49(11), 910–918.

    Google Scholar 

  42. Pironio, S., Acín, A., Massar, S., de La Giroday, A. B., Matsukevich, D. N., Maunz, P., et al. (2010). Random numbers certified by bell’s theorem. Nature, 464(7291), 1021–1024.

    Article  Google Scholar 

  43. Pironio, S., & Massar, S. (2013). Security of practical private randomness generation. Physical Review A, 87(1), 012336.

    Article  Google Scholar 

  44. Qi, B. (2017). True randomness from an incoherent source. Review of Scientific Instruments, 88(11), 113101.

    Article  Google Scholar 

  45. Qi, B., Chi, Y. M., Lo, H. K., & Qian, L. (2010). High-speed quantum random number generation by measuring phase noise of a single-mode laser. Optics Letters, 35(3), 312–314.

    Article  Google Scholar 

  46. Renner, R. (2008). Security of quantum key distribution. International Journal of Quantum Information, 6(01), 1–127.

    Article  MATH  Google Scholar 

  47. Sanguinetti, B., Martin, A., Zbinden, H., & Gisin, N. (2014). Quantum random number generation on a mobile phone. Physical Review X, 4, 031056.

    Google Scholar 

  48. Shalm, L. K., Meyer-Scott, E., Christensen, B. G., Bierhorst, P., Wayne, M. A., Stevens, M. J., et al. (2015). Strong loophole-free test of local realism. Physical Review Letters, 115(25), 250402.

    Article  Google Scholar 

  49. Shaltiel, R. (2002). Recent developments in explicit constructions of extractors. Bulletin of the EATCS, 77, 67–95.

    MathSciNet  MATH  Google Scholar 

  50. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423.

    Article  MathSciNet  MATH  Google Scholar 

  51. Shen, Y., Tian, L., & Zou, H. (2010). Practical quantum random number generator based on measuring the shot noise of vacuum states. Physical Review A, 81(6), 063814.

    Article  Google Scholar 

  52. Stipcevic, M. (2012). Quantum random number generators and their applications in cryptography. In SPIE Defense, Security, and Sensing (p. 837504). International Society for Optics and Photonics

    Google Scholar 

  53. Stipčević, M., & Rogina, B. M. (2007). Quantum random number generator based on photonic emission in semiconductors. Review of Scientific Instruments, 78(4), 045104.

    Article  Google Scholar 

  54. Sunar, B., Martin, W. J., & Stinson, D. R. (2007). A provably secure true random number generator with built-in tolerance to active attacks. IEEE Transactions on Computers, 56(1), 109–119.

    Article  MathSciNet  MATH  Google Scholar 

  55. Svozil, K. (2009). Three criteria for quantum random-number generators based on beam splitters. Physical Review A, 79(5), 054306.

    Article  Google Scholar 

  56. Symul, T., Assad, S., & Lam, P. K. (2011). Real time demonstration of high bitrate quantum random number generation with coherent laser light. Applied Physics Letters, 98(23), 231103.

    Article  Google Scholar 

  57. Tomamichel, M., Schaffner, C., Smith, A., & Renner, R. (2011). Leftover hashing against quantum side information. IEEE Transactions on Information Theory, 57(8), 5524–5535.

    Article  MathSciNet  MATH  Google Scholar 

  58. Uchida, A., Amano, K., Inoue, M., Hirano, K., Naito, S., Someya, H., et al. (2008). Fast physical random bit generation with chaotic semiconductor lasers. Nature Photonics, 2(12), 728–732.

    Article  Google Scholar 

  59. Vallone, G., Marangon, D. G., Tomasin, M., & Villoresi, P. (2014). Quantum randomness certified by the uncertainty principle. Physical Review A, 90(5), 052327.

    Article  Google Scholar 

  60. Wahl, M., Leifgen, M., Berlin, M., Röhlicke, T., Rahn, H. J., & Benson, O. (2011). An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements. Applied Physics Letters, 98(17), 171105.

    Article  Google Scholar 

  61. Wayne, M. A., & Kwiat, P. G. (2010). Low-bias high-speed quantum random number generator via shaped optical pulses. Optics Express, 18(9), 9351–9357.

    Article  Google Scholar 

  62. Williams, C. R., Salevan, J. C., Li, X., Roy, R., & Murphy, T. E. (2010). Fast physical random number generator using amplified spontaneous emission. Optics Express, 18(23), 23584–23597.

    Article  Google Scholar 

  63. Xu, F., Qi, B., Ma, X., Xu, H., Zheng, H., & Lo, H. K. (2012). Ultrafast quantum random number generation based on quantum phase fluctuations. Optics Express, 20(11), 12366–12377.

    Article  Google Scholar 

  64. Xu, P., Wong, Y., Horiuchi, T., & Abshire, P. (2006). Compact floating-gate true random number generator. Electronics Letters, 42(23), 1346–1347.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yan Haw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haw, J.Y., Assad, S.M., Lam, P.K. (2020). Secure Random Number Generation in Continuous Variable Systems. In: Kollmitzer, C., Schauer, S., Rass, S., Rainer, B. (eds) Quantum Random Number Generation. Quantum Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-72596-3_6

Download citation

Publish with us

Policies and ethics