Skip to main content

CFD Modelling of Alumina Feeding

  • Conference paper
  • First Online:
Light Metals 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

The dissolution and distribution of alumina in molten cryolite bath is a complex process, involving heat and mass transfer, phase transition and dynamics for a particle population with variable size and properties. Although single particle models can describe essential features of the process, they necessarily fail to capture features involving the interaction between particles (i.e. collisions and adhesion) and detailed coupling to the flow field, for which computational fluid dynamics (CFD) is needed. Several strategies and assumptions have been proposed in the literature, focusing on separate phenomena of relevance. Coupled models considering the full history of alumina particles have however not yet been developed. In the current work we investigate and review recent developments in coupled CFD particulate flow, aiming for general guidelines for implementation and use, with applications to both the gas-solid flow between the feeder and bath surface, and from the bath surface to dissolved alumina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dassylva-Raymond, V., Kiss, L.I., Poncsak, S., Chartrand, P., Bilodeau, J.-F., Guerard, S.: Modeling the behaviour of alumina agglomerate in the Hall-Héroult process. In: Grandfield, J. (ed.) Light Metals 2014, pp. 603–608. Wiley, Hoboken (2014)

    Google Scholar 

  2. Lavoie, P., Taylor, M. P., Metson, J.B.: A Review of Alumina Feeding and Dissolution Factors in Aluminium Reduction Cells. Met. Mat. Trans. B 47, 2690–2696 (2016)

    Article  CAS  Google Scholar 

  3. Thonstad, J., Solheim, A., Rolseth, S., Skar, O.: The Dissolution of Alumina in Cryolite melts. In: Bearne, G., Dupuis, M., Tarcy, G. (eds.): Essential Readings in Light Metals Volume 2, pp. 105–111, Springer, Cham, (2016)

    Chapter  Google Scholar 

  4. Kaszas, C., Kiss, L., Poncsak, S., Guerard, S., Bilodeau, J.F.: Spreading of Alumina and Raft Formation on the Surface of Cryolitic Bath. In: Ratvik, A.P. (ed.) Light Metals 2017, pp. 473–478, Springer, Cham, (2017)

    Chapter  Google Scholar 

  5. Østbø, N.P.: Evolution of Alpha Phase Alumina in Agglomerates upon Addition to Cryolitic Melts. Ph.D. Thesis 50, Norwegian University of Science and Technology - NTNU, (2002)

    Google Scholar 

  6. Kaszas, C., Kiss, L., Guerard, S., Bilodeau, J.F:. Behavior of powders on the surface of a liquid. In: Hyland, M. (ed.) Light Metals 2015, pp. 639–642. Wiley, Hoboken (2015)

    Google Scholar 

  7. Einarsrud, K.E., Eick, I., Bai, W., Feng, Y., Hua J., Witt, P.J.: Towards a coupled multi-scale, multi-physics simulation framework for aluminium electrolysis. Applied Mathematical Modelling 44, 3–24 (2017)

    Article  Google Scholar 

  8. Poncsak, S., Kiss, L.I., Guerard, S., Bilodeau, J.F.: Study of the Impact of Anode Slots on the Voltage Fluctuations in Aluminium Electrolysis Cells, Using Bubble Layer Simulator, In: Ratvik, A.P. (ed.) Light Metals 2017, pp. 607–614, Springer, Cham, (2017)

    Chapter  Google Scholar 

  9. Kahane, R., Nguyen, T., Schwarz, M.P.: CFD modelling of thickeners at Worsley Alumina Pty Ltd. Applied Mathematical Modelling 26, 281–296 (2002)

    Article  Google Scholar 

  10. Woloshyn, J., Oshinowo, L., Rosten, J.: Digester Design Using CFD, in: Donaldson, D., Raahauge B.E.: Essential Readings in Light Metals, Vol. 1 Alumina and Bauxite. Springer, Cham, 350–355 (2016)

    Chapter  Google Scholar 

  11. Zhong, W., Yu, A., Zhou, G., Xie, J., Zhang, H.: CFD simulation of dense particulate reaction system: Approaches, recent advances and applications. Chem. Eng. Sci. 140, 16–43 (2016)

    Google Scholar 

  12. Drew, D.A., Passmann, S.L.: Theory of Multicomponent Fluids. Applied Mathematical Sciences 135, Springer, New York, (1999)

    Google Scholar 

  13. Gidaspow, D.: Multiphase flow and Fluidization. Academic Press, San Diego (1994)

    Google Scholar 

  14. Feng, Y.Q, Cooksey M.A., Schwarz, M.P.,: CFD modelling of alumina mixing in aluminium reduction cells, In: Lindsay, S.J. (ed.) Light Metals 2011, pp. 543–548, Wiley, Hoboken (2011)

    Google Scholar 

  15. Witt, P.J., Feng, Y.Q., Snook, G.A, Eick, I., Cooksey, M., A six chemical species CFD model of alumina reduction in a Hall-Heroult cell, in: Olsen, J.E., Johansen, S.T., (Eds.), Progress in Applied CFD, pp- 39–48, Academic Press, Norway, SINTEF, (2015)

    Google Scholar 

  16. von Kaenel, R., Antille, J., Romerio, M. V., Besson, O.: Impact of Magnetohydrodynamic and Bubbles Driving Forces on the Alumina Concentration in the Bath of an Hall-Heroult Cell, in: Sadler, B.A. (ed.) Light Metals 2013, pp. 585–590, Wiley, Hoboken, (2013)

    Google Scholar 

  17. Hofer, T.,: Numerical simulation and optimization of the alumina distribution in an aluminium electrolysis pot. These EPFL no 4469, Ecole Polytechnique Federale de Lausanne (2009)

    Google Scholar 

  18. Bardet, B., Foetisch, T., Renaudier, S., Rappaz, J., Flueck, M., Picasso, M.: Alumina dissolution modelling in aluminum electrolysis cell considering MHD driven convection and thermal impact. In: Williams, E. (ed) Light Metals 2016, pp. 315–319. Wiley, Hoboken (2016)

    Chapter  Google Scholar 

  19. Zhan, S., Li, M., Zhou, J., Yang, J., Zhou, Y.: CFD simulation of dissolution process of alumina in an aluminum cell with two-particle phase population balance model. Applied Thermal Engineering 73, 805–818 (2014)

    Article  CAS  Google Scholar 

  20. Zhan, S., Li, M., Zhou, J., Yang, J., Zhou, Y.: Analysis and modeling of alumina dissolution based on heat and mass transfer. Transactions of Nonferrous Metals Society of China 25, 1648–1656 (2015)

    Article  CAS  Google Scholar 

  21. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops and Particles (Dover Edition). Dover, New York, (2005)

    Google Scholar 

  22. Snider, D.M.: An Incompressible Three-Dimensional Multiphase Particle-in-Cell Model for Dense Particle Flows. Jou. Comp. Phy. 170, 523–549 (2001)

    Article  CAS  Google Scholar 

  23. Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries. Jou. Comp. Phy. 29, 201–225 (1981)

    Article  Google Scholar 

  24. Sussman, M., Smereka, P., Osher, S.: A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow. Jou. Comp. Phy. 114, 146–159 (1994)

    Article  Google Scholar 

  25. Richter, O., Turnow, J., Kornev, N., Hassel, E.: Numerical simulation of casting processes: coupled mould filling and solidification using VOF and enthalpy-porosity method. Heat Mass Transfer 53, 1957–1969 (2017)

    Article  Google Scholar 

  26. Sun, X., Sakai, M.: Three-dimensional simulation of gas-solid-liquid flows using the DEM-VOF method. Chem. Eng. Sci. 134, 531–548 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The current work was funded by the Norwegian Research Council through SFI Metal Production.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Etienne Einarsrud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Einarsrud, K.E., Gylver, S.E., Manger, E. (2018). CFD Modelling of Alumina Feeding. In: Martin, O. (eds) Light Metals 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72284-9_73

Download citation

Publish with us

Policies and ethics