Skip to main content

Sources, Transport and Sinks of Radionuclides in Marine Environments

  • Chapter
  • First Online:

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

In this paper, major global sources of radionuclides are presented and discussed with respect to marine environments. It has been shown that the atmospheric fallout from nuclear weapons testing has been the most significant source of radionuclides in the oceans and seas. As a result, areas within the 0°–60° N latitude bands received the greatest loads of 137Cs, which is related to the fact that the majority of nuclear test sites were located at these latitudes. The relative input from the Chernobyl disaster to the oceans was significantly lower than from the fallout from nuclear weapons tests. It has also been presented that in order to determine the potential impact of radionuclides on humans, with the continuous release of radionuclides to the oceans and the seas, the total influence from all sources is more significant than the initial concentration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarkorg A (1979) Environmental studies on radioecological sensitivity and variability with special emphasis on the fallout nuclides 90Sr and 137Cs. Risø-R-437, 1&2

    Google Scholar 

  • Aarkorg A, Dahlgaard H, Nilsson K, Holm E (1984) Studies of plutonium and americium at Thule. Greenland Health Phys 46(1984):29–44

    Article  Google Scholar 

  • AMAP (2010) Radioactivity in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo

    Google Scholar 

  • Aoyama A, Hirose K (2003) Temporal variation of Cs-137 water column inventory in the North Pacific since the 1960s. J Environ Radioact 69(1–2):107–117

    Article  CAS  Google Scholar 

  • Baumgartner A, Reichel E (1975) The world water balance. Elsevier Science Publishing Company, Amsterdam and Oxford

    Google Scholar 

  • Bond TC, Doherty S, Fahey D, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:5380–5552

    Article  CAS  Google Scholar 

  • Borretzen P, Salbu B (2002) Fixation of Cs to marine sediments estimated by a stochastic modelling approach. J Environ Radioact 61(1):1–20

    Article  CAS  Google Scholar 

  • Charlesworth ME, Service M, Gibson CE (2006) The distribution and transport of Sellafield derived Cs-137 and Am-241 to western Irish Sea sediments. Sci Total Environ 354(1):83–92

    Article  Google Scholar 

  • Cota GF, Cooper LW, Darby DA, Larsen IL (2006) Unexpectedly high radioactivity burdens in ice-rafted sediments from the Canadian Arctic Archipelago. Sci Total Environ 366(1):253–261

    Article  CAS  Google Scholar 

  • Davuliene L, Tarasiuk N, Spirkauskaite N, Trinkunas G, Valkunas L (2007) 137Cs activity distribution in the Lithuanian coastal waters of the Baltic Sea. Oceanologia 49(1):71–90

    Google Scholar 

  • European Commission (1989) The radiological exposure of the population of the European community from radioactivity in north European marine waters. Project MARINA, Report EUR 12483, Luxembourg

    Google Scholar 

  • European Commission (1994) The radiological exposure of the population of the European community from radioactivity in the Mediterranean Sea, Project MARINAMED, Report EUR 15564, Luxembourg

    Google Scholar 

  • Evangeliou N, Florou H, Bokoros P, Scoullos M (2009) Temporal and spatial distribution of Cs-137 in Eastern Mediterranean Sea. Horizontal and vertical dispersion in two regions. J Environ Radioact 100(8):626–636

    Article  CAS  Google Scholar 

  • Evangeliou N, Balkanski Y, Cozic A, Hao WM, Mouillot F, Thonicke K, Paugam R, Zibtsev S, Mousseau TA, Wang R, Poulter B, Petkov A, Yue C, Cadule P, Koffi B, Kaiser JW, Møller AP (2015) Fire evolution in the radioactive forests of Ukraine and Belarus: future risks for the population and the environment. Ecol Monogr 85(1):49–72

    Article  Google Scholar 

  • Fisher NS, Fowler SW, Boisson F, Carroll J, Rissanen K, Salbu B, Sazykina TG, Sjoeblom KL (1999) Radionuclide bioconcentration factors and sediment partition coefficients in Arctic Seas subject to contamination from dumped nuclear wastes. Environ Sci Technol 33(12):1979–1982

    Article  CAS  Google Scholar 

  • Gulliver P, Cook GT, MacKenzie AB, Naysmith P, Anderson R (2001) Transport of Sellafield-derived C-14 from the Irish Sea through the North Channel. Radiocarbon 43(2B):869–877

    Article  CAS  Google Scholar 

  • HELCOM (2009) Radioactivity in the Baltic Sea, 1999–2006. Helsinki Commission, Baltic Marine Environment Protection Commission

    Google Scholar 

  • HELCOM (2010) Hazardous substances in the Baltic Sea—an integrated thematic assessment of hazardous substances in the Baltic Sea. Balt Sea Environment Proceedings No. 120B

    Google Scholar 

  • HELCOM (2013) HELCOM Core Indicator of hazardous substances radioactive substances. Radioactive substances—Caesium-137 in fish and surface waters

    Google Scholar 

  • Helsinki Commission, Baltic Marine Environment Protection Commission, HELCOM (1995) Radioactivity in the Baltic Sea 1984–1991, Balt Sea Environ Proc No. 61. ISSN 0357-2994

    Google Scholar 

  • Hunt GJ, Kershaw PJ (1990) Remobilisation of artificial radionuclides from the sediment of the Irish sea. J Radiol Prot 10:147–152

    Article  CAS  Google Scholar 

  • IAEA (2000) Global Marine Radioactivity Database (GLOMARD). International Atomic Energy Agency: IAEA TECDOC Series No. 1146, Vienna

    Google Scholar 

  • IAEA (2005) Worldwide marine radioactivity studies (WOMARS) Radionuclide levels in oceans and seas. IAEA-TECDOC-1429

    Google Scholar 

  • Ilus E (2007) The Chernobyl accident and the Baltic Sea. Boreal Environ Res 12:1–10

    CAS  Google Scholar 

  • International Atomic Energy Agency (IAEA) (1999) Inventory of radioactive waste disposals at sea, IAEA-TECDOC-1105, vol 127. IAEA, Vienna

    Google Scholar 

  • Joint Russian-Norwegian Expert Group, JRNEG (1994) Radioactive contamination at dumping sites for nuclear wastes in the Kara Sea, results from the 1993 expedition. NRPA, Østerås

    Google Scholar 

  • Livingston HD, Povinec PP (2002) A millennium perspective on the contribution of bomb fallout radionuclides to ocean science. Health Phys 82(5):656–668

    Article  CAS  Google Scholar 

  • Meese D, Cooper L, Larsen IL, Tucker W, Reimnitz W, Grebmeier J (1995) Cesium-137 contamination in Arctic Sea ice. In: Strand P, Cooke P (eds) Environmental radioactivity in the Arctic, pp 195–198. NRPA, Østerås

    Google Scholar 

  • National Academy of Sciences, NAS (1971) Radioactivity in the marine environment, National Academy of Sciences, Washington, D.C. ISBN 0-309-01865-X

    Google Scholar 

  • NATO—North Atlantic Treaty Organization (1998) Cross-border environmental problems emanating from defence-related installations and activities. Phase II: 1995–1998, final report vol 2. Radioactive contamination of rivers and transport through rivers, deltas and estuaries to the sea, Rep. No. 225, 105 pp

    Google Scholar 

  • Nuclear Energy Agency (NEA) (1996) Co-ordinated research and environmental surveillance programme related to sea disposal of radioactive waste. CRESP final report 1981–1995, OECD, Paris

    Google Scholar 

  • Oughton DH, Day JP (1993) Determination of cesium, rubidium and scandium in biological and environmental materials by neutron activation analysis. J Radioanal Nucl Chem 174(1993):177–185

    Article  CAS  Google Scholar 

  • Outola I (2010) Total amounts of the artificial radionuclide cesium-137 in Baltic Sea sediments. HELCOM Indicator Fact Sheets 2010

    Google Scholar 

  • Pfirman SL, Kogeler JW, Anseme B (1995) Transport of radionuclides from the Kara Sea: potential “shortcuts” in space and time. In: Strand P, Cooke A (eds) Environmental radioactivity in the Arctic, pp 191–194. NRPA, Østerås

    Google Scholar 

  • Povinec PP, Bailly du Bois P, Kershaw PJ, Nies H (2003) Temporal and spatial trends in the distribution of 137Cs in surface waters of Northern European Seas—a record of 40 years of investigations. Deep-Sea Res II 50:2785

    Article  CAS  Google Scholar 

  • Tarasiuk N, Spirkauskaite N, Stelingis K, Lujaniene G, Lujanas V (1995) Evaluation of the 137Cs residence time in the Curonian Gulf after the Chernobyl fallout. Atmos. Phys. 2:22–33

    Google Scholar 

  • United Nations Scientific Committee on the Effects of Ionizing Radiation (2000) Sources and effects of ionizing radiation. UN, New York

    Google Scholar 

  • Yablokov AV et al (1993) Facts and problems related to radioactive waste disposal in sea adjacent to the territory of the Russian Federation. Small World Publishers, Moscow

    Google Scholar 

  • Yamagata N, Matsuda S, Kodaira K (1963) Run-off of cesium-137 and strontium-90 from rivers. Nature 200(1963):668–669

    Article  Google Scholar 

  • Zaborska A, Winogradow A, Pempkowiak J (2014) Caesium-137 distribution, inventories and accumulation history in the Baltic Sea sediments. J Environ Radioact 127:11–25

    Google Scholar 

  • Zdun A, Rozwadowska A, Kratzer S (2011) Seasonal variability in the optical properties of Baltic aerosols. Oceanologia 53(1):7–34

    Article  Google Scholar 

  • Zielinski T, Petelski T, Strzalkowska A, Pakszys P, Makuch P (2016) Impact of wild forest fires in Eastern Europe on aerosol composition and particle optical properties. Oceanologia 58(1):13–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper Zielinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zielinski, K. (2018). Sources, Transport and Sinks of Radionuclides in Marine Environments. In: Zielinski, T., Sagan, I., Surosz, W. (eds) Interdisciplinary Approaches for Sustainable Development Goals. GeoPlanet: Earth and Planetary Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-71788-3_13

Download citation

Publish with us

Policies and ethics