Skip to main content

Macroporous Silicon

  • Reference work entry
  • First Online:
Book cover Handbook of Porous Silicon

Abstract

The electrochemical formation of macropores in porous silicon is briefly reviewed. Various morphologies are obtained as a function of the substrate type and etching conditions. On n-Si, macropores are generally growing along preferential crystallographic directions. On p-Si, in aqueous conditions far from electropolishing, the growth direction is rather determined by the current lines in the space-charge region. A summary of macropore characteristics is given as a function of the preparation conditions. Various models have been developed in order to account for the morphologies and characteristic sizes. These joint experimental and theoretical works have provided a good understanding of macropore growth, opening the way to many applications, and the most significant ones are mentioned. An impressive level of control has eventually been achieved for the fabrication of regular macropore arrays of high aspect ratio, including the incorporation of intentional defects or pore-wall shaping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allongue P (1997) Porous silicon formation mechanisms. In: Canham L (ed) Properties of porous silicon, EMIS Data Review No 18, Chapter 1.1, INSPEC-IEE, pp 3–11

    Google Scholar 

  • Ao X, Tong X, Kim DS, Zhang L, Knez M, Müller F, He S, Schmidt V (2012) Black silicon with controllable macropore array for enhanced photoelectrochemical performance. Appl Phys Lett 101:111901

    Article  CAS  Google Scholar 

  • Barillaro G, Pieri F (2005) A self-consistent theoretical model for macropore growth in n-type silicon. J Appl Phys 97:116105

    Article  CAS  Google Scholar 

  • Bengtsson M, Ekström S, Drott J, Collins A, Csöregi E, Marko-Varga G, Laurell T (2000) Applications of microstructured porous silicon as a biocatalytic surface. Phys Stat Sol 182:495–504

    Article  CAS  Google Scholar 

  • Birner A, Li A-P, Müller F, Gösele U, Kramper P, Sandoghdar V, Mlynek J, Busch K, Lehmann V (2000) Transmission of a microcavity structure in a two-dimensional photonic crystal based on macroporous silicon. Mat Sci Semicon Proc 3:487–491

    Article  CAS  Google Scholar 

  • Carstensen J, Christophersen M, Föll H (2000) Pore formation mechanisms for the Si-HF system. Mat Sci Eng B 69/70:23–28

    Article  Google Scholar 

  • Chao KJ, Kao SC, Yang CM, Hseu MS, Tsai TG (2000) Formation of high aspect ratio macropore array on p-type silicon. Electrochem Solid St Lett 3:489–492

    Article  CAS  Google Scholar 

  • Chazalviel J-N, Ozanam F (2005) Macropores in p-type silicon. In: Wehrspohn RB (ed) Ordered porous nanostructures and applications, Chapter 2. Springer, New York, pp 15–35

    Chapter  Google Scholar 

  • Chazalviel J-N, Wehrspohn RB, Ozanam F (2000) Electrochemical preparation of porous semiconductors: from phenomenology to understanding. Mat Sci Eng B 69/70:1–10

    Article  Google Scholar 

  • Chazalviel J-N, Ozanam F, Gabouze N, Fellah S, Wehrspohn RB (2002) Quantitative analysis of the morphology of macropores on low-doped p-Si minimum resistivity. J Electrochem Soc 149:C511–C520

    Article  CAS  Google Scholar 

  • Christophersen M, Carstensen J, Föll H (2000a) Crystal orientation dependence of macropore formation in p-type silicon using organic electrolytes. Phys Status Solidi A 182:103–107

    Article  CAS  Google Scholar 

  • Christophersen M, Carstensen J, Feuerhake A, Föll H (2000b) Crystal orientation and electrolyte dependence for macropore nucleation and stable growth on p-type Si. Mat Sci Eng B 69–70:194–198

    Article  Google Scholar 

  • Christophersen M, Carstensen J, Föll H (2000c) Macropore formation on highly doped n-type silicon. Phys Status Solidi A 182:45–50

    Article  CAS  Google Scholar 

  • Christophersen M, Carstensen J, Rönnebeck S, Jäger C, Jäger W, Föll H (2001) Crystal orientation dependence and anisotropic properties of macropore formation of p- and n-type silicon. J Electrochem Soc 148:E267–E275

    Article  CAS  Google Scholar 

  • Defforge T, Coudron L, Ménard O, Grimal V, Gautier G, Tran-Van F (2013) Copper electrodeposition into macroporous silicon arrays for through silicon via applications. Microelectron Eng 106:160–163

    Article  CAS  Google Scholar 

  • Föll H, Hartz H, Ossei-Wusu E, Carstensen J, Riemenschneider O (2010) Si nanowire arrays as anodes in Li ion batteries. Phys Status Solidi RRL 4:4–6

    Article  CAS  Google Scholar 

  • Föll H, Christophersen M, Carstensen J, Hasse G (2002) Formation and application of porous silicon. Mat Sci Eng R 280:1–49

    Google Scholar 

  • Föll H, Grabmaier J, Lehmann V (1983) Process for producing crystalline silicon bodies having a structure which increases the surface area, and use of said bodies as substrates for solar cells and catalysts. German Patent DE 3324232

    Google Scholar 

  • Ge DH, Jiao JW, Zhang S, Wang YL (2010) Fast speed nano-sized macropore formation on highly-doped n-type silicon via strong oxidizer. Electrochem Commun 12:603–606

    Article  CAS  Google Scholar 

  • Grüning U, Lehmann V, Ottow S, Busch K (1996) Macroporous silicon with a complete two-dimensional photonic band gap centered at 5 μm. Appl Phys Lett 68:747–749

    Article  Google Scholar 

  • Izuo S, Ohji H, French PJ, Tsutsumi K (2002) A novel electrochemical etching technique for n-type silicon. Sens Actuat A 97–98:720–724

    Article  Google Scholar 

  • Kang Y, Jorné J (1993) Porous silicon formation: morphological stability analysis. J Electrochem Soc 140(2258–2265)

    Google Scholar 

  • Kang Y, Jorné J (1997) Dissolution mechanism for p-Si during porous silicon formation. J Electrochem Soc 144:3104–3111

    Article  CAS  Google Scholar 

  • Kettner C, Reimann P, Hänggi P, Muller F (2000) Drift ratchet. Phys Rev E 61:312–323

    Article  CAS  Google Scholar 

  • Kleimann P, Linnros J, Petersson S (2000) Formation of wide and deep pores in silicon by electrochemical etching. Mater Sci Eng B 69–70:29–33

    Article  Google Scholar 

  • Kooij S, Vanmaekelbergh D (1997) Catalysis and pore initiation in the anodic dissolution of silicon in HF. J Electrochem Soc 144:1296–1301

    Article  CAS  Google Scholar 

  • Laffite G, Roumanie M, Gourgon C, Perret C, Boussey J, Kleimann P (2011) Formation of submicrometer pore arrays by electrochemical etching of silicon and nanoimprint lithography. J Electrochem Soc 158:D10–D14

    Article  CAS  Google Scholar 

  • Lehmann V (1993) The physics of macropore formation in low doped n-type silicon. J Electrochem Soc 140:2836–2843

    Article  CAS  Google Scholar 

  • Lehmann V (1995) The physics of macroporous silicon formation. Thin Solid Films 255:1–4

    Article  CAS  Google Scholar 

  • Lehmann V (2002) Chapter 9, Macroporous silicon. In: Electrochemistry of silicon. Wiley-VCH, Weinheim

    Google Scholar 

  • Lehmann V (2005) Electrochemical pore array fabrication on n-type silicon electrodes. In: Wehrspohn RB (ed) Ordered porous nanostructures and applications, Chapter 1. Springer, New York, pp 3–13

    Chapter  Google Scholar 

  • Lehmann V, Föll H (1990) Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J Electrochem Soc 137:653–659

    Article  CAS  Google Scholar 

  • Lehmann V, Rönnebeck S (1999) The physics of macropore formation in Low-doped p-type silicon. J Electrochem Soc 146:2968–2975

    Article  CAS  Google Scholar 

  • Lehmann V, Rönnebeck S (2001) MEMS techniques applied to the fabrication of anti-scatter grids for X-ray imaging. Sensor Actuator A 95:202–207

    Article  Google Scholar 

  • Lehmann V, Hönlein W, Reisinger H, Spitzer A, Wendt H, Willer J (1996) A novel capacitor technology based on porous silicon. Thin Solid Films 276:138–142

    Article  CAS  Google Scholar 

  • Lehmann V, Ottow S, Stengl R, Reisinger H, Wendt H (1999) Reactor system and corresponding production method. European Patent WO 9961147

    Google Scholar 

  • Lehmann V, Stengl R, Luigart A (2000) On the morphology and the electrochemical formation mechanism of mesoporous silicon. Mat Sci Eng B 69–70:11–22

    Article  Google Scholar 

  • Lévy-Clément C, Lagoubi A, Tomkiewicz M (1994) Morphology of porous n-type silicon obtained photoelectrochemical etching: correlation with material and etching parameters. J Electrochem Soc 141:958–967

    Article  Google Scholar 

  • Li Z, Zhao L, Diao H, Li H, Zhou C, Wang W (2013) Preparation of large-aperture macroporous silicon with controllable pore tip angle on low-resistivity p-type c-Si substrate by metal-catalyzed electrochemical etching. ECS J Solid State Sci Technol 2:Q65–Q68

    Article  CAS  Google Scholar 

  • Lipiński M, Bastide S, Panek P, Lévy-Clément C (2003) Porous silicon antireflection coating by electrochemical and chemical etching for silicon solar cell manufacturing. Phys Status Solidi (a) 197:512–517

    Article  CAS  Google Scholar 

  • Lust S, Lévy-Clément C (2002) Chemical limitations of macropore formation on medium-doped p-type silicon. J Electrochem Soc 149:C338–C344

    Article  CAS  Google Scholar 

  • Media EM, Chazalviel J-N, Ozanam F, Outemzabet R (2011) Current-line driven macropores: which current? Phys Status Solidi (c) 8:1727–1730

    Article  CAS  Google Scholar 

  • Mills D, Nahidi M, Kolasinski KW (2005) Stain etching of silicon pillars and macropores. Phys Status Solidi (a) 202:1422–1426

    Article  CAS  Google Scholar 

  • Müller F, Birner A, Gösele U, Lehmann V, Ottow S, Föll H (2000) Structuring of macroporous silicon for applications as photonic crystals. J Porous Mat 7:201–204

    Article  Google Scholar 

  • Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ (2001) Submicrometer metallic barcodes. Science 294:137–141

    Article  CAS  Google Scholar 

  • Outemzabet R, Gabouze N, Kesri N, Cheraga H (2005) Random macropore formation in n-type silicon under front side illumination: correlation with anisotropic etching. Phys Status Solidi (c) 2:3394–3398

    Article  CAS  Google Scholar 

  • Ponomarev EA, Lévy-Clément C (1998) Macropore formation on p-type Si in fluoride containing organic electrolytes. Electrochem Solid St Lett 1:42–45

    Article  CAS  Google Scholar 

  • Ponomarev EA, Lévy-Clément C (2000) Macropore formation on p-type silicon. J Porous Mat 7:51–56

    Article  CAS  Google Scholar 

  • Propst EK, Kohl PA (1994) The electrochemical oxidation of silicon and formation of porous silicon in acetonitrile. J Electrochem Soc 141:1006–1013

    Article  CAS  Google Scholar 

  • Rönnebeck S, Carstensen J, Ottow S, Föll H (1999) Crystal orientation dependence of macropore growth in n-type silicon. Electrochem Solid St Lett 2:126–128

    Article  Google Scholar 

  • Schilling J, Müller F, Birner A, Gösele U, Kettler C, Hänggi P (2000a) Membranes for micropumps from macroporous silicon. Phys Status Solidi (a) 182:585–590

    Article  Google Scholar 

  • Schilling J, Müller F, Matthias S, Wehrspohn RB, Gösele U (2000b) Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter. Appl Phys Lett 78:1180–1182

    Article  CAS  Google Scholar 

  • Slimani A, Iratni A, Chazalviel J-N, Gabouze N, Ozanam F (2009) Experimental study of macropore formation in p-type silicon in a fluoride solution and the transition between macropore formation and electropolishing. Electrochim Acta 54:3139–3144

    Article  CAS  Google Scholar 

  • Smith RL, Collins SD (1992) Porous silicon formation mechanisms. J Appl Phys 71:R1–R22

    Article  CAS  Google Scholar 

  • Starkov VV (2003) Ordered macropore formation in silicon. Phys Status Solidi (a) 197:22–26

    Article  CAS  Google Scholar 

  • Steiner P, Lang W (1995) Micromachining applications of porous silicon. Thin Solid Films 255:52–58

    Article  CAS  Google Scholar 

  • Thakur M, Pernites RB, Nitta N, Isaacson M, Sinsabaugh SL, Wong MS, Biswal SL (2012) Freestanding macroporous silicon and pyrolyzed polyacrylonitrile as a composite anode for lithium ion batteries. Chem Mat 24:2998–3003

    Article  CAS  Google Scholar 

  • Theunissen MJJ (1972) Etch channel formation during anodic dissolution of n-type silicon in aqueous hydrofluoric acid. J Electrochem Soc 119:351–360

    Article  CAS  Google Scholar 

  • Urata T, Fukami K, Sakka T, Ogata YH (2012) Pore formation in p-type silicon in solutions containing different types of alcohol. Nanoscale Res Lett 7:329

    Article  CAS  Google Scholar 

  • Valance A (1997) Theoretical model for early stages of porous silicon formation from n- and p-type silicon substrates. Phys Rev B 55:9706–9715

    Article  CAS  Google Scholar 

  • van den Meerakker JEAM, Elfrink RJG, Roozeboom F, Verhoeven JFCM (2000) Etching of deep macropores in 6 in Si wafers. J Electrochem Soc 147:2757–2761

    Article  Google Scholar 

  • Vyatkin A, Starkov V, Tzeitlin V, Presting H, Konle J, König U (2002) Random and ordered macropore formation in p-type silicon. J Electrochem Soc 149:G70–G76

    Article  CAS  Google Scholar 

  • Wehrspohn RB, Chazalviel J-N, Ozanam F (1998) Macropore formation in highly resistive p-type crystalline silicon. J Electrochem Soc 145:2958–2961

    Article  CAS  Google Scholar 

  • Wehrspohn RB, Ozanam F, Chazalviel J-N (1999) Nano- and macropore formation in p-type silicon. J Electrochem Soc 146:3309–3314

    Article  CAS  Google Scholar 

  • Wehrspohn RB, Schweizer SL, Gesemann B, Pergande D, Geppert TM, Moretton S (2013) Macroporous silicon and its application in sensing. A Lambrecht C R Chim 16:51–58

    Article  CAS  Google Scholar 

  • Xia XH, Ashruf CMA, Franck PJ, Kelly JJ (2000) Galvanic cell formation in silicon/metal contacts: the effect on silicon surface morphology. Chem Mat 12:1671–1678

    Article  CAS  Google Scholar 

  • Yoo L, Ahn K-Y, Ahn J-Y, Laurell T, Lee YM, Yoo PJ, Lee J (2013) A simple one-step assay platform based on fluorescence quenching of macroporous silicon. Biosens Bioelectron 41:477–483

    Article  CAS  Google Scholar 

  • Zhang XG (2001) Chapter 8, Porous silicon. In: Electrochemistry of silicon and its oxide. Springer, New York

    Google Scholar 

  • Zhang XG (2004) Morphology and formation mechanisms of porous silicon. J Electrochem Soc 151:C69–C80

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Gabouze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Gabouze, N., Ozanam, F. (2018). Macroporous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-71381-6_10

Download citation

Publish with us

Policies and ethics