Skip to main content

Microstructured Multiferroic Materials: Modelling Approaches Towards Efficiency and Durability

  • Chapter
  • First Online:
Advances in Mechanics of Materials and Structural Analysis

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 80))

Abstract

Magnetoelectric composites are investigated by numerical simulation. Nonlinear material models describing the magneto-ferroelectric or electro-ferromagnetic behaviors of the two constituents are presented. The ferroelectric model additionally accounts for damage evolution due to micro crack growth. The constitutive equations and weak forms of balance equations have been implemented within a finite element framework. A so-called condensed approach is also elaborated towards multiferroic compounds. Numerical simulations focus on the prediction of local domain orientation, the overall constitutive behaviors, the calculation of magnetoelectric coupling coefficients, and the investigation of damage processes, predominantly during magneto-electric poling, as well as mutual interactions of these aspects. A particle and a laminated composite are compared as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avakian, A., Gellmann, R., Ricoeur, A.: Nonlinear modeling and finite element simulation of magnetoelectric coupling and residual stress in multiferroic composites. Acta Mech. 226, 2789–2806 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Avakian, A., Ricoeur, A.: Constitutive modeling of nonlinear reversible and irreversible ferromagnetic behaviors and application to multiferroic composites. J. Int. Mater. Sys. Struct. 27, 2536–2554 (2016)

    Article  Google Scholar 

  3. Avakian, A., Ricoeur, A.: An extended constitutive model for nonlinear reversible ferromagnetic behavior under magnetomechanical multiaxial loading conditions. J. Appl. Phys. 121, 053901 (2017)

    Article  Google Scholar 

  4. Bergmann, L., Schaefer, C.: Lehrbuch der Experimentalphysik - 6: Festkörper. de Gruyter, Berlin/New York (2005)

    Google Scholar 

  5. Bhame, S.D., Joy, P.A.: Tuning of the magnetostrictive properties of \(CoFe_{2}O_{4}\) by Mn substitution for Co. J. Appl. Phys. 100, 113911 (2006)

    Article  Google Scholar 

  6. Bhame, S.D., Joy, P.A.: Magnetic and magnetostrictive properties of manganese substituted cobalt ferrite. J. Phys. D Appl. Phys. 40, 326–3267 (2007)

    Article  Google Scholar 

  7. Bhame, S.D., Joy, P.A.: Effect of sintering conditions and microstructure on the magnetostrictive properties of Cobalt Ferrite. J. Am. Ceram. Soc. 91, 1976–1980 (2008)

    Article  Google Scholar 

  8. Bozorth, R.M.: Ferromagnetism. Van Nostrand, New York (1951)

    Google Scholar 

  9. Trmolet, Du, de Lacheisserie, E., Gignoux, D., Schlenker, M.: Magnetism - Materials and Applications. Springer, New York (2005)

    Google Scholar 

  10. Enderlein, M.: Finite-Elemente-Verfahren zur bruchmechanischen Analyse von RIssen in piezoelektrischen Strukturen bei transienter elektromechanischer Belastung. Dissertation, TU Bergakademie Freiberg, Freiberg (2007)

    Google Scholar 

  11. Etier, M.F., Shvartsman, V.V., Salamon, S., Gao, Y., Wende, H., Lupascu, D.C., Raveau, B.: The direct and the converse magnetoelectric effect in multiferroic Cobalt Ferrite-Barium Titanate ceramic composites. J. Am. Ceram. Soc. (2016). https://doi.org/10.1111/jace.14362

  12. Etier, M.F., Gao, Y., Shvartsman, V.V., Lupascu, D.C., Landers, J., Wende, H.: Magnetoelectric properties of \(0.2\rm CoFe_{2}O_{4}\)\(0.8\rm BaTiO_{3}\) composite prepared by organic method. In: Joint 21st IEEE ISAF/11th IEEE ECAPD/IEEE PFM (ISAF/ECAPD/PFM), Aveiro, Portugal, pp. 1–4 (2012)

    Google Scholar 

  13. Fiebig, M.: Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38, R123–R152 (2005)

    Article  Google Scholar 

  14. Förderreuther, A.: Mechanische Eigenschaften von \(\rm BaTiO_{3}\) - Keramiken unter mechanischer und elektrischer Belastung. Dissertation, Universität Stuttgart, Stuttgart (2003)

    Google Scholar 

  15. Förderreuther, A.: Piezoelektrische Eigenschaften. In: Arbeitsbericht im Schwerpunktprogramm “Wechselbeziehung zwischen elektronischen und mechanischen Eigenschaften keramischer Multifunktionswerkstoffe”. DFG Geschäftszeichen 322, 734 (1998)

    Google Scholar 

  16. Gellmann, R., Ricoeur, A.: Extended semi-analytical investigations of crack growth resistance behavior in ferroelectric materials. Acta Mech. 223, 2357–2368 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gellmann, R., Ricoeur, A.: Continuum damage model for ferroelectric materials and its application to multilayer actuators. Smart Mater. Struct. 25, 055045 (2016)

    Article  Google Scholar 

  18. Gellmann, R., Ricoeur, A.: Some new aspects of boundary conditions at crack faces in piezoelectrics. Arch. Appl. Mech. 82, 841–852 (2012)

    Article  MATH  Google Scholar 

  19. Hill, N.: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  Google Scholar 

  20. Hwang, S.C., Lynch, C.S., McMeeking, R.M.: Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metall Mater. 43, 2073–2084 (1995)

    Article  Google Scholar 

  21. Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)

    MATH  Google Scholar 

  22. Jaffe, B., Cook, W.R., Jaffe, H.: Piezoelectric Ceramics. Academic Press, London (1971)

    Google Scholar 

  23. Kamlah, M., Liskowsky, A.C., McMeeking, R.M., Balke, H.: Finite element simulation of a polycristalline ferroelectric based on a multidomain single crystal switching model. Int. J. Solids Struct. 42, 2949–2964 (2005)

    Article  MATH  Google Scholar 

  24. Kessler, H., Balke, H.: On the local and average energy release in polarization switching phenomena. J. Mech. Phys. Solids 49, 953–978 (2001)

    Article  MATH  Google Scholar 

  25. Kittel, C.: Einführung in die Festkörperphysik. Oldenbourg, München (2006)

    Google Scholar 

  26. Lange, S., Ricoeur, A.: A condensed microelectromechanical approach for modeling tetragonal ferroelectrics. Int. J. Solids Struct. 54, 100–110 (2015)

    Article  Google Scholar 

  27. Lange, S., Ricoeur, A.: High cycle fatigue damage and lifetime prediction for tetragonal ferroelectrics under electromechanical loading. Int. J. Solids Struct. 80, 181–192 (2016)

    Article  Google Scholar 

  28. Li, Q., Ricoeur, A., Enderlein, M., Kuna, M.: Evaluation of electromechanical coupling effect by microstructural modeling of domain switching in ferroelectrics. J. Mech. Res. Commun. 37, 332–336 (2010)

    Article  MATH  Google Scholar 

  29. Li, J.Y., Dunn, M.L.: Micromechanics of magnetoelectroelastic composite materials: average fields and effective behavior. J. Intell. Mater. Syst. Struct. 9, 404–416 (1998)

    Article  Google Scholar 

  30. Lee, K.Y., Zong, X.C.: Dielectric crack problem for a magnetoelectroelastic strip with functionally graded properties. Arch. Appl. Mech. 82, 791–807 (2011)

    Google Scholar 

  31. Magnetfabrik Bonn GmbH: Alnico 500. DIN-characterization 35-5 (2009)

    Google Scholar 

  32. Morrish, A.H.: The Physical Principles of Magnetism. IEEE Press, New York (2001)

    Book  Google Scholar 

  33. Park, S.B., Sun, C.T.: Effect of electric field on fracture of piezoelectric ceramics. Int. J. Fract. 70, 203–216 (1995)

    Article  Google Scholar 

  34. Plassmann, W.: Handbuch Elektrotechnik. Grundlagen und Anwendungen für Elektrotechniker. Springer, Wiesbaden (2013)

    Book  Google Scholar 

  35. Ricoeur, A., Kuna, M.: Influence of electric field on the fracture of ferroelectric ceramics. J. Eur. Ceram. Soc. 23, 1313–1328 (2003)

    Article  Google Scholar 

  36. Ricoeur, A., Kuna, M.: Electrostatic tractions at crack faces and their influence on the fracture mechanics of piezoelectrics. Int. J. Fract. 157, 3–12 (2009)

    Article  MATH  Google Scholar 

  37. Ricoeur, A., Lange, S., Gellmann, R.: Modeling approaches to predict damage evolution and life time of brittle ferroelectrics. In: Hütter, G., Zybell, L. (eds.) Trends, Recent, in Fracture and Damage Mechanics. Springer, Berlin (2015)

    Google Scholar 

  38. Ricoeur, A., Gellmann, R., Wang, Z.: Influence of inclined electric fields on the effective fracture toughness of piezoelectric ceramics. Acta Mech. 226, 491–505 (2015)

    Article  MATH  Google Scholar 

  39. Rödel, J., Kreher, W.S.: Modeling linear and nonlinear behavior of polycrystalline ferroelectric ceramics. J. Eur. Ceram. Soc. 23, 2297–2306 (2003)

    Article  Google Scholar 

  40. Scott, J.F.: Data storage: multiferroic memories. Nat. Mater. 6, 256–257 (2007)

    Article  Google Scholar 

  41. Stevens, D., Schweinler, H., Sturm, W., Sonder, W.: The magnetic susceptibility of barium titanate. Solid State Div. Semiannu. Prog. Rep. 30, 13–14 (1956)

    Google Scholar 

  42. Sosa, H.: One the fracture mechanics of piezoelectric solids. Int. J. Solids Struct. 29, 2613–2622 (1992)

    Article  MATH  Google Scholar 

  43. Tang, T., Yu, W.: Micromechanical modeling of the multiphysical behavior of smart materials using the variational asymptotic method. Smart Mater. Struct. 18, 125026 (2009)

    Article  Google Scholar 

  44. Vanderlinde, J.: Classical Electromagnetic Theory. Springer, Dordrecht (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ricoeur .

Editor information

Editors and Affiliations

Appendix

Appendix

The coefficients of cobalt ferrite (CF) and barium titanate (BT) are listed in Table 2. The coefficient \(\mu _{11}\) of BT is determined from the magnetic suszeptibility \(\chi _{v}^{\mathrm {CGS}}=-8.47\cdot 10^{-8}\) at 293.8 K [41] according to \(\mu _{11}=\mu _{0} \left( \chi _{v}^{\mathrm {SI}}+1\right) \) with \(\chi _{v}^{\mathrm {SI}}=4\pi \chi _{v}^{\mathrm {CGS}}\). The coefficient \(\mu _{22}\) was estimated, adapting the transversal isotropy of the dielectric constants \(\kappa _{ij}\) to the magnetic permeability. In the state of maximum magnetostriction the magnetic suszeptibility of CF is \(\chi _{v}^{\mathrm {SI}}=1.16\), providing a permeability of \(\mu _{11}=2.71\cdot 10^{-6}\,\mathrm {Ns^{2}/C^{2}}\). The coefficient \(\mu _{22}\) is determined based on the same idea as with BT.

Table 2 Material properties of \(\mathrm {BaTiO_{3}}\) and \(\mathrm {CoFe_{2}O_{4}}\) [22, 29, 41, 43]

Additionally, the quantities in Table 3 have been identified for the nonlinear reversible constitutive model. Due to the fact, that an appropriate value of \(\mu _{11}^{r}\) could not be found in the literature, \(\mu _{11}^{r}=5\) has been chosen, relying on similar ferromagnetic materials.

Table 3 Parameters of the phenomenological material model adapted to the constitutive behavior of \(\mathrm {CoFe_{2} O_{4}}\)

Table 4 illustrates the procedure of how to identify the parameters of the constitutive model based on experimental and numerical curves.

Table 4 Identification of the parameters of the phenomenological constitutive model

For a plane stress state, the values of \(\sigma _{11}^{s}\) and \(\sigma _{22}^{s}\) are calculated as follows:

$$\begin{aligned} \begin{aligned} \sigma _{11}^{s}&= C_{11}\eta _{1} + C_{12} \eta _{2} - \frac{C_{12}}{C_{22}} \left( C_{12} \eta _{1} + C_{23} \eta _{2} \right) \ , \\ \sigma _{22}^{s}&= C_{12}\eta _{1} + C_{22} \eta _{2} - \frac{C_{23-}}{C_{22}} \left( C_{12} \eta _{1} + C_{23} \eta _{2} \right) \ . \end{aligned} \end{aligned}$$
(50)

Moreover, the quantities in Table 5 have been applied for the physically motivated model. Due to the lack of elastic and dielectric constants in literature, the values of Table 2 have been taken for AlNiCo 35/5 as well, assuming the same orders of magnitude.

Table 5 Parameters of the physically based model adapted to the constitutive behavior of \(\mathrm {BaTiO_{3}}\) and AlNiCo 35/5 [10, 22, 34, 39] (in [34] \(\mu ^{r}\) is denoted as \(\mu _{rec}\))

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ricoeur, A., Avakian, A., Lange, S. (2018). Microstructured Multiferroic Materials: Modelling Approaches Towards Efficiency and Durability. In: Altenbach, H., Jablonski, F., Müller, W., Naumenko, K., Schneider, P. (eds) Advances in Mechanics of Materials and Structural Analysis. Advanced Structured Materials, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-70563-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70563-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70562-0

  • Online ISBN: 978-3-319-70563-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics