®

Check for
updates

Querying Large Scientific Data Sets
with Adaptable IO System ADIOS

Junmin Gu', Scott Klasky?, Norbert Podhorszki?, Ji Qiang?,
and Kesheng Wu'(®)

! Lawrence Berkeley National Laboratory (LBNL), Berkeley, USA
kwu@lbl.gov
2 Oak Ridge National Laboratory (ORNL), Oak Ridge, USA

Abstract. When working with a large dataset, a relatively small frac-
tion of data records are of interest in each analysis operation. For exam-
ple, while examining a billion-particle dataset from an accelerator model,
the scientists might focus on a few thousand fastest particles, or on the
particle farthest from the beam center. In general, this type of selective
data access is challenging because the selected data records could be any-
where in the dataset and require a significant amount of time to locate and
retrieve. In this paper, we report our experience of addressing this data
access challenge with the Adaptable IO System ADIOS. More specifically,
we design a query interface for ADIOS to allow arbitrary combinations
of range conditions on known variables, implement a number of different
mechanisms for resolving these selection conditions, and devise strategies
to reduce the time needed to retrieve the scattered data records. In many
cases, the query mechanism can retrieve the selected data records orders
of magnitude faster than the brute-force approach.

Our work relies heavily on the in situ data processing feature of ADIOS
to allow user functions to be executed in the data transport pipeline. This
feature allows us to build indexes for efficient query processing, and to per-
form other intricate analyses while the data is in memory.

1 Introduction

Modern scientific experiments such as large accelerators rely heavily on high-
performance simulations for design, calibration and data analysis [13,24]. These
simulation programs typically need to read and write a vast amount of data,
for example to read the definition of the complex geometry of an accelerator
design, to checkpoint the state of the simulation, and to produce analysis output
[23]. The output from these simulations is used to understand the experimental
observations and to guide the next experiment. Often, the critical information is
only a small fraction of a large data collection. Reading and writing the necessary
data records efficiently is the challenge we address in this work.

The rights of this work are transferred to the extent transferable according to title
17 §105 U.S.C.
© The Author(s) 2018

R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 51-69, 2018.
https://doi.org/10.1007/978-3-319-69953-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_4&domain=pdf

52 J. Gu et al.

Current high-performance computing systems are typically massively parallel
platforms consisting of millions of CPU cores and thousands of secondary storage
devices. A significant amount of programming effort is needed to make effective
uses of such a system. Programmers have to make difficult choices among avail-
able options. Take the checkpointing task as an example, an efficient solution
to write a large amount data is to have each process of the simulation program
write its own file. However, this option can create millions of files when millions
of processes are used. On some file systems, an attempt to list these files will
slow the metadata servers to a crawl, even crash the whole file system. Usually,
the checkpoint files are also used for data analyses. During a typical analysis
operation, only a fraction of the data records are needed for a specific analy-
sis operation. Locating these data records from a petabyte data collection is a
challenging task requiring auxiliary information such as indexes. It may be nec-
essary to restart the simulation program with a different number of processes,
for example, to reduce the computation time or to increase the fidelity of the
simulation. When there is one checkpoint file per process, these checkpoint files
may have to be combined in complex ways in order to restart the simulation
properly. For these reasons, many researchers have explored options to simplify
the 10 operations for large simulation programs.

The process of locating and retrieving these selected records is typically
through a query interface. The best known querying tools do not support scien-
tific data, which is typically stored in large data files as numbers. For example,
internet search engines are widely used by primarily designed to process text
documents; and database systems could work on both numerical values and text
string, but require the data to be under its full control. Scientific projects usu-
ally does not have the budget to pay for the extra storage and software license
fee for database systems. The alternative we pursue is to add query interface to
high-level 10 libraries.

A number of high-level 10 libraries are in wide use, the most commonly
used are ADIOS [16], HDF5 [10], and netCDF [22]. Among these three popular
libraries, netCDF is primarily used by the climate community and it is in the
process of switching to use HDF5 as the backend storage layer. For this work, we
primarily consider choosing between HDF5 and ADIOS. Both ADIOS and HDF5
are used in a variety of large scientific applications, and the authors have first-
hand experience with both [5,7,16,26]. In this particular case, we plan to use
ADIOS because it offers a distinctive feature that is not available in any other 10
libraries. That is, ADIOS supports in situ processing, which allows us to build
the indexes while generating the data files. This has a distinct advantage of as
soon as the data files are available, the associated indexes are also available.
This should make it much more efficient to select a relatively small number
of critical data records from a large data collection. In addition, the in situ
processing capability would also enable dynamic analysis capability to improve
the usefulness of a simulation program. Thus, the core of this work is to develop
a query interface for ADIOS.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 53

The key contributions of this work are as follows:

— Design and develop a query interface for ADIOS.

— Evaluate strategies to minimize the time needed to retrieve scatter data
records from a ADIOS file.

— Exercise the query interface with a large application dataset.

— Introduce in situ processing feature to an application that does not yet have
this feature, and demonstrate the usefulness of this feature.

— Measure the performance of ADIOS in completing the checkpoint operations.

2 Related Work

In commercial applications, large datasets are typically managed by a data man-
agement system [15,18,25]. These systems take control of the user data and pro-
vide high-level languages for analysis tasks. In contrast, most scientific projects
store their data as files and use the file systems as the primary tools for data
management [24]. This file-based approach allows users full control of their data
and their analysis tasks; however, it also requires the users to spend much more
time to manage their data than using a data management system. In this work,
we combine a number of techniques to reduce the data management time, more
specifically the time to select a relatively small fraction of the data records. In
this section, we briefly review the key technologies involved.

2.1 High-Level IO Libraries

Scientific datasets are frequently organized as multidimensional arrays and the
commonly used IO libraries are designed to store and organize these arrays.
Earlier we mentioned three: HDF5 [10], netCDF [22] and ADIOS [16]. Next, we
provide a brief description for each of them.

HDFS5 is a short-hand for Hierarchical Data Format version 5' [10,11]. It
is highly flexible, efficient, portable and extensible. Many application domains
have developed their own data organization standards based on HDF5 [10]. The
recent releases of HDF5 software exposes the Virtual Object Layer (VOL) to
make it even easier to extend the functionality of the software library, such as
to provide query services [8] and to work with Burst Buffers [9].

NetCDF is a short-hand for network common data format? [22]. It is widely
in the climate modeling community, with many petabytes of data stored in this
format. Some of the largest collections are used to compile the assessment reports
commissioned by the Intergovernmental Panel on Climate Change?.

ADIOS is a short-hand for Adaptable IO System* [16,17]. First released in
2008 [17], it is a new library among the commonly used scientific formats. How-
ever, it has attracted much attention because its simplicity and efficiency [16].

! HDF5 software is available at https://support.hdfgroup.org/HDF5/.

2 NetCDF software is available at https://www.unidata.ucar.edu/software/netcdf/.
3 The most recent TPCC report AR5 is available at https://www.ipcc.ch/report/ar5/.
4 Software available at https://www.olcf.ornl.gov/center-projects/adios/ .

https://support.hdfgroup.org/HDF5/
https://www.unidata.ucar.edu/software/netcdf/
https://www.ipcc.ch/report/ar5/
https://www.olcf.ornl.gov/center-projects/adios/

54 J. Gu et al.

For example, it accepts an XML configuration file for users to describe the vari-
ables, their types, and the path to take from memory to disk. This capability
allows the users to change how they process the data without changing the sim-
ulation program. This approach gives a level of adaptability that no other 10
system could match. A special feature created by this flexibility is the in situ
processing capability to be described next. To effectively support the query-
ing capability over ADIOS files, we also utilize this in situ capability to create
indexes, which reduces the effort required to generate indexes and ensures the
indexes are available as soon as the data is available.

2.2 In Situ Processing

Writing to disk is generally much slower than writing the same data to memory,
therefore, it is highly desirable to perform as many analysis operations as possible
while the data is still in memory. This type of in situ processing also makes
it possible to produce analysis results without storing the original data. On a
HPC system, the IO operations typically need to pass data among the compute
nodes, IO nodes, and disk systems. While the data is being transferred among
these subsystems, it is possible to perform a considerable amount of analysis
operations. ADIOS supports these options by separating API for data producers
from that for data consumers.

A data producer outputs the data following a set of API styled after the
familiar POSIX write interface. The content generated by the producer is sent
to the downstream processing code by the ADIOS transport system based on the
instructions provided by the user. The consumers of the data could be located
on the same CPU as the producer, or elsewhere on the network. The ADIOS
transport system will schedule the data movement in a reliable manner [17].

The benefits of in situ processing is widely recognized for large scientific sim-
ulations and a number of efforts are under way to develop alternatives to ADIOS.
Bauer et al. have produced an excellent review of the state of art in 2016 [1]. As
of this writing, ADIOS is the most mature system for in situ processing and has
extensive 10 capability, therefore, we have selected to use ADIOS for this work.

2.3 Querying and Indexing

A data management system such as a DBMS typically provides a query interface
for accessing the data under its management. In contrast, the data access func-
tions for a file generally need to follow the structure of the file, such as, move
file pointer to a location and read the next 40 bytes. This structure-based access
functions require the user to know more details about the file organization than
most application users are familiar with, and therefore, not as user-friendly as
the query-based data access methods. A query on a scientific dataset might be
“finding all data records from collection A where temperature and pressure are
in the specified ranges.” In this example, the user only needs to know the name
of the variables and quantities of interest, thus a query interface is much easier
to use for an application scientist.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 55

To effectively support the queries, the system needs to create indexes [12],
such as, B-Tree [6], bitmap index [26], and hashing [28]. Because the scientific
data collections are typically analyzed without modification (or with infrequently
modifications), we plan to concentrate on indexing techniques that are designed
for query-intensive workloads. The queries on scientific data typically returns
a number of data records instead of a single record. Additionally, the users
often explore a large variety of combinations of query conditions. From research
literature, we see that bitmap indexes satisfy these requirements. To support
newly designed ADIOS query interface, we choose to use an open source bitmap
index library named FastBit® [26]. At the same time, we are also exploring
additional indexing techniques that might be better suited for ADIOS [27].

2.4 Application Use Cases

In this work, we use a couple of large scientific applications to illustrate the
functionality we are developing. Next, we give a brief description of IMPACT
and S3D. They are selected as examples of large scientific simulation programs.
These large simulations produce a large amount of data and require complex data
analyses, where ADIOS indexing and querying capability could play important
roles.

IMPACT? is a parallel particle-in-cell code designed to model the dynamics of
multiple charged particle beams in accelerators. This program uses longitudinal
position (z) as an independent variable and includes the effects of externally
applied fields from magnets and accelerating cavities as well as the effect of self-
fields (as space charge fields). It is written in Fortran 90 with MPI for interprocess
communication. It has been applied to studies of halo formation and coupling
resonance in high intensity beams, microbunching instability in high brightness
electron linac, beam dynamics in SNS linac, JARPC linac, RIA driver linac,
CERN superconducting linac, LEDA halo experiment, Proton Synchrotron at
CERN, and so on [19-21]. In this work, we primarily use IMPACT to exercise the
in situ processing capability because it is a capability not available in IMPACT
yet.

S3D is a high-performance direct numerical simulation (DNS) of combustion
with detailed chemistry [4,14]. It is designed to study the interaction between
turbulence and combustion chemistry. It is extensively used to understand the
flame characteristics of lean mixture flame in the next generation of diesel and
alternative fuel engines, as well as the flame stability features in large industrial
burners such as those for gas-fired power plants. A large run of this code typically
divides its simulation domain into billions of cells and then follow the evolution
of the combustion process for many thousands of time steps. The checkpoint
files and the in situ analysis output could easily be many terabytes per run [4].
Since extensive work on in situ processing has been performed before with S3D,
in this work we primarily use a set of S3D data to test the query processing
capability to be developed.

5 FastBit software is available at http://sdm.lbl.gov/fastbit/.
5 IMPACT Software available at http://amac.lbl.gov/~jigiang/TMPACT/.

http://sdm.lbl.gov/fastbit/
http://amac.lbl.gov/~jiqiang/IMPACT/

56 J. Gu et al.

3 ADIOS Overview

In the next three sections, we describe our work on ADIOS to address various
10 challenges. We start with the basic bulk IO operation of checkpointing, then
move on to in situ processing and querying in the next two sections.

ADIOS is known for its simple API and high performance. The core insight
guiding the ADIOS design is to separate the description of IO operations from
the IO strategies employed for the actual lower level operations. This allows
the application programming interface (API) to only describe what variables
to read or write, while leaving the responsibility of selecting the actual trans-
port operations to the ADIOS system. In particular, ADIOS has implemented
a variety of transport mechanisms [16]. Its ability to seamlessly select the best
transport mechanism is also at the root of its support for in situ operations.
Other important factors contributing the high-performance include log-based
file format, buffered writing, subfiling, asynchronous transport operations, and
so on [16].

ADIOS was designed in 2005 to reduce the IO time for a number of mission
critical applications [17]. Since then, ADIOS has been the leading software sys-
tem for in situ data processing on many of largest high-performance computers.
Some of the early success stories include improving the 10 rate of S3D check-
point operation by more than a factor of 10 from 3 GB/s to over 30 GB/s [16].
The developers of ADIOS have published a number of studies showing the dra-
matic improvement of IO performance for various applications. Next, we add
our experience with the IMPACT code.

IMPACT employs the particle-in-cell paradigm to model the dynamics of
particles. Each particle has immutable properties such as rest mass and charge,
and dynamic properties such as position and momentum, recorded as x, y, 2, Pz,
Dy, and p,. IMPACT produces two types of output for analyses: checkpoint files
and particle statistics. We describe our work on checkpointing in this section and
the work on utilizing in situ processing to accelerate the production of particle
statistics in the next section.

Because the particles on each processor are independent from other parti-
cles, IMPACT produces its checkpoint files by writing one file per processor.
This option has the advantage of minimizing the coordinate needed among the
processors and could significantly reduce the time spent on IO operations.

ADIOS offers a variety of 10 options and the parallel file system (Lustre)
additionally offers a number of file system parameters; all of these parameters
could affect IO performance. Instead of providing an exhaustive exploration of
these parameters, in Fig. 1, we provide one set of performance measurements to
show that ADIOS is able to support very efficient 10 operations. This particular
set of measurements was collected on Edison at NERSC. The measurements are
conducted on Lustre file system with 24 OST and a peak IO rate of 168 GB/s. To
avoid contention with other active jobs, we only used 16 OST for each ADIOS
file, which have a nominal peak IO rate of about 112 GB/s.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 57

2 o= 256 cores | 520 million T T = 7050m 1024core o5(-16__@m@ 2080m 256core o516 |
e=e 512 cores | 1040 million
e—e 768 cores | 1560 million
e—e 1024 cores | 2080 million

21.54GB/s

Seconds
o
Seconds

47.6GB/s
51.04GB/s.

21.75GB/s

~
32.23GB/s

35.97GB/s

o 1 2 3 4 5 6 71 8 9 10 o 1 2 3 4 5 6 7 8 9 10

(a) time (seconds) to write checkpoint files (b) time (seconds) to read checkpoint files

Fig. 1. Time to read and write checkpoint files with ADIOS.

The write tests were performed with a fixed number of particles on each MPI
process. The reported IO rates in Fig. 1 are computed using the median observed
IO time. The write operations reported in Fig.1(a) all uses 16 OST and uses
about 2 million particles per MPI process. Up to 1024 processes, the average
write speeds rises to over 50 GB/s.

In Fig. 1(b), we reported the observed performance of reading the different
checkpoint files. Clearly, the number of OST used to store the files has a strong
influence on the observed read performance. One important feature we want to
demonstrate is the reading of the same checkpoint files with a different number
of processes. In this particular case, reading the same file with different number
of processes took about the same amount of time and producing about the same
aggregate 10 speed.

4 In Situ Indexing

The checkpoint files capture the position and momentum of each particle peri-
odically, but infrequently. To capture more dynamic behavior of the parti-
cles, IMPACT also compute high-level statistics about the particles at a much
higher frequency. However, these statistics are programmed by the developers
of IMPACT code and is difficult for the end users to modify to suit their own
needs. The in situ processing capability of ADIOS is a flexible mechanism to
introduce these custom statistics. It can also be used to provide asynchronous
computation including index building, without blocking the main simulation
computation. Next we describe a simple test to compute histograms at every
simulation step to demonstrate the capability of ADIOS.

Using the ADIOS framework, IMPACT sends the positions and momentums
to the libsim system, and a histogram function from VTK is attached to produce
1-D and 2-D histograms for each of the six variables. The histogram functions
are instructed to divide the data records into 100 equal-width bins between the
minimum and maximum values.

58 J. Gu et al.

4000000 4000000
— ts:0 - ts:0
3500000 i ts:500 3500000 i ts:500
11 t5:1000 t5:1000
3000000 ts:1500 3000000 ts:1500
t5:2000 t5:2000
2500000~ 15:250011 2500000 | t5:2500
€ ts:3000 || & t5:3000
3 : 3 :
% 2000000 - 15:350011 G 2000000 | ts:3500
£ ts:4000 || 2 t5:4000
E §
1500000 1500000
1000000 1000000
500000 500000

0
o055 085 0338 022 v33 000 223 0339 085 059 005550803 1303 1803 1109 199 7298 759% 7888 5187 2082
Pz

Px

Fig. 2. Histogram of p, and p, at time steps 0, 500, 1000, 1500 and 2000 of an IMPACT
run. Histogram of p, is similar to that of p,.

num of particles
num of particles

num of particles
num of particles

Fig. 3. Histogram of z and p, at time steps 500, 1000, 1500, and 2000 of an IMPACT
run (time progresses from left to right, top to bottom). The two tall peaks appear to
move to the right indicating the bulk of the particles are moving along the z direction

with increased momentum p..

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 59

Figure2 shows a sample output from the histogram computation. In this
simulation, the particles travel in the z direction. From the histograms of p,,
we see very sharp drop as momentums along = (and y) directions increase in
magnitude reflecting the fact that the accelerators are designed to limit the
motions perpendicular to z direction. In contrast, we see the histograms of p,
have a more gradual drop off as the momentum deviates from the center.

Figure 3 shows a series of 2D histograms of z and p,. In this case, as time
progresses (from left to right, top to bottom), we see that the peak of the curves
move to the right indicating the bulk of the particles are moving along z direc-
tion as designed. There appears to be two groups of particles following different
trajectories over time.

The above figures demonstrate two analysis options among many possible
particle statistics could be computed with in situ analysis capability. We note
two important ADIOS features in this use case. First, ADIOS in situ framework
can effectively support analysis tasks with zero-copy data transfers. This is an
important feature since the analysis task may require a large amount of data
and copying the data would require extra memory and computer time. Second,
we demonstrate that the ADIOS framework can easily work with a Fortran
program. This is a useful feature since a large number of popular science codes
are in Fortran.

Additionally, we have tested the options of the in situ processing capability of
ADIOS to compute all the built-in statistics on a small set of separate compute
nodes. Since the computation of the statistics involve a large number of global
reductions, reducing the number of processors involved also reduce the overall
cost of completing the simulation and the computation of the statistics. Using
the common measure of CPU-core-hour (number of CPU cores used multiply
the number of hours elapsed), the in situ processing option could reduce the
overall CPU-core-hour by as much as 20% by overlapping the main simulation
with the computation of the statistics.

Figure4 shows a careful measurement of fraction of total execution time
devoted to I/O operations with the standard I/O option (of writing data to files
stored on a large parallel file system) and with the ADIOS in situ mechanism

1.6% 1.5%
1.2% 1.0%

0.8% 0.6%

0.4%
0.07% 0.08% 0.07%

0.0%
File 1/O Staging File 1/O Staging File /O Staging

1k nodes 4k nodes 16k nodes

Fig. 4. The fraction of total execution time spent on 1/O operations: using File I/O vs
using ADIOS in situ capability to staging the output data before committing to disk.

60 J. Gu et al.

to stage the data away from the compute nodes before committing the data to
disk”. We note that the fraction of time spent on I/O operations is dramatically
reduced. More importantly, it is possible to attach an index generation function
and the above mentioned statistics computation to the in situ workflow without
delaying the main simulation computation.

5 Query API

A common query interface is web search box on a web browser, where user
enters a set of keywords to locate relevant pages on the web. A similar interface
for finding interesting data records in large scientific data collection would also
be very useful, however, this functionality is not widely available. An important
reason for this lack of querying function is that most scientific datasets are stored
as files. Because the POSIX file systems treat a file as a container of bytes, there
is no general way of extracting meaningful data records for querying. The first
step in breaking this limitation is to have a model to describe the data records.
In this work, we are using the ADIOS library and will follow the array data
model. In the remaining of this section, we will describe this data model and
the query use cases. The latest version of ADIOS release contains the query
interface and detailed description of how to use the functions is available in the
user’s manual®,

5.1 Array Data Model

In ADIOS, the bulk of data is expressed as multi-dimensional arrays. In Fig. 5,
we provide a simple illustration of a 3D array. Often such an array is produced
from a simulation program, and each element of the array corresponds to a point
or a cell from the 3D space being simulated. In such a case, there might be a
number of different variables associated with each point or cell in space, e.g.,

Ccordinates:

i=7, j=3, k=20

Variables:

4 Temp=100, Pressure=30,
= Humidity=40

Fig. 5. Illustration of a 3D bounding box and a data record.

" This time measurement was obtained with a large XGC simulation running on titan
at ORNL.

8 ADIOS source code and documentation could be found at https://www.olcf.ornl.
gov/center-projects/adios/.

https://www.olcf.ornl.gov/center-projects/adios/
https://www.olcf.ornl.gov/center-projects/adios/

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 61

temperature, pressure and humidity as shown in Fig.5. We view all variables at
a single point as a data record, which allows us to ask for the temperature values
at points where pressure is between 20 and 40, and humidity is greater than 35.

On a parallel computer, a large multidimensional array is commonly divided
onto different processors in blocks that could be expressed as bounding boxes.
The existing ADIOS interface supports selective accesses to these bounding
boxes. For example, to divide the above 3D array onto 1000 processors, each
processor might have 1/1000th of the 3D array. A bounding box in ADIOS is
expressed as an offset and extent. Say the 3D array has 1000 element along
each of the three directions, then the bounding box for the entire array can be
expressed as offset = [0, 0, 0] and size = [1000, 1000, 1000]. One way to divide
this array into 1000 pieces might be to have each of the subarrays with the size
of [100, 100, 100]. In a simple case, we can view the 1000 x 1000 x 1000 array to
be defined on a 1000 x 1000 x 1000 mesh. To simplify the following discussion,
we assume this is the case. However, the elements of an array may have a much
more complex relationship with the underlying physical domain of the simula-
tion. For example, irregular mesh points are often packed into 1D arrays with
additional arrays used to describe the physical location of the mesh points and
how the mesh points are connected.

5.2 Query Use Cases

Case 1: Regular mesh data, all variables are named explicitly. Given a dataset
defined on m dimensions: D1, Do, ..., D,,, the n physical properties such as tem-
perature, pressure and humidity, could be defined as separate m-dimensional
arrays: A1, Ao, ..., A,. Each of these variables can be thought of as a column
of a relational table and each point of the mesh as a row of the same table.
Given this simple mapping between multidimensional data model and the rela-
tional data model, we can transplant all SQL queries to queries on mesh data.
For example, “select humidity from mesh_data where temperature > 280 and
pressure > 100000” is meant to select all mesh points where temperature and
pressure values satisfy the specified conditions and then output the values of
humidity on those mesh points.

Case 2: using bounding boxes to partition arrays of the same shape and size.
Given a dataset defined on a 3-D mesh of size 10 x 20 x 30, we might divide
this mesh for 8 processors as a 2 x 2 x 2 blocks. To accommodate this use case,
we will define a set of 8 non-overlapping bounding boxes, one for each of the 8
processors. This would allow each processor to answer queries on 1/8th of the
data, corresponding to mesh size 5 x 10 x 15.

A query over this structure consists of 3 parts:

1. The selection box to limit the points considered,

2. The query conditions - in a form of query predicates connected with AND/OR
operators,

3. The query output - the values of variables for the points that qualify.

62 J. Gu et al.

An example of a query could be:

1. Selection box: starts = [5,0, 15], sizes = [5, 10, 15]
2. Query conditions: temperature > 5 AND pressure < 40
3. Query output: humidity

Case 3: Composite array structures. Users sometimes combine multiple variables
into a single array. Continuing with the example involving temperature, pressure,
and humidity, assume the mesh size to be 10 x 20 x 30. The 3 dimensions could
be linearized into a single dimension with 6000 elements. The three variables
could then be put into a 6000 x 3 2D array illustrated in Fig. 6.

In such a case the individual variables could be specified with bounding
boxes. Assuming the overall array is named A, the same query from the previous
example could be expressed as follows, where temperature = A[0 : 6000, 0 : 1],
pressure = A[0 : 6000, 1 : 2], and humidity = A[0 : 6000, 2 : 3]; and the query
specified in the previous use case could be expressed as,

SELECT A0 : 6000,2 : 3] WHERE A[0 : 6000,0 : 1] > 5 AND AJ0 : 6000,
1:2] < 40.

Note that the bounding boxes are associated with each variable in the query
expression separately, and the sizes of the bounding boxes must be the same;
but the offsets (the starting positions) could be different.

Case 4: A general array structure. It is possible that some of the variables are
packed together while others are not. More generally, the arrays may have more

Temp Pressure Humidity
Starts=[0,0] Starts=[0,1] Starts=[0,2]

v \ 4 v

6000 elements

Fig. 6. Illustration of a use case with different variables packed as another dimension
of the data array.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 63

Coordinates:

i=10, j=11, k=12 Coordinates:
Variable: i=1,j=2, k=3
& Temp=100 - - Variable:

Pressure=30

Coordinates:
i=4, j=5, k=6
Variable:
Temp=100

Fig. 7. Illustration of a user query involving multiple arrays of different shapes and
sizes.

complex relationship than described above. For example, the values for tem-
perature, pressure, and humidity, could be produced from different measuring
instruments and recorded as different time resolutions in space and time, as
illustrated in Fig. 7.

Now if we want to compare values at a particular city, we will need to use
different bounding boxes on these arrays. This use case is similar to the previous
one, the key difference is that the array names would be different. Again, the
bounding boxes are required to be of the same size, i.e., having the same number
of data points.

5.3 Additional Design Considerations

Reading Multiple Variables. To start with, the current design of the ADIOS
query interface retrieves values from on variable at a time. If a use case requires
multiple output variables, the caller needs to repeat the invocation of the read
function. Introducing a mechanism to specify multiple output variables at once
will increase the likelihood of additional optimization in the implementation.
However, we choose to keep the interface relatively simple so that we can explore
the implementation challenges associated with the basic tasks of integrating
with indexing techniques. This and other performance optimization issues will
be considered in the future.

Expressing Query Conditions. To avoid the need to introducing a query parser,
we have opted to introduce a set of functions for users to compose query expres-
sions instead of allowing the user to specify the query conditions in the string
form, even though the string form is a more common form of query interface.
This choice also has the benefit of not imposing any restrictions on the variable
names. A typical database management system supports query in the SQL lan-
guage, which imposes a number of restrictions on the variable names, such as,
not allowing punctuations, which would introduce extra challenge is expressing
the bounding boxes.

64 J. Gu et al.

Integration with Indexing Software. An effective implementation of the query
interface would need to connect to an indexing capability. Our implementation
is designed to allow multiple indexing systems to be used. In later tests, we will
explore two different ones: a bitmap indexing software library named FastBit [26]
and a MinMaxz index capability built into the ADIOS software. A set of user
specified conditions may select data records that are scattered randomly in a
multidimensional array. Since reading randomly scattered values are much slower
than reading consecutive values, some optimization is necessary to reduce the
time needed to read the selected values. In our work, we have developed a set
of heuristics to combine small random read operations into large sequential read
operations.

6 Query Performance

The naive way of resolving a query would be to read through all data records to
find those satisfying the user specified conditions. This option is generally known
as scanning. In this work, we plan to use two different indexing techniques, Fast-
Bit index and block MinMax index, to accelerate the query answering process.

FastBit implements a number of different bitmap indexes that have been
shown to work well for a number of scientific use case [26]. The block MinMax
index is a structure that keeps the minimum and maximum for each variable in
a data block. It is a mechanism developed to take advantage of the metadata
already captured in the ADIOS BP file format. When processing a user query,
this mechanism first examine each data block’s header information to determine
whether there are any possible entries satisfying the specified conditions using
the minimum and maximum values. It only examines the data values in a block
if there are possible hits. The mechanism allows us to avoid some blocks. For
the data blocks with hits, since the minimum unit of an IO operation is a block,
this query answering mechanism is reading the minimum number of blocks and
performing the minimum amount of 10 operations.

Figure8 shows the time needed to resolve the queries with three different
mechanisms: scanning the raw data, using FastBit indexes, and using the Min-
Max mechanism. We see that using the two indexing schemes could dramatically
reduce the query processing time compared to scanning the raw data. Compared
these two indexing mechanisms, we see that the FastBit indexing is typically
faster, however, the FastBit indexes take up a lot more storage space than the
MinMax mechanism, which can be regarding as not using any extra space in
ADIOS BP format.

Another important observation from Fig. 8 is that the time needed to read the
selected values (i.e., the difference between “FastBit + read” and “FastBit”) is
significantly longer than resolving the query using one of the indexing techniques.
This is because the query results are typically randomly scattered in the data file.
Extracting these randomly scattered values takes a long time. Often, reading a
relatively small number of bounding boxes to encompass the randomly scattered
points and then extract the selected values could reduce the overall time need
to extract these values.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 65

10000
®Scan HFastBit+Read FastBit “minmax
o
1000 § & @ e 7T o ¢ %% & % *% gl
m]
o
- =] = iﬁ o
© =]
3 . w ¥
= u ,
= o x Wl x ¥ X% X
= = X X
5 W x X
b . x 2 A
10 Ej
B4
?j o
1 # Hits
1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

Fig. 8. Query processing time with a set of S3D data (total number of records is
1.67 x 10?, organized into a 3D array of 1100 x 1080 x 1408).

1000
100
o
2
o
£
[
10 === (/pressure <0.7) and (/temp < 2.3)
= ftemp < 2.3
/wvel<-0.2
1
10 100 1000 10000 # blocks 100000

Fig. 9. Query processing time changes dramatically with the number of blocks.

When working with a large dataset, we typically employ multiple CPUs and
process each data blocks independently on each CPU core. However, the query
processing time could be dramatically affected by the number of blocks used
to generated the indexes. Figure9 shows the query processing time of a small
number of queries when the FastBit indexes are generated on different number
of blocks. Clearly, the more blocks are used the longer it takes to resolve a query.
This is largely because the extra work needed to process each index block. On the
other hand, using more processors can significantly reduce the query response
time, as shown in Fig. 10. Additional studies are needed to further optimize these
and other parameters affecting the performance of indexing and query processing
techniques [27].

66 J. Gu et al.

=8-100-core minmax
=@ -100-core no-index

400
=8-10-core minmax
350 . A =®-10-core no-index
A 0" ®<q_0-o-0-""""%
30 V) v - Yo .
\J/ wr A had SE Dl b d DY
© 250
]
U
o 200
£
150
100
50 =0~ —g-—o- "0 - - 9- 0 ——g-0-0o

0.0E+00 1.0E+10 2.0E+10 3.0E+10 4.0E+10 5.0E+10
Num Hits

Fig. 10. Using more processors reduces the query processing time.

7 Summary

This work reports our experience in designing and implementing a query inter-
face for ADIOS. We explored a number of different indexing data structures
for supporting such a query interface. We observe that for queries that select
a relatively small fraction of total number of records in a dataset, answering a
query with these indexing methods could be dramatically faster than reading
the whole data and then filtering the data records in memory.

In addition to using external indexing libraries, ADIOS also implements a
block MinMax mechanism to take advantage of the built-in blocking structure.
Tests show that it has the potential to significantly accelerate the query answer-
ing process. One challenge we have noticed is that the number of blocks has a
strong impact on the overall system performance. We have started exploring pos-
sible options to select this and other parameters affecting the query processing
time [27].

This work also demonstrates two useful capability of ADIOS in improving
the IO pipeline of a simulation program called IMPACT: checkpointing and cus-
tomizing analysis. In reading and writing of checkpoint files, ADIOS allows the
user to manage the I0 operations more efficiently. We rely on the in situ pro-
cessing capability of ADIOS to enable IMPACT users to customize the particle
statistics during the simulation process.

The in situ mechanism is also used to generate the indexes needed to accel-
erate the query processing algorithms, without increasing the elapsed time used
by the simulation programs. It allows the indexes to be generated when the data
file is generated, which means the indexes are available when the data is ready.
This is very convenient for the users.

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 67

In the future, we plan to more fully explore the two capabilities described

above. In addition, we plan to compare the query capability with well-known
systems such as RasdaMan [2] and SciDB [3].

Acknowledgment. This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, of the U.S. Department of Energy under Con-
tract No. DE-AC02-05CH11231 (for LBNL) and DE-AC05-000R22725 Mod 877 (for
ORNL). This research also used resources of the National Energy Research Scientific
Computing Center supported by the same funding agency.

References

10.

11.

12.

Bauer, A.C., Abbasi, H., Ahrens, J., Childs, H., Geveci, B., Klasky, S., Moreland,
K., O’Leary, P., Vishwanath, V., Whitlock, B., Bethel, EEW.: In situ methods,
infrastructures, and applications on high performance computing platforms. Com-
put. Graph. Forum 35(3), 577-597 (2016)

Baumann, P.: rasdaman - raster data manager, January 2018. rasdaman.org
Brown, P.G.: Overview of sciDB: large scale array storage, processing and analysis.
In: Proceedings of the 2010 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 2010, pp. 963-968. ACM, New York (2010)

Chen, J.H., Choudhary, A., De Supinski, B., DeVries, M., Hawkes, E.R., Klasky,
S., Liao, W.-K., Ma, K.-L., Mellor-Crummey, J., Podhorszki, N., et al.: Terascale
direct numerical simulations of turbulent combustion using S3D. Comput. Sci.
Discov. 2(1), 015001 (2009)

Chou, J., Wu, K., Riibel, O., Howison, M., Qiang, J., Prabhat, Austin, B., Bethel,
E.W., Ryne, R.D., Shoshani, A.: Parallel index and query for large scale data
analysis. In: SC11 (2011)

Comer, D.: The ubiquitous B-tree. Comput. Surv. 11(2), 121-137 (1979)

Dong, B., Byna, S., Wu, K.: Expediting scientific data analysis with reorgani-
zation of data. In: 2013 IEEE International Conference on Cluster Computing
(CLUSTER), pp. 1-8, September 2013. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=6702675

Dong, B., Byna, S., Wu, K.: SDS: a framework for scientific data services. In:
Proceedings of the 8th Parallel Data Storage Workshop (2013). http://www.pdsw.
org/pdswl3/papers/p27-pdswl3-dong.pdf

Dong, B., Byna, S., Wu, K., Prabhat, Johansen, H., Johnson, J.N., Keen, N.: Data
elevator: low-contention data movement in hierarchical storage system. In: 2016
IEEE 23rd International Conference on High Performance Computing (HiPC), pp.
152-161, December 2016

Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
HDF5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases, pp. 36-47. ACM (2011). http://www.
hdfgroup.org/HDF5/

Gosink, L., Shalf, J., Stockinger, K., Wu, K., Bethel, W.: HDF5-FastQuery: acceler-
ating complex queries on HDF datasets using fast bitmap indices. In: SSDBM 2006,
Vienna, Austria, July 2006, pp. 149-158. IEEE Computer Society Press (2006)
Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv.
(CSUR) 25(2), 73-169 (1993)

http://www.rasdaman.org
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6702675
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6702675
http://www.pdsw.org/pdsw13/papers/p27-pdsw13-dong.pdf
http://www.pdsw.org/pdsw13/papers/p27-pdsw13-dong.pdf
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/

68

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Gu et al.

Hey, T., Tansley, S., Tolle, K. (eds.): The Fourth Paradigm: Data-Intensive Scien-
tific Discovery. Microsoft, Redmond (2009)

Im, H.G., Chen, J.H., Law, C.K.: Ignition of hydrogen/air mixing layer in tur-
bulent flows. In: Twenty-Seventh Symposium (International) on Combustion, The
Combustion Institute, pp. 1047-1056 (1998)

Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing
with mapreduce: a survey. ACM SIGMOD Record 40(4), 11-20 (2012)

Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N.; Choi, J.Y., Klasky, S.,
Tchoua, R., Lofstead, J., Oldfield, R., Parashar, M., Samatova, N., Schwan, K.,
Shoshani, A., Wolf, M., Wu, K., Yu, W.: Hello ADIOS: the challenges and lessons
of developing leadership class I/O frameworks. Concurr. Comput. Pract. Exp. 26,
1453-1473 (2014). https://www.olcf.ornl.gov/center-projects/adios/

Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and
integration for scientific codes through the adaptable IO system (ADIOS). In:
CLADE 2008, pp. 15-24. ACM, New York (2008)

Ozsu, M.T.: Principles of Distributed Database Systems, 3rd edn. Prentice Hall
Press, Upper Saddle River (2007)

Qiang, J., Lidia, S., Ryne, R.D., Limborg-Deprey, C.: Three-dimensional qua-
sistatic model for high brightness beam dynamics simulation. Phys. Rev. Spec.
Topics-Accel. Beams 9(4), 044204 (2006)

Qiang, J., Ryne, R.D., Habib, S., Decyk, V.: An object-oriented parallel particle-
in-cell code for beam dynamics simulation in linear accelerators. J. Comput. Phys.
163(2), 434-451 (2000)

Qiang, J., Ryne, R.D., Venturini, M., Zholents, A.A., Pogorelov, I.V.: High resolu-
tion simulation of beam dynamics in electron linacs for X-ray free electron lasers.
Phys. Rev. ST Accel. Beams 12, 100702 (2009)

Rew, R., Davis, G.: NetCDF: an interface for scientific data access. IEEE Com-
put. Graphics Appl. 10(4), 76-82 (1990). http://www.unidata.ucar.edu/software/
netedf/

Roman, E.: A survey of checkpoint/restart implementations. Technical report,
Lawrence Berkeley National Laboratory (2002)

Shoshani, A., Rotem, D. (eds.): Scientific Data Management: Challenges, Technol-
ogy, and Deployment. Chapman & Hall/CRC Press, Boca Raton (2010)

White, T.: Hadoop - The Definitive Guide: MapReduce for the Cloud. O’Reilly,
Sebastopol (2009)

Wu, K., Ahern, S., Bethel, E.W., Chen, J., Childs, H., Cormier-Michel, E., Geddes,
C., Gu, J., Hagen, H., Hamann, B., Koegler, W., Lauret, J., Meredith, J., Messmer,
P., Otoo, E., Perevoztchikov, V., Poskanzer, A., Prabhat, Riibel, O., Shoshani, A.,
Sim, A., Stockinger, K., Weber, G., Zhang, W.-M.: FastBit: interactively searching
massive data. In: SciDAC 2009. LBNL-2164E (2009)

Wu, T., Chou, J., Podhorszki, N.; Gu, J., Tian, Y., Klasky, S., Wu, K.: Apply
block index technique to scientific data analysis and I/O systems. In: Proceedings
of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2017, pp. 865-871. IEEE Press, Piscataway, May 2017
Zhang, H., Wen, Y., Xie, H., Yu, N.: Distributed Hash Table: Theory, Platforms
and Applications. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-
9008-1

https://www.olcf.ornl.gov/center-projects/adios/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/
https://doi.org/10.1007/978-1-4614-9008-1
https://doi.org/10.1007/978-1-4614-9008-1

Querying Large Scientific Data Sets with Adaptable IO System ADIOS 69

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Querying Large Scientific Data Sets with Adaptable IO System ADIOS
	1 Introduction
	2 Related Work
	2.1 High-Level IO Libraries
	2.2 In Situ Processing
	2.3 Querying and Indexing
	2.4 Application Use Cases

	3 ADIOS Overview
	4 In Situ Indexing
	5 Query API
	5.1 Array Data Model
	5.2 Query Use Cases
	5.3 Additional Design Considerations

	6 Query Performance
	7 Summary
	References

