
Classifying the Strategies of an Opponent Team
Based on a Sequence of Actions in the RoboCup

SSL

Yusuke Adachi, Masahide Ito, and Tadashi Naruse(B)

Graduate School of Information Science and Technology,
Aichi Prefectural University, Nagakute, Japan

im161001@cis.aichi-pu.ac.jp, {masa-ito,naruse}@ist.aichi-pu.ac.jp

Abstract. In this paper, we propose a new method for classifying the
strategies of an opponent in the RoboCup Soccer Small-Size League.
Each strategy generates a sequence of basic actions selected from a kick
action, a mark action, or other similar actions. Here, we identify strate-
gies by classifying an observed sequences of basic actions selected by
an opponent during a game. This method greatly improves our previous
method [9] in the following two ways: the previous method was applicable
mainly to set plays, whereas this restriction is lifted in our new method.
Additionally, our new method requires a lower computational time than
the previous method. Assuming that our team was the opponent team,
our team’s strategies were evaluated using the Rand Index, yielding a
value exceeding 0.877 in 3 out of 4 games. A Rand index value exceeding
0.840 was obtained from an analysis of the 4 opponent teams (1 game
for each opponent team). These Rand indices represent a high level of
classification algorithm performance.

1 Introduction

The strategies used in the RoboCup Soccer Small Size League (SSL) have been
extensively developed in recent years so that each team’s robots take action
in response to an opponent’s predicted behavior. It has become increasingly
important for teams to learn about their opponent’s behavior. Some studies
have developed approaches to learning an opponent’s strategies in the SSL [2,
9]; however, because these methods use robot trajectory data and require long
computational times, they are mainly applied to set plays.

To overcome these problems, we propose a new method for classifying an
opponent’s strategies. We focus on a sequence of basic actions, or simply a
sequence of actions, wherein the basic action is a 4-tuple defined as the <action
name, start position, end position, duration>. A typical action is a kick action,
a pass action, a shoot action, or other similar actions. Sequences of actions are
clustered into several groups such that each group includes a sequences of actions
derived from a strategy. The advantage of this method derives from the ease with
which this method predicts a future subsequent action, making it possible to take
preemptive counter actions.
c© Springer International Publishing AG 2017
S. Behnke et al. (Eds.): RoboCup 2016, LNAI 9776, pp. 109–120, 2017.
https://doi.org/10.1007/978-3-319-68792-6_9



110 Y. Adachi et al.

In the following sections, we describe a method of extracting robot actions
and applying a clustering method by defining a dissimilarity measure of a
sequence of actions. Finally, we provide experimental results and discuss the
availability of the method.

2 Related Work

Erdogan and Veloso [2] proposed a method for classifying an opponent’s behav-
iors in the SSL, and they applied their classification method to the attacking
behaviors in set plays during real SSL games. The opponent’s behaviors were
expressed as trajectories of offensive robots to which they applied a cluster analy-
sis by computing the similarity of the behaviors. Yasui et al. [9] also proposed a
method of classifying an opponent’s behaviors using an approach similar to that
of Erdogan. Yasui et al. applied their method to learn their opponent’s behaviors
during set plays as they occurred online and in real time. They demonstrated
experimentally that an opponent’s behaviors could be classified about 2 s before
ball actuation. These studies demonstrated the effectiveness of learning an oppo-
nent’s behaviors; however, because these methods use robot trajectory data and
require significant computational times, they are mainly applied to set plays.

Trevizan and Veloso [6] proposed a method for comparing the strategies of
two teams in the SSL. They divided a time series representing a game into
non-overlapping intervals that they labeled episodes. They used 23 variables,
including the distance between a robot and the ball and the distance between
a robot and the defense goal, to characterize the episode. They used the mean
and standard deviation of each variable over an episode to reduce the data size.
Therefore, n episodes with f variables could be represented using a matrix of
size 2f ×n. They computed the matrix norms of two episode matrices for teams
A and B and evaluated the similarities between the strategies of teams A and B.
Their method then compared the similarities between the two teams’ strategies.
Their study’s objective differed from the objective addressed in this paper.

Visser and Weland [7] proposed a method of classifying an opponent’s behav-
iors based on a decision tree constructed for use in the RoboCup soccer simula-
tion league. Time series data, consisting of the ball-keeper distance, ball speed,
number of defenders in the penalty area, and other game parameters, were used
to construct a decision tree that predicted the goalkeeper’s (GK’s) movements,
including GK stays in goal, GK leaves goal, GK returns to goal, over several
games. Learning based on a decision tree is a type of supervised learning. We
propose an unsupervised learning algorithm for use in on-line real-time learning.

3 Robot Action Detection

In this paper, we use data logged during RoboCup 2015 competition. The logged
data comprise a time series of robot positions and orientations, ball positions,
referee commands, and other game parameters, logged every 1/60 s.



Classifying the Strategies of an Opponent Team 111

The strategies were classified by defining the following 8 actions: passer robot
mark, shooter robot mark, ball-keeping robot mark, pass wait, kick ball, kick
shoot, kick pass, and kick clear. A time series of logged data was converted to a
sequence of these actions for use as an input to our classification process. (The
not available (NA) action was suitably inserted if a part of the time series could
not be converted to any of the 8 available actions.)

In this section, we describe how the robots’ actions were detected using the
logged data. The basic method is one that we have proposed in [1]. We extend
that method in this section.

3.1 Mark Actions

In [1], mark actions consist of three actions: “passer mark”, “shooter mark”, and
“ball-keeping robot mark”. We improved the detection algorithms described in
[1] and describe some of these improvements in the following subsections.

Passer Mark. In his passer mark algorithm, Asano did not consider whether
a passing robot surely existed. In his algorithm, the passer mark was detected,
even if a robot simply ran after the ball. We corrected this fault as follows.

Definition of symbols
−−→
Ti,f : the position of the teammate robot Ti at time f .−−→
Oj,f : the position of the opponent robot Oj at time f .−→
Bf : the position of the ball at time f .−−→
TS,f : the position of the teammate robot with the shortest distance to the
line connecting the ball

−→
Bf and the robot

−−→
Ti,f . We considered TS,f to be the

receiver robot.

We computed the distance Dj,i,f between Oj,f and the line connecting Ti,f

and TS,f , as shown in Fig. 1. If either or both of the inner products
−→
V1 · −→

V2 and−→
V4 · −→

V5 were negative, γp was added to Dj,i,f , where γp is a constant, because
it was desirable to exclude non-mark cases (See Eq. (1)). Averaging the Dj,i,f ’s
over the interval [f, f +n−1] gave the following equation, and with it we judged

Fig. 1. Passer mark.



112 Y. Adachi et al.

whether or not Oj marked a passer robot. (Oj marked the passer Ti at time f
if the MarkPassj,i,f variable were equal to 1,)

MarkPassj,i,f =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 1
n

f+n−1∑

k=f

Dj,i,k ≤ THp

0 otherwise

(1)

where THp is a given threshold and n is a given constant1.
The detection algorithm is given below.

/*Passer mark*/
1 for(f = 0; f < fend; f + +)
2 for(j = 0; j < 6; j + +)
3 for(i = 0; i < 6; i + +) {
4 compute Dj,i,f and MarkPassj,i,f

5 memorize MarkPassj,i,f }

Shooter Mark and Ball-Keeping Robot Mark
A shooter mark is often carried out near the goal area, and a mark robot usually
stands some distance from a shooter. As an evaluation metric, we defined the
distance between a (mark) robot and a line connecting the shooter and the
center of the goal mouth. We then computed the MarkShootj,i,f variable using
an equation2 similar to Eq. (1). (For a MarkShootj,i,f variable of 1, Oj marks
the shooter Ti at time f .)

A ball-keeping robot mark is a mark other than the passer mark and the
shooter mark. We used, as an evaluation metric, the weighted sum of two dis-
tances, that is, the distance D1j,i,f between the ball-keeping robot Ti and the
(mark) robot Oj and the distance D2j,i,f between the (mark) robot Oj and a
line connecting the ball-keeping robot Ti and the ball.

Dj,i,f = αD1j,i,f + βD2j,i,f (2)

We then computed the MarkBallj,i,f variable using the similarity equation3,
Eq. (1). (For a MarkBallj,i,f variable equal to 1, Oj marked the ball-keeping
robot Ti at time f .)

3.2 Pass Waiting Action

The pass waiting action was not discussed in [1]. We defined it here for the first
time.

Let Ob be the opponent robot nearest to the ball. It was reasonable to assume
that a candidate robot waiting to receive a pass was the one on the left side of
1 We used THp = 400mm and n = 3 in our experiments.
2 In the equation, the threshold is denoted by THs, and we used THs = 400mm in
our experiments.

3 In the equation, the threshold is denoted by THb, and we used THb = 800mm in
our experiments. Both α and β in Eq. (2) were set to the value 0.5.



Classifying the Strategies of an Opponent Team 113

Fig. 2. Pass waiting action.

Ob, as shown in Fig. 2. Oj in Fig. 2 is one such candidate. The shootable angle θj

could then be computed. If an opponent robot with a shootable angle exceeding a
given threshold were present, the opponent was defined as being in a pass waiting
action. To reduce the influence of noise, the shootable angle was averaged over
some interval in time. The variable WaitPassj,f is given by

WaitPassj,f =

⎧
⎪⎪⎨

⎪⎪⎩

1 if 1
n

f+n−1∑

k=f

θj,k ≥ THw

0 Otherwise,

(3)

where θj,k is the shootable angle of robot Oj at time k. As the threshold value
of THw, we used a threshold of 8◦ (= 0.14 rad), and the length of the interval n
was 3 in our experiments.

3.3 Kick Actions

In RoboCup Soccer, the kick actions as well as the mark actions are important.
We proposed a kick action detection algorithm using the logged data reported
in [1] and its modification in [8]. For the purposes of this paper, we classified
kick actions according to the kick purpose: kick for shoot, kick for pass, or kick
for clear. A kick action that did not belong to any of these three purposes was
also considered. This section describes the kick action detection algorithm.

Definition of symbols

Kick actions = {KickShoot, KickPass, KickClear, KickBall}. KickBall is a
kick action other than one of the first three actions.
Lb: a line segment that begins at the kick point Ps and ends at the last point
Pe, along which the ball’s trajectory is straight. Let

−→
Pb be its vector form.−→

Poi: a vector beginning at the kick point and ending at the opponent’s
robot Oi.
Pgl, Pgr, Pgc: edge points and center point of the teammate goal mouth.
d, DG: a distance between Pe and Pgc and a given threshold.



114 Y. Adachi et al.

The following algorithm predicts a kick action based on the location of the
end point Lb.

/*Kick action classification*/
1 if Lb crosses side line then kick is KickClear
2 else if Lb crosses teammate goal line then kick is KickShoot

3 else if
∣
∣
∣
−→
Poi × −→

Pb

∣
∣
∣ < D1 then kick is KickPass

4 else if Pe is in �PsPglPgr and d < DG then kick is KickShoot
5 otherwise kick is KickBall

In line 3 of the above algorithm,
∣
∣
∣
−→
Poi × −→

Pb

∣
∣
∣ < D1 computes how close Poi is

to the line segment Lb.
Finally, an action other than any of the above 8 actions was expediently

classified as a NA action.

4 Action Decision Algorithm

The previous section described the action detection algorithm. Next, a sequence
of actions was calculated for each opponent robot. Multiple actions could be
predicted simultaneously for a robot. In this case, we selected an action according
to the priority of the action, where the priority of a kick action was the highest,
followed by a pass waiting action, and finally by a mark action. The time series
of logged data was then converted to a time series of actions4 and was finally
converted into a sequence of actions:

AP [n] =

⎡

⎢
⎢
⎣

⎛

⎜
⎜
⎝

actionn1−−→psn1−−→pen1

framen1

⎞

⎟
⎟
⎠ , · · · ,

⎛

⎜
⎜
⎝

actionni−−→psni−−→peni

frameni

⎞

⎟
⎟
⎠ , · · · ,

⎛

⎜
⎜
⎝

actionnt−−→psnt−−→pent

frament

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ , (4)

where AP [n] is a sequence of actions for robot n, −−→psni and −−→peni are the start and
end times of the actionni, respectively, and frameni is the duration of actionni.
The ith element of a sequence of actions is denoted by

AP [n][i] =

⎛

⎜
⎜
⎝

actionni−−→psni−−→peni

frameni

⎞

⎟
⎟
⎠ (5)

A Note on the Time Series of Actions. Any time series of actions usually
contains false actions. Preprocessing is needed to remove such actions.

– An action that only continues over a couple of frames should be classified as
a false action and, as a result, is replaced by the succeeding action. The kick
actions are an exception because short kick actions can occur at the edge of
the field.

4 This series of actions is defined over each time frame.



Classifying the Strategies of an Opponent Team 115

– If an action is broken into two actions by a false action, the two actions should
be unified into a single action.

– If a false action cannot be replaced by any of the 8 actions, the time series is
padded with an NA action.

5 Dissimilarities Between the Action Sequences

We defined a dissimilarity metric of two sequences of actions using Eq. (4). To
do so, we first defined a dissimilarity measure d0 of two actions AP1 [n1][t1] and
AP2 [n2][t2] as follows,

d0(AP1 [n1][t1], AP2 [n2][t2]) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α · frame diff + β · p dist + γ · diff size cost
if actionn1t1 = actionn2t2

α · 2.0 + β · p dist + γ · diff size cost
if (actionn1t1 ∈ Kick, actionn2t2 �∈ Kick) or

(actionn1t1 �∈ Kick, actionn2t2 ∈ Kick)
α · 1.0 + β · p dist + γ · diff size cost
otherwise

(6)

where α, β, γ are the weights, and frame diff, p dist, and diff size cost are
explained in the following paragraph.

The value of frame diff is given by the following equation,

frame diff =
∣
∣
∣
∣

framen1t1

frame playn1t1

− framen2t2

frame playn2t2

∣
∣
∣
∣ , (7)

where frame play is the duration of the sequence of play AP [n]. Frame diff takes
a value between 0 and 1.

The value of p dist is given by the following equation,

p dist = min
{ |(−−−→psn1t1 − −−−→psn2t2)|

FieldLength
, 1.0

}

+ min
{ |(−−−→pen1t1 − −−−→pen2t2)|

FieldLength
, 1.0

}

, (8)

where FieldLength is the length of the side line of the field. P dist takes a value
between 0 and 2.

The diff size cost is given by the following equation,

diff size cost = min
{

1
3

(
long size
short size

− 1.0
)

, 2.0
}

, (9)

where long size = max(framen1t1 , framen2t2) and short size = min(framen1t1 ,
framen2t2). Diff size cost takes a value between 0 and 2.

Next, we defined a dissimilarity d1(Ap1[n1], Ap2[n2]) between two sequences
of actions AP1 [n1] and AP2 [n2] of robots n1 and n2.



116 Y. Adachi et al.

Action sequences do not always have the same length; therefore, we defined
the dissimilarity as the degree of overlap between the shorter sequence of actions
and the longer sequence of actions. The computational algorithm is given below.

Step 1. Let short be the shorter sequence, and long be the longer sequence.
Let the length of short and long be short size and long size, respectively.
Let kick num be the number of kick actions in long. Let i and j be counter
variables with an initial value of 1. Let start j and limit j be the start of the
search pointer and the end of the search pointer, with an initial value of 1.
Initialize d1 to 0.

Step 2. For the ith action in short sequence, decide the search range in the long
sequence as follows,

ls = long size/short size
limit j1 = i + ls

limit j2 = min(start j + ls, long size)
limit j = max(limit j1, limit j2).

(10)

For the ith action in the short sequence, search coincident actions over the
range start j and limit j within the long sequence.

Step 3. If a coincident action is found, compute

d1 = d1 + d0(AP1 [n1][i], AP2 [n2][j]),

and start j = j + 1. If such an action is not found, compute

d1 = d1 + d0(AP1 [n1][i], AP2 [n2][i]).

If i < short size, then i = i + 1, and go to Step 2; otherwise, go to Step 4.
Step 4. Out of kick num kick actions in long sequence, remove actions that

match the kick action in short sequence. Let the number of remaining kick
actions be kick unused. Add kick unused to d1 as an additional cost,

d1 = d1 + kick unused.

Finally, we defined a dissimilarity d2 between plays. A play includes six robot
action sequences, so we considered the correspondence between any 2 sequences.
The dissimilarity d2 was defined by

d2(AP1 , AP2) = min
σ∈S6

{Tr(FPσ)} (11)

F = [fij ] (12)
fij = {d1(AP1 [i], AP2 [j])} , (13)

where Pσ is a permutation matrix and Tr(A) is the trace of matrix A.
The team’s behavior was classified using the group average method [3] to

cluster the sequences of actions under the dissimilarity metric d2.



Classifying the Strategies of an Opponent Team 117

6 Deciding on the Number of Clusters

Determining the number of clusters was important. If the range of the number
of clusters was given in advance, we could use the Davies–Bouldin index [4]. By
contrast, Yasui et al. proposed a method for deciding the number of clusters inde-
pendently of the range [10]. Their method is given by the following procedure.
First, compute

W (K) =
K∑

i=1

∑

Xk∈Ci

∑

Xl∈Ci

d2(APk
, APl

). (14)

This equation computes the sum of the distances for any two elements in a
cluster, summated over all clusters, assuming that the number of clusters is K.
Then, using W (K), compute

W ′(K) = W (K)/W (1), (15)

and
arg max
1≤K≤N

(W ′(K) ≤ h), (16)

where h is a threshold value determined in advance. The number of clusters is
decided by Eq. (16).

7 Experiment: Our Team’s Strategy Classification

In RoboCup 2015, we competed in 4 official games and recorded logged data from
each game. These data were then used in a classification experiment, assuming
that our team was the opponent. In the experiment, we used α = β = γ = 1/3
in Eq. (6) and h = 0.06 in Eq. (16)5.

In this section, we classified our team’s strategies experimentally. The set
play data were used in the experiment. A set play began at ball re-placement
and ended at ball interception or ball-out-of-field. The clustering results obtained
from the 4 games6 are shown in Figs. 3, 4, 5 and 6.

The Rand index [5] was used to evaluate the classification results. We deter-
mined the correct classification for each game, as determined in comparison with
the clustering results obtained by inspection (the human clustering method). The
Rand index for each game is given in Table 1. The Rand index values were high
for each game except for the No. 2 game. In the No. 2 game, the opponent team

5 For the parameter h, we ran the program over the range 0.03− 0.07 and found that
h = 0.06 gave the best results.

6 The number of clusters was not known in advance in this experiment, so the k-
means method could not be used. Ward’s method and the group average clustering
apply under circumstances of an unknown number of clusters. In our experiment,
these approaches gave similar clustering results. The computational cost of the group
average clustering was lower than the cost associated with Ward’s method; therefore,
we used the group average clustering.



118 Y. Adachi et al.

Fig. 3. Dendrogram for game No. 1. Fig. 4. Dendrogram for game No. 2.

Fig. 5. Dendrogram for game No. 3. Fig. 6. Dendrogram for game No. 4.

Table 1. Rand index (RoboDragons)

Game No. 1 No. 2 No. 3 No. 4

Rand index 0.892 0.750 0.924 0.877

Table 2. Rand index (opponents).

Game No. 1 No. 2 No. 3 No. 4

Rand index 0.901 0.889 0.874 0.840

malfunctioned so that the detection of mark actions did not work well, resulting
in a lower Rand index. In other games, a cluster identified by human clustering
was found to be divided into two clusters by the computer clustering method.
This lowered the Rand index slightly; however, from a practical perspective, this
was not a serious problem.

8 Experiment: Opponent Team Classification

The strategies of each opponent team in the RoboDragons’ official games were
classified. Figures 7, 8, 9 and 10 provide the classification results, and Table 2
lists the Rand indices. Table 2 reveals that the Rand indices assumed values
between 0.840 and 0.901. For comparison, Erdogan et al. obtained values between
0.87 and 0.96 by using the trajectory data. Our experimental results revealed
that high Rand index values similar to Erdogan’s results were obtained from
the action sequence data. This experiment revealed the cluster division problem
discussed in previous sections. Future work to improve this problem is necessary.



Classifying the Strategies of an Opponent Team 119

Fig. 7. Dendrogram for game No. 1
(opponent).

Fig. 8. Dendrogram for game No. 2
(opponent).

Fig. 9. Dendrogram for game No. 3
(opponent).

Fig. 10. Dendrogram for game No. 4
(opponent).

9 Computational Time

The total clustering analysis computational time was measured for game No. 4,
in which 35 set plays were executed. This calculation included the computational
time associated with the preprocessing of a time series of actions, the creation of
a distance matrix, and the clustering using the group average method. We got
an average computational time of 0.67 ms and a maximal computational time of
1.82 ms, which show that the real-time computation of clustering is possible.

10 Concluding Remarks

We have proposed a classification method based on an opponent’s actions in
this paper. A sequence of actions was derived from a time series of data logged
from an SSL game. A sequence of actions includes less data than the logged
data, permitting faster computation. An evaluation of this method using the
Rand index revealed that clustering using the proposed method provided a good
classification of an opponent team’s behaviors (strategies, in most cases). The
computational time was so small that real-time computation was possible using
this method.



120 Y. Adachi et al.

Future work will focus on refinements of the proposed method, extensions to
any scene during play, the generation of a counter action using the logged data
of past games, and implementation to our RoboDragons system.

References

1. Asano, K., Murakami, K., Naruse, T.: Detection of basic behaviors in logged data in
RoboCup small size league. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C.
(eds.) RoboCup 2008. LNCS (LNAI), vol. 5399, pp. 439–450. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02921-9 38

2. Erdogan, C., Veloso, M.: Action selection via learning behavior patterns in multi-
robot domains. In: Proceedings of International Joint Conference on Artificial Intel-
ligence 2011, pp. 192–197 (2011)

3. Everitt, B.S., et al.: Cluster Analysis, 5th edn. Wiley, Hoboken (2011)
4. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern

Anal. Mach. Intell. PAMI 1(2), 224–227 (1979)
5. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am.

Stat. Assoc. (Am. Stat. Assoc.) 66(336), 846–850 (1971)
6. Trevizan, F.W., Veloso, M.M.: Learning opponent’s strategies in the RoboCup

small size league. In: Proceedings of AAMAS 2010 Workshop on Agents in Real-
Time and Dynamic Environments (2010)

7. Visser, U., Weland, H.-G.: Using online learning to analyze the opponent’s behav-
ior. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS, vol.
2752, pp. 78–93. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45135-8 7

8. Yasui, K., et al.: A new detection method of kick actions from logged data of SSL
games. JSAI Technical report SIG-Challenge-B201-6 (2012). (in Japanese)

9. Yasui, K., Kobayashi, K., Murakami, K., Naruse, T.: Analyzing and learning an
opponent’s strategies in the RoboCup small size league. In: Behnke, S., Veloso,
M., Visser, A., Xiong, R. (eds.) RoboCup 2013. LNCS, vol. 8371, pp. 159–170.
Springer, Heidelberg (2014). doi:10.1007/978-3-662-44468-9 15

10. Yasui, K., Ito, M., Naruse, T.: Classifying an opponent’s behaviors for real-time
learning in the RoboCup small size league. IEICE Trans. Info. Syst. J97–D(8),
1297–1306 (2014). (in Japanese)

http://dx.doi.org/10.1007/978-3-642-02921-9_38
http://dx.doi.org/10.1007/978-3-540-45135-8_7
http://dx.doi.org/10.1007/978-3-662-44468-9_15

	Classifying the Strategies of an Opponent Team Based on a Sequence of Actions in the RoboCup SSL
	1 Introduction
	2 Related Work
	3 Robot Action Detection
	3.1 Mark Actions
	3.2 Pass Waiting Action
	3.3 Kick Actions

	4 Action Decision Algorithm
	5 Dissimilarities Between the Action Sequences
	6 Deciding on the Number of Clusters
	7 Experiment: Our Team's Strategy Classification
	8 Experiment: Opponent Team Classification
	9 Computational Time
	10 Concluding Remarks
	References




