Skip to main content

Plant Nanobionics a Novel Approach to Overcome the Environmental Challenges

  • Chapter

Abstract

Plant nanobionics is a new field of bioengineering that inserts nanoparticles into the cells and chloroplasts of living plants, which then alter or amplify the functioning of the plant tissue or organelle. The broader vision is to create a wide array of wild-type plants capable of imaging objects in their environment, self-powering themselves as light sources, infrared communication devices, and also function as self-powered ground water sensors. Plants are uniquely suited to perform such roles due to their ability to generate energy from sunlight and photosynthesis. In the field of nanobiotechnology, researchers want to develop bionic plants that could have better photosynthesis efficiency and biochemical sensing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baiazidi-Aghdam MT, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well watered and drought stress conditions. Braz J Bot 39:139–146

    Article  Google Scholar 

  • Blankenship RE et al (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332:805–809

    Article  CAS  Google Scholar 

  • Di Giacomo R, Daraio C, Maresca B (2015) Plant nanobionic materials with a giant temperature response mediated by pectin-Ca2+. Proc Natl Acad Sci U S A 112(15):4541–4545. doi:10.1073/pnas

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebrahimi N, Mansoori GA (2014) Reliability for drug targeting in cancer treatment through nanotechnology. Int J Med Nano Res 1(1). ISSN 2378-3664

    Google Scholar 

  • Ghorbanpour M (2015) Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Ind J Plant Physiol 20(3):249–256

    Article  Google Scholar 

  • Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 94:749–759

    Article  CAS  Google Scholar 

  • Ghorbanpour M, Hatami M (2014) Spray treatment with silver nanoparticles plus thidiazuron increases anti-oxidant enzyme activities and reduces petal and leaf abscission in four cultivars of geranium (Pelargonium zonale) during storage in the dark. J Hortic Sci Biotechnol 89(6):712–718

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Reuel NF, Hilmer AJ, Sen F, Brew JA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater. doi:10.1038/nmat3890

    Article  PubMed  Google Scholar 

  • Han JH et al (2010) Exciton antennas and concentrators from core-shell and corrugated carbon nanotube filaments of homogeneous composition. Nat Mater 9:833–839

    Article  CAS  Google Scholar 

  • Hatami M, Ghorbanpour M, Salehiarjomand H (2014) Nano-anatase TiO2 modulates the germination behavior and seedling vigority of the five commercially important medicinal and aromatic plants. J Biol Environ Sci 8(22):53–59

    Google Scholar 

  • Hatami M, Kariman K, Ghorbanpour M (2016) Engineered nanomaterial-mediated changes in the metabolism of terrestrial plants. Sci Total Environ 571:275–291

    Article  CAS  Google Scholar 

  • Hatami M, Hadian J, Ghorbanpour M (2017) Mechanisms underlying toxicity and stimulatory role of single-walled carbon nanotubes in Hyoscyamus niger during drought stress simulated by polyethylene glycol. J Hazard Mater 324:306–320

    Article  CAS  Google Scholar 

  • Mansoori GA (2017) An introduction to nanoscience and nanotechnology. In: Ghorbanpour et al (eds) Nanoscience and plant–soil systems. Soil biology, vol 48. Springer International Publishing AG. doi:10.1007/978-3-319-46835-8_13

  • Mansoori GA et al (2007) Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. World Rev Sci Technol Sustain Dev 4(2/3):226–257

    Article  Google Scholar 

  • Mansoori GA, Brandenburg KS, Shakeri-Zadeh A (2010) A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers 2(4):1911–1928

    Article  CAS  Google Scholar 

  • Nazem A, Mansoori GA (2008) Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimer’s Dis 13(2):199–223

    Article  CAS  Google Scholar 

  • Nazem A, Mansoori GA (2014) Nanotechnology building blocks for intervention with Alzheimer’s disease pathology: implications in disease modifying strategies. J Bioanal Biomed 6(2):009–014

    Google Scholar 

  • Noji T, Kamidaki C, Kawakami K, Shen JR, Kajino T, Fukushima Y, Sekitoh T, Itoh S (2011) Photosynthetic oxygen evolution in mesoporous silica material: adsorption of photosystem II reaction center complex into 23 nm nanopores in SBA. Langmuir 27(2):705–713

    Article  CAS  Google Scholar 

  • Scholes DG, Sargent HE (2014) Boosting plant biology. Nat Mater 13:329–331. PMID 24651425. doi:10.1038/nmat3926

    Article  CAS  PubMed  Google Scholar 

  • Service RF (2003) American Chemical Society meeting: nanomaterials show signs of toxicity. Science 300:243

    Article  Google Scholar 

  • Siddiqui M, Al-Whaibi M, Firoz M, Al-Khaishany M (2015) Role of nanoparticles in plants. In: Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer

    Google Scholar 

  • Wong MH, Giraldo JP, Kwak SY, Koman VB, Sinclair R, Lew TT, Bisker G, Liu P, Strano MS (2016) Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat Mater 16(2):264–272. doi:10.1038/nmat4771

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Mansoori GA (2010) Self-assembly of diamondoid molecules and derivatives (MD simulations and DFT calculations). Int J Mol Sci 11(1):288–303. doi:10.3390/ijms11010288

  • Zhang J, Boghossian AA, Barone PW, Rwei A, Kim JH, Lin D, Heller DA et al (2010) Single molecule detection of nitric oxide enabled by d(AT)(15) DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. J Am Chem Soc 20:567–581

    Article  CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Ghorbanpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ghorbanpour, M., Fahimirad, S. (2017). Plant Nanobionics a Novel Approach to Overcome the Environmental Challenges. In: Ghorbanpour, M., Varma, A. (eds) Medicinal Plants and Environmental Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-68717-9_14

Download citation

Publish with us

Policies and ethics