Skip to main content

A Tractable Variant of the Single Cut or Join Distance with Duplicated Genes

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2017)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 10562))

Included in the following conference series:

Abstract

In this work, we introduce a variant of the Single Cut or Join distance that accounts for duplicated genes, in the context of directed evolution from an ancestral genome to a descendant genome where orthology relations between ancestral genes and their descendant are known. Our model includes two duplication mechanisms: single-gene tandem duplication and creation of single-gene circular chromosomes. We prove that in this model, computing the distance and a parsimonious evolutionary scenario in terms of SCJ and single-gene duplication events can be done in linear time. Simulations show that the inferred number of cuts and joins scales linearly with the true number of such events even at high rates of genome rearrangements and segmental duplications. We also show that the median problem is tractable for this distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the generic term “gene” here to identify a genomic locus.

  2. 2.

    https://github.com/acme92/SCJTDFD.

References

  1. Fertin, G., Labarre, A., Rusu, I., Tannier, E., Vialette, S.: Combinatorics of Genome Rearrangements. MIT Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Wang, D., Li, D., Ning, K., Wang, L.: Core-genome scaffold comparison reveals the prevalence that inversion events are associated with pairs of inverted repeats. BMC Genom. 18(1), 268 (2017)

    Article  Google Scholar 

  3. Neafsey, D., Waterhouse, R., et al.: Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes. Science 347(6217), 1258522 (2015)

    Article  Google Scholar 

  4. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). In: 27th Annual ACM Symposium on the Theory of Computing (STOC 1995), pp. 178–189 (1995)

    Google Scholar 

  5. Feijão, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(5), 1318–1329 (2011)

    Article  Google Scholar 

  6. da Silva, P., Machado, R., Dantas, S., Braga, M.: DCJ-indel and DCJ-substitution distances with distinct operation costs. Algorithms Mol. Biol. 8(1), 21 (2013)

    Article  Google Scholar 

  7. Braga, M., Willing, E., Stoye, J.: Double cut and join with insertions and deletions. J. Comput. Biol. 18(9), 1167–1184 (2011)

    Article  MathSciNet  Google Scholar 

  8. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under various different genomic distances. BMC Bioinform. 10, 120 (2009)

    Article  Google Scholar 

  9. Shao, M., Lin, Y., Moret, B.: An exact algorithm to compute the double-cut-and-join distance for genomes with duplicate genes. J. Comput. Biol. 22(5), 425–435 (2015)

    Article  MathSciNet  Google Scholar 

  10. Compeau, P.E.C.: DCJ-Indel sorting revisited. Algorithms Mol. Biol. 8, 6 (2013)

    Article  Google Scholar 

  11. Rubert, D., Feijão, P., Braga, M., Stoye, J., Martinez, F.: Approximating the DCJ distance of balanced genomes in linear time. Algorithms Mol. Biol. 12, 3 (2017)

    Article  Google Scholar 

  12. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment and Evolution of Gene Families, vol. 1, pp. 207–211. Springer, Dordrecht (2000). doi:10.1007/978-94-011-4309-7_19

    Chapter  Google Scholar 

  13. Blin, G., Chauve, C., Fertin, G.: The breakpoint distance for signed sequences. In: Algorithms and Computational Methods for Biochemical and Evolutionary Networks (CompBioNets 2004). Text in Algorithms, vol. 3, pp. 3–16 (2004)

    Google Scholar 

  14. Angibaud, S., Fertin, G., Rusu, I., Thevenin, A., Vialette, S.: On the approximability of comparing genomes with duplicates. J. Graph Algorithms Appl. 13(1), 19–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Blin, G., Fertin, G., Sikora, F., Vialette, S.: The ExemplarBreakpointDistance for non-trivial genomes cannot be approximated. In: Das, S., Uehara, R. (eds.) WALCOM 2009. LNCS, vol. 5431, pp. 357–368. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00202-1_31

    Chapter  Google Scholar 

  16. Shao, M., Moret, B.: A fast and exact algorithm for the exemplar breakpoint distance. J. Comput. Biol. 23(5), 337–346 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shao, M., Moret, B.: On computing breakpoint distances for genomes with duplicate genes. J. Comput. Biol. (2016, ahead of print). doi:10.1089/cmb.2016.0149

  18. Wei, Z., Zhu, D., Wang, L.: A dynamic programming algorithm for (1,2)-exemplar breakpoint distance. J. Comput. Biol. 22(7), 666–676 (2014)

    Article  MathSciNet  Google Scholar 

  19. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: Efficient tools for computing the number of breakpoints and the number of adjacencies between two genomes with duplicate genes. J. Comput. Biol. 15(8), 1093–1115 (2008)

    Article  MathSciNet  Google Scholar 

  20. Zeira, R., Shamir, R.: Sorting by cuts, joins, and whole chromosome duplications. J. Comput. Biol. 24(2), 127–137 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sankoff, D., El-Mabrouk, N.: Duplication, rearrangement and reconciliation. In: Sankoff, D., Nadeau, J.H. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics Map, Alignment and Evolution of Gene Families, vol. 1, pp. 537–550. Springer, Dordrecht (2000). doi:10.1007/978-94-011-4309-7_46

    Chapter  Google Scholar 

  22. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–917 (1999)

    Article  Google Scholar 

  23. Chauve, C., El-Mabrouk, N., Guéguen, L., Semeria, M., Tannier, E.: Duplication, rearrangement and reconciliation a follow-up 13 years later. In: Chauve, C., El-Mabrouk, N., Tannier, E. (eds.) Models and Algorithms for Genome Evolution, vol. 19, pp. 47–62. Springer, London (2013). doi:10.1007/978-1-4471-5298-9_4

    Chapter  Google Scholar 

  24. Duchemin, W., Anselmetti, Y., Patterson, M., Ponty, Y., Bérard, S., Chauve, C., Scornavacca, C., Daubin, V., Tannier, E.: DeCoSTAR: reconstructing the ancestral organization of genes or genomes using reconciled phylogenies. Genome Biol. Evol. 9(5), 1312–1319 (2017)

    Article  Google Scholar 

  25. Plummer, M.D., Lovász, L.: Matching Theory. Elsevier, Amsterdam (1986)

    MATH  Google Scholar 

  26. Luhmann N., Lafond M., Thevenin A., Ouangraoua A., Wittler R., Chauve C.: The SCJ small parsimony problem for weighted gene adjacencies. IEEE/ACM Trans. Comput. Biol. Bioinform. (2017, ahead of print). doi:10.1109/TCBB.2017.2661761

  27. Miklós, I., Kiss, S., Tannier, E.: Counting and sampling SCJ small parsimony solutions. Theoret. Comput. Sci. 552, 83–98 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Biller, P., Guéguen, L., Tannier, E.: Moments of genome evolution by Double Cut-and-Join. BMC Bioinform. 16(Suppl 14), S7 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

CC is supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada. PF is supported by the Genome Canada grant PathoGiST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cedric Chauve .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Feijão, P., Mane, A., Chauve, C. (2017). A Tractable Variant of the Single Cut or Join Distance with Duplicated Genes. In: Meidanis, J., Nakhleh, L. (eds) Comparative Genomics. RECOMB-CG 2017. Lecture Notes in Computer Science(), vol 10562. Springer, Cham. https://doi.org/10.1007/978-3-319-67979-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67979-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67978-5

  • Online ISBN: 978-3-319-67979-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics