Skip to main content

Simulation Analysis of the Homologous Recombination Repair Distribution over the Cell Cycle

  • Conference paper
  • First Online:
  • 703 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 647))

Abstract

Double-strand breaks (DSBs) are repaired with the use of several distinct mechanisms. The most important of them are non-homologous end joining (NHEJ) and homologous recombination (HR). These mechanisms have different requirements and are characterized by different repair kinetics. Moreover, HR is restricted to S and G2 phases of the cell cycle, however it is still not clear how percentage of DSBs repaired by HR changes over the cell cycle. In this study we are trying to find the most suitable function describing participation of HR among other types of repair. Using our mathematical model, we simulate the response of average cell treated with ionizing radiation (IR) during G1 phase of the cell cycle. Our results show that the exact shape of the function describing percentage of HR is not as important as the fact that this function should be gradually increasing until at least half of the S phase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jonak, K., Kurpas, M., Szoltysek, K., Janus, P., Abramowicz, A., Puszynski, K.: A novel mathematical model of ATM/p53/NF-kB pathways points to the importance of the DDR switch-off mechanisms. BMC Syst. Biol. 10(1), 75 (2016)

    Google Scholar 

  2. Hollstein, M., Sidransky, D., Vogelstein, B., Harris, C.: P53 mutations in human cancers. Science 253(5015), 49–54 (1991)

    Article  Google Scholar 

  3. Ciccia, A., Elledge, S.J.: The DNA damage response: making it safe to play with knives. Mol. Cell 40, 179–204 (2010)

    Article  Google Scholar 

  4. Schafer, K.A.: The cell cycle: a review. Vet. Pathol. 35, 461–478 (1998)

    Article  Google Scholar 

  5. Bartek, J., Lukas, C., Lukas, J.: Checking on DNA damage in S phase. Nat. Rev. Mol. Cell Biol. 5, 792–804 (2004)

    Article  Google Scholar 

  6. Branzei, D., Foiani, M.: Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9(4), 297–308 (2008)

    Article  Google Scholar 

  7. Iliakis, G., Wang, H., Perrault, A., Boecker, W., Rosidi, B., Windhofer F., et al.: Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet. Genome Res. 104, 14–20 (2004)

    Google Scholar 

  8. Mladenov, E., Magin, S., Soni, A., Iliakis, G.: DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. Semin. Cancer Biol. 37–38, 51–64 (2016)

    Article  Google Scholar 

  9. Ceccaldi, R., Rondinelli, B., D’Andrea, A.: Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 26(1), 52–64 (2016)

    Article  Google Scholar 

  10. Jazayeri, A., Falck, J., Lukas, C., Bartek, J., Smith, G.: ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat. Cell Biol. 8(1), 37–45 (2006)

    Article  Google Scholar 

  11. Karanam, K., Kafri, R., Loewer, A., Lahav, G.: Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. Mol. Cell 47, 320–329 (2012)

    Article  Google Scholar 

  12. Zhang, H.P., Liu, F., Wang, W.: Two-phase dynamics of p53 in the DNA damage response. PNAS 108(22), 8990–8995 (2011)

    Article  Google Scholar 

  13. Sun, T., Yang, W., Liu, J., Shen, P.: Modeling the basal dynamics of P53 system. Plos One 6(11), e27882 (2011)

    Google Scholar 

  14. Batchelor, E., Loewer, A., Mock, C., Lahav, G.: Stimulus-dependent dynamics of p53 in single cells. Mol. Syst. Biol. 7, 488 (2011)

    Google Scholar 

  15. Kurpas, M., Jonak, K., Puszynski, K.: The resection mechanism promotes cell survival after exposure to IR. Adv. Intell. Syst. Comput. 391, 7472–7477 (2015)

    Google Scholar 

  16. Rodriguez, A., Sosa, D., Torres, L., Molina, B., Frias, S., Mendoza, L.: A Boolean network model of the FA/BRCA pathway. Bioinformatics 28(6), 858–866 (2012)

    Article  Google Scholar 

  17. Ferrel Jr., J.E., Tsai, T.Y.C., Yang, Q.: Modeling of cell cycle: why do certan circuits oscillate? Cell 144, 874–885 (2011)

    Article  Google Scholar 

  18. Iwamoto, K., Hamada, H., Eguchi, Y., Okamoto, M.: Mathematical modeling of cell cycle regulation in response to DNA damage: exploring mechsnisms of cell-fate determination. BioSystems 103, 384–391 (2011)

    Article  Google Scholar 

  19. Orthwein, A., Fradet-Turcotte, A., Noordermeer, S., Canny, M., Brun, C., Strecker, J., et al.: Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science 344, 189–193 (2014)

    Google Scholar 

  20. Fallica, B., Maffei, J., Villa, S., Makin, G., Zaman, M.: Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels. PLoS One 7(10), e48024 (2012)

    Google Scholar 

  21. Meng, L., Lin, T., Tsai, R.: Nucleoplasmic mobilization of nucleostemin stabilizes MDM2 and promotes G2-M progression and cell survival. J. Cell Sci. 121(24), 4037–4046 (2008)

    Article  Google Scholar 

  22. Kalousi, A., Hoffbeck, A.S., Selemenakis, P., Pinder, J., Savage, K., Khanna, K., Brino, L., Dellaire, G., Gorgoulis, V., Soutoglou, E.: The nuclear oncogene SET controls DNA repair by KAP1 and HP1 retention to chromatin. Cell Repl. 11, 149–163 (2015)

    Article  Google Scholar 

  23. Karimian, A., Ahmadi, Y., Yousefi, B.: Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair 42, 63–71 (2016)

    Article  Google Scholar 

  24. Chen, X., Bargonetti, J., Prives, C.: p53, through p21 (WAF1/CIP1), induces cyclin Dl synthesis. Cancer Res. 55, 4257–4263 (1995)

    Google Scholar 

  25. Ira, G., Pellicioli, A., Balijja, A., Wang, X., Fiorani, S., Carotenuto, W., et al.: DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431(7011), 1011–1017 (2004)

    Google Scholar 

  26. Rothkamm, K., Lobrich, M.: Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl. Acad. Sci. USA 100(9), 5057–5062 (2003)

    Article  Google Scholar 

  27. Takata, M., Sasaki, M., Sonoda, E., Morrison, C., Hashimoto, M., Utsumi, H., et al.: Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17(18), 5497–5508 (1998)

    Google Scholar 

  28. Helleday, T., Loc, J., van Gent, D., Engelward, B.: DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair 6, 923–935 (2007)

    Article  Google Scholar 

  29. Deckbar, D., Stiff, T., Koch, B., Reis, C., Lobrich, M., Jeggo, P.: The limitations of the G1-S checkpoint. Cancer Res. 70(11), 4412–4421 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Polish National Center for Science granted by decision number DEC-2013/11/B/ST7/01713 (K.P.) and the Polish BKM fund supporting young researchers (M.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Kurpas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Kurpas, M., Puszynski, K. (2018). Simulation Analysis of the Homologous Recombination Repair Distribution over the Cell Cycle. In: Augustyniak, P., Maniewski, R., Tadeusiewicz, R. (eds) Recent Developments and Achievements in Biocybernetics and Biomedical Engineering. PCBBE 2017. Advances in Intelligent Systems and Computing, vol 647. Springer, Cham. https://doi.org/10.1007/978-3-319-66905-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66905-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66904-5

  • Online ISBN: 978-3-319-66905-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics