Skip to main content

Quantification of Functional Heterogeneities in Tumors by PET Imaging

  • Chapter
  • First Online:
Quantification of Biophysical Parameters in Medical Imaging

Abstract

Among the many attributes of molecular imaging methods is generation of image data that can be subjected to a number of different analytical approaches to characterize tumor biology, report treatment effect, and predict risk for poor outcome. Using both semi-quantitative and quantitative image data, these methods can be applied to calculate tumor spatial heterogeneity in biologically specific imaging agent uptake and utilization. Tumor imaging heterogeneity characteristics represent the intra- and intertumoral differences in tumor genetics and biology and can be used to understand tumor behavior. Several image heterogeneity analysis methods have been validated in clinical image datasets and show strong correlations with patient outcome. In the near future, these types of measures will become a part of clinical practice in cancer image interpretation and tumor molecular characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dienstmann R, Vermeulen L, Guinney J, Kopetz S, Tejpar S, Tabernero J. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nat Rev Cancer. 2017;17:79–92.

    Article  CAS  PubMed  Google Scholar 

  3. De Palma M, Hanahan D. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities. Mol Oncol. 2012;6:111–27.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Donovan MJ, Cordon-Cardo C. Implementation of a precision pathology program focused on oncology-based prognostic and predictive outcomes. Mol Diagn Ther. 2016;21(2):115–23.

    Article  Google Scholar 

  5. Surrey LF, Luo M, Chang F, Li MM. The genomic era of clinical oncology: integrated genomic analysis for precision cancer care. Cytogenet Genome Res. 2016;150(3–4):162–75.

    Article  PubMed  Google Scholar 

  6. Horn H, Staiger AM, Ott G. New targeted therapies for malignant lymphoma based on molecular heterogeneity. Expert Rev Hematol. 2017;10:39–51.

    Article  CAS  PubMed  Google Scholar 

  7. Punt CJ, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol. 2016;14(4):235–46.

    Article  PubMed  Google Scholar 

  8. Serie DJ, Joseph RW, Cheville JC, Ho TH, Parasramka M, Hilton T, Thompson RH, Leibovich BC, Parker AS, Eckel-Passow JE. Clear cell type A and B molecular subtypes in metastatic clear cell renal cell carcinoma: tumor heterogeneity and aggressiveness. Eur Urol. 2017;71:979–85.

    Article  CAS  PubMed  Google Scholar 

  9. Horak P, Frohling S, Glimm H. Integrating next-generation sequencing into clinical oncology: strategies, promises and pitfalls. ESMO Open. 2016;1:E000094.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Simone G. Stochastic phenotypic interconversion in tumors can generate heterogeneity. Eur Biophys J. 2016;46(2):189–94.

    Article  PubMed  Google Scholar 

  11. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48:441–6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Von Forstner C, Egberts JH, Ammerpohl O, Niedzielska D, Buchert R, Mikecz P, Schumacher U, Peldschus K, Adam G, Pilarsky C, Grutzmann R, Kalthoff H, Henze E, Brenner W. Gene expression patterns and tumor uptake of 18F-FDG, 18F-FLT, and 18F-FEC in PET/MRI of an orthotopic mouse xenotransplantation model of pancreatic cancer. J Nucl Med. 2008;49:1362–70.

    Article  Google Scholar 

  13. Langen KJ, Hamacher K, Weckesser M, Floeth F, Stoffels G, Bauer D, Coenen HH, Pauleit D. O-(2-[18F]fluoroethyl)-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2006;33:287–94.

    Article  CAS  PubMed  Google Scholar 

  14. Grunbaum Z, Freauff SJ, Krohn KA, Wilbur DS, Magee S, Rasey JS. Synthesis and characterization of congeners of misonidazole for imaging hypoxia. J Nucl Med. 1987;28:68–75.

    CAS  PubMed  Google Scholar 

  15. Rajendran JG, Krohn KA. Imaging hypoxia and angiogenesis in tumors. Radiol Clin N Am. 2005;43:169–87.

    Article  PubMed  Google Scholar 

  16. Hofmann M, Maecke H, Borner R, Weckesser E, Schoffski P, Oei L, Schumacher J, Henze M, Heppeler A, Meyer J, Knapp H. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28:1751–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kowalski J, Henze M, Schuhmacher J, Macke HR, Hofmann M, Haberkorn U. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol. 2003;5:42–8.

    Article  PubMed  Google Scholar 

  18. Prasad V, Brenner W, Modlin IM. How smart is peptide receptor radionuclide therapy of neuroendocrine tumors especially in the salvage setting? The clinician’s perspective. Eur J Nucl Med Mol Imaging. 2014;41:202–4.

    Article  PubMed  Google Scholar 

  19. Prasad V, Steffen IG, Pavel M, Denecke T, Tischer E, Apostolopoulou K, Pascher A, Arsenic R, Brenner W. Somatostatin receptor PET/CT in restaging of typical and atypical lung carcinoids. EJNMMI Res. 2015;5:53.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Prasad V, Tiling N, Denecke T, Brenner W, Plockinger U. Potential role of (68)Ga-DOTATOC PET/CT in screening for pancreatic neuroendocrine tumour in patients with von Hippel-Lindau disease. Eur J Nucl Med Mol Imaging. 2016;43:2014–20.

    Article  CAS  PubMed  Google Scholar 

  21. Afshar-Oromieh A, Haberkorn U, Eder M, Eisenhut M, Zechmann CM. [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging. 2012;39:1085–6.

    Article  CAS  PubMed  Google Scholar 

  22. Kratochwil C, Afshar-Oromieh A, Kopka K, Haberkorn U, Giesel FL. Current status of prostate-specific membrane antigen targeting in nuclear medicine: clinical translation of chelator containing prostate-specific membrane antigen ligands into diagnostics and therapy for prostate cancer. Semin Nucl Med. 2016;46:405–18.

    Article  PubMed  Google Scholar 

  23. Prasad V, Steffen IG, Diederichs G, Makowski MR, Wust P, Brenner W. Biodistribution of [(68)Ga]PSMA-HBED-CC in patients with prostate cancer: characterization of uptake in normal organs and tumour lesions. Mol Imaging Biol. 2016;18:428–36.

    Article  CAS  PubMed  Google Scholar 

  24. Apostolova I, Hofheinz F, Buchert R, Steffen IG, Michel R, Rosner C, Prasad V, Kohler C, Derlin T, Brenner W, Marnitz S. Combined measurement of tumor perfusion and glucose metabolism for improved tumor characterization in advanced cervical carcinoma. A PET/CT pilot study using [15O]water and [18F]fluorodeoxyglucose. Strahlenther Onkol. 2014;190:575–81.

    Article  CAS  PubMed  Google Scholar 

  25. Schreiter NF, Maurer M, Pape UF, Hamm B, Brenner W, Froeling V. Detection of neuroendocrine tumours in the small intestines using contrast-enhanced multiphase Ga-68 DOTATOC PET/CT: the potential role of arterial hyperperfusion. Radiol Oncol. 2014;48:120–6.

    PubMed  PubMed Central  Google Scholar 

  26. Brenner W, Vernon C, Muzi M, Mankoff DA, Link JM, Conrad EU, Eary JF. Comparison of different quantitative approaches to 18F-fluoride PET scans. J Nucl Med. 2004;45:1493–500.

    CAS  PubMed  Google Scholar 

  27. Weber WA, Schwaiger M, Avril N. Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl Med Biol. 2000;27:683–7.

    Article  CAS  PubMed  Google Scholar 

  28. Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann Neurol. 1979;6:371–88.

    Article  CAS  PubMed  Google Scholar 

  29. Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M, Ido T, Casella V, Fowler J, Gallagher B, Hoffman E, Alavi A, Sokoloff L. Measurement of local cerebral glucose metabolism in man with 18F-2-fluoro-2-deoxy-D-glucose. Acta Neurol Scand Suppl. 1977;64:190–1.

    CAS  PubMed  Google Scholar 

  30. Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27:647–55.

    Article  CAS  PubMed  Google Scholar 

  31. Gjedde A. Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res. 1982;257:237–74.

    Article  CAS  PubMed  Google Scholar 

  32. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.

    Article  CAS  PubMed  Google Scholar 

  33. Lucignani G, Paganelli G, Bombardieri E. The use of standardized uptake values for assessing FDG uptake with pet in oncology: a clinical perspective. Nucl Med Commun. 2004;25:651–6.

    Article  CAS  PubMed  Google Scholar 

  34. O JH, Lodge MA, Wahl RL. Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology. 2016;280:576–84.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122s–50s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. O’connor JP. Cancer heterogeneity and imaging. Semin Cell Dev Biol. 2016;64:48–57.

    Article  PubMed  Google Scholar 

  37. O’sullivan F, Roy S, Eary J. A statistical measure of tissue heterogeneity with application to 3D PET sarcoma data. Biostatistics. 2003;4:433–48.

    Article  PubMed  Google Scholar 

  38. Eary JF, O’sullivan F, O’sullivan J, Conrad EU. Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med. 2008;49:1973–9.

    Article  PubMed  PubMed Central  Google Scholar 

  39. O’sullivan F, Roy S, O’sullivan J, Vernon C, Eary J. Incorporation of tumor shape into an assessment of spatial heterogeneity for human sarcomas imaged with FDG-PET. Biostatistics. 2005;6:293–301.

    Article  PubMed  Google Scholar 

  40. O’sullivan F, Wolsztynski E, O’sullivan J, Richards T, Conrad EU, Eary JF. A statistical modeling approach to the analysis of spatial patterns of FDG-PET uptake in human sarcoma. IEEE Trans Med Imaging. 2011;30:2059–71.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vernon CB, Eary JF, Rubin BP, Conrad EU 3rd, Schuetze S. FDG PET imaging guided re-evaluation of histopathologic response in a patient with high-grade sarcoma. Skelet Radiol. 2003;32:139–42.

    Article  Google Scholar 

  42. Yan J, Jones RL, Lewis DH, Eary JF. Impact of (18)F-FDG PET/CT imaging in therapeutic decisions for malignant solitary fibrous tumor of the pelvis. Clin Nucl Med. 2013;38:453–5.

    Article  PubMed  Google Scholar 

  43. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40.

    Article  PubMed  Google Scholar 

  44. Gao X, Chu C, Li Y, Lu P, Wang W, Liu W, Yu L. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer. Eur J Radiol. 2015;84:312–7.

    Article  PubMed  Google Scholar 

  45. Lartizien C, Rogez M, Niaf E, Ricard F. Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information. IEEE J Biomed Health Inform. 2014;18:946–55.

    Article  CAS  PubMed  Google Scholar 

  46. Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471–96.

    Article  CAS  PubMed  Google Scholar 

  47. Xu R, Kido S, Suga K, Hirano Y, Tachibana R, Muramatsu K, Chagawa K, Tanaka S. Texture analysis on (18)F-FDG PET/CT images to differentiate malignant and benign bone and soft-tissue lesions. Ann Nucl Med. 2014;28:926–35.

    Article  CAS  PubMed  Google Scholar 

  48. Hatt M, Tixier F, Pierce L, Kinahan PE, Le Rest CC, Visvikis D. Characterization of PET/CT images using texture analysis: the past, the present... any future? Eur J Nucl Med Mol Imaging. 2017;44:151–65.

    Article  PubMed  Google Scholar 

  49. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, Corcos L, Visvikis D. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Apostolova I, Steffen IG, Wedel F, Lougovski A, Marnitz S, Derlin T, Amthauer H, Buchert R, Hofheinz F, Brenner W. Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer. Eur Radiol. 2014;24:2077–87.

    Article  PubMed  Google Scholar 

  51. Van Den Bent MJ, Snijders TJ, Bromberg JE. Current treatment of low grade gliomas. Memo. 2012;5:223–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Torigian DA, Lopez RF, Alapati S, Bodapati G, Hofheinz F, Van Den Hoff J, Saboury B, Alavi A. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med. 2011;14:8–14.

    PubMed  Google Scholar 

  53. Hofheinz F, Potzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, Van Den Hoff J. Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin. 2012;51:9–16.

    Article  CAS  PubMed  Google Scholar 

  54. Hofheinz F, Lougovski A, Zophel K, Hentschel M, Steffen IG, Apostolova I, Wedel F, Buchert R, Baumann M, Brenner W, Kotzerke J, Van Den Hoff J. Increased evidence for the prognostic value of primary tumor asphericity in pretherapeutic FDG PET for risk stratification in patients with head and neck cancer. Eur J Nucl Med Mol Imaging. 2015;42:429–37.

    Article  PubMed  Google Scholar 

  55. Apostolova I, Rogasch J, Buchert R, Wertzel H, Achenbach HJ, Schreiber J, Riedel S, Furth C, Lougovski A, Schramm G, Hofheinz F, Amthauer H, Steffen IG. Quantitative assessment of the asphericity of pretherapeutic FDG uptake as an independent predictor of outcome in NSCLC. BMC Cancer. 2014;14:896.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Apostolova I, Ego K, Steffen IG, Buchert R, Wertzel H, Achenbach HJ, Riedel S, Schreiber J, Schultz M, Furth C, Derlin T, Amthauer H, Hofheinz F, Kalinski T. The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers. Eur J Nucl Med Mol Imaging. 2016;43:2360–73.

    Article  CAS  PubMed  Google Scholar 

  57. Wetz C, Apostolova I, Steffen IG, Hofheinz F, Furth C, Kupitz D, Ruf J, Venerito M, Klose S, Amthauer H. Predictive value of asphericity in pretherapeutic [111In]DTPA-Octreotide SPECT/CT for response to peptide receptor radionuclide therapy with [177Lu]DOTATATE. Mol Imaging Biol. 2016;19(3):437–45.

    Article  Google Scholar 

  58. Miles KA, Williams RE. Warburg revisited: imaging tumour blood flow and metabolism. Cancer Imaging. 2008;8:81–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dunnwald LK, Gralow JR, Ellis GK, Livingston RB, Linden HM, Specht JM, Doot RK, Lawton TJ, Barlow WE, Kurland BF, Schubert EK, Mankoff DA. Tumor metabolism and blood flow changes by positron emission tomography: relation to survival in patients treated with neoadjuvant chemotherapy for locally advanced breast cancer. J Clin Oncol. 2008;26:4449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mankoff DA, Dunnwald LK, Partridge SC, Specht JM. Blood flow-metabolism mismatch: good for the tumor, bad for the patient. Clin Cancer Res. 2009;15:5294–6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Tseng J, Dunnwald LK, Schubert EK, Link JM, Minoshima S, Muzi M, Mankoff DA. 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J Nucl Med. 2004;45:1829–37.

    CAS  PubMed  Google Scholar 

  62. Orlhac F, Theze B, Soussan M, Boisgard R, Buvat I. Multiscale texture analysis: from 18F-FDG PET images to histologic images. J Nucl Med. 2016;57:1823–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brenner, W., Wedel, F., Eary, J.F. (2018). Quantification of Functional Heterogeneities in Tumors by PET Imaging. In: Sack, I., Schaeffter, T. (eds) Quantification of Biophysical Parameters in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-65924-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65924-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65923-7

  • Online ISBN: 978-3-319-65924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics