Skip to main content

Numerical Center Manifold Methods

  • Conference paper
  • First Online:
  • 965 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 205))

Abstract

This paper summarizes the first available proof and results for general full, so space and time discretizations for center manifolds of nonlinear parabolic problems. They have to admit a local time dependent solution (a germ) near the bifurcation point. For the linearization (AB) of the nonlinear elliptic part and the boundary condition we require: The spectrum of A is located \(\ge - \beta \) for a small \(\beta > 0\) instead of the usual = 0, A is elliptic and for (AB) the complementing condition is valid, hence A is sectorial. Indeed the two last conditions hold by Amann’s [3] criteria and remark for \(A:W^{m,p} (\Omega ,\mathbb {R}^q) \rightarrow W^{-m,p}, 1\le m,q,\) satisfying the Legendre-Hadamard condition and in appropriate divergence form for \(m>1.\) This does not apply to the generalized Agmon e.al. systems. By the active research, the class of problems satisfying the above conditions is strongly growing. Then, with geometric time discretizations, essentially all the up-to-date numerical space, except meshfree methods, yield converging numerical results for these “approximate” center manifolds. Here I summarize results of my upcoming monograph and strongly generalize my earlier papers.

Dedicated to the 60\(\mathrm{{th}}\) birthday of my good friend Prof. Dr. Bernold Fiedler.

This is a preview of subscription content, log in via an institution.

Notes

  1. 1.

    The following results are, with minor changes, e.g., the curve C in (13), correct for the open [53] and closed [32] sectors: \(\Sigma _{c, \vartheta } :=\{ \vartheta < |\arg (\lambda -c)| \cdots \}\) and \(\Sigma _{c, \vartheta } :=\{ \vartheta \le |\arg (\lambda -c)| \cdots \}.\)

  2. 2.

    Thanks to Robert Denk I found this paper strongly related to my problems.

References

  1. Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations, i. Comm. Pure Apppl. Math. 12, 623–727 (1959)

    Article  MATH  Google Scholar 

  2. Allgower, E.L., Böhmer, K., Georg, K., Miranda, R.: Numerical exploitation of equivariance. SIAM J. Numer. Anal. 29, 534–552 (1992)

    Article  MathSciNet  Google Scholar 

  3. Amann, H.: Dynamic theory of quasilinear parabolic equations. II: reaction-diffusion systems. Differ. Integr. Equ. 3(1):13–75 (1990)

    Google Scholar 

  4. Ashwin, P., Böhmer, K., Mei, Z.: A numerical Liapunov-Schmidt method with applications to hopf bifurcation on a square. Math.Comp. 64:649–670 and S19–S22 (1995)

    Google Scholar 

  5. Bates, P.W., Jones, C.K.R.T.: Invariant manifolds for semilinear partial differential equations. Dyn. Report. 2(1–38), 1989 (1989)

    Google Scholar 

  6. Beyn, W.J.: The effect of discretization on homoclinic orbits. In: Küpper, T., Seydel, R., Troger, H. (eds.) Bifurcation, Analysis, Algorithms, Applications, Internat. Schriftenreihe Numer. Math. 79, pp. 1–8. Birkhauser, Basel Boston Mass (1987)

    Google Scholar 

  7. Beyn, W.J.: On invariant closed curves for one step methods. Numer. Math. 51(1), 103–122 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Beyn, W.J.: The numerical computation of connecting orbits in dynamical systems. IMA J. Numer. Anal. 10, 379–405 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beyn, W.J.: Numerical methods for dynamical systems. In: Light, W. (ed.) Advances in Numerical Analysis. vol I, pp. 175–236. Oxford University Press, New York (1991)

    Google Scholar 

  10. Beyn, W.J.: Numerical analysis of homoclinic orbits emanating from a Takens-Bogdanov point. IMA J. Numer. Anal. 14, 381–410 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beyn, W.J., Lorenz, J.: Center manifolds of dynamical systems under discretization. Numer. Funct. Anal. Optim. 9(34), 381–414 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Böhmer, K.: On a numerical Liapunov-Schmidt method for operator equations. Computing 51, 237–269 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Böhmer, K.: On numerical bifurcation studies for general operator equations. In: Sprekels, J., Fiedler, B., Gröger, K. (eds.) International Conference on Differential Equations, Proceedings of the Conference, Equadiff ’99, Berlin, Germany, August 1-7,1999. vol. 2, pp. 877–883, Singepore, World Scientific (2000)

    Google Scholar 

  14. Böhmer, K.: On hybrid methods for bifurcation studies for general operator equations. In: Fiedler, B. (ed.) Ergodic theory. Analysis, and Efficient Simulation of Dynamical Systems, pp. 73–107. Springer, Berlin, Heidelberg, New York (2001)

    Google Scholar 

  15. Böhmer, K.: Numerical Methods for Nonlinear Elliptic Differential Equations, a Synopsis. Oxford University Press, Oxford, p. 772 (2010)

    Google Scholar 

  16. Böhmer, K.: Numerical Methods for Bifurcation and Center Manifolds in Nonlinear Elliptic and Parabolic Differential Equations. Oxford University Press, Oxford, ca p. 650 planned for (2018)

    Google Scholar 

  17. Carr, J.: Applications of centre manifold theory. vol. 35. App. Math. Sci. Springer, New York (1981)

    Google Scholar 

  18. Choe, W.G., Guckenheimer, J.: Using dynamical system tools in Matlab. In: Doedel, E. et al. (eds.) Numerical methods for bifurcation problems and large-scale dynamical systems. Based on two workshops held as part of the 1997–1998 IMA academic year on emerging applications of dynamical systems. New York, NY: Springer. IMA Vol. Math. Appl. 119, 85–113 (2000)

    Google Scholar 

  19. Choquet-Bruhat, Y., Dewitt-Morette, C., Dillard-Bleik, M.: Analysis. Manifolds and Physics. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  20. Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Grundl, vol. 251. Math. Wiss. Springer, Berlin New York (1982)

    Google Scholar 

  21. Denk, R., Hieber, M., Prüss, J.: R-boundedness, fourier multipliers and problems of elliptic and parabolic type. Mem. Amer. Math. Soc. (2003)

    Google Scholar 

  22. Du, W.-H., Beyn, W.-J.: The numerical approximation of center manifolds in Hamiltonian systems. J. Math. Anal. Appl. 288(1), 28–46 (2003)

    Google Scholar 

  23. Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations. Graduate Texts in Mathematics. 194. Berlin: Springer. xxi, p. 586 (2000)

    Google Scholar 

  24. Evans, L.C.: Partial differential equations. Graduate Studies in Mathematics. 19. Providence, RI: American Mathematical Society (AMS). p. xvii (1998)

    Google Scholar 

  25. Fiedler, B., Scheuerle, J.: Discretization of homoclinic orbits and invisible chaos. Memoirs AMS. 570 (1996)

    Google Scholar 

  26. Govaerts, W.: Numerical Methods for Bifurcations of Dynamical Equlibria. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA (2000)

    Book  MATH  Google Scholar 

  27. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Appl. Math. Sci. 42. Springer Verlag (1983)

    Google Scholar 

  28. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Appl. Math. Sci. 42. Springer Verlag (1990). 3. Printing

    Google Scholar 

  29. Hairer, E., Lubich, C.C., Wanner, G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. Springer Series in Computational Mathematics 31. Springer-Verlag, Berlin (2002)

    Google Scholar 

  30. Hale, J., Koçak, H.: Dynamics and Bifurcations. Springer-Verlag, New York (1991)

    Book  MATH  Google Scholar 

  31. Haragus, M., Iooss, G.: Local bifurcations, center manifolds, and normal forms in infinite-dimensional dynamical systems. Springer, London (2011)

    Google Scholar 

  32. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)

    Google Scholar 

  33. Iooss, G., Adelmeyer, M.: Topics in Bifurcation Theory and Applications. World Scientific Publishing Co. Pte. Ltd., Singapore (1992)

    Google Scholar 

  34. Kelley, A.: The stable, center-stable, center-unstable and unstable manifolds. J. Differ. Equ. 3, 546–570 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kirchgässner, K., Kielhöfer, H.J.: Stability and bifurcation in fluid dynamics. Rocky Mount. J. Math. 3, 275–318 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kuznetsov, Y.A: Elements of applied bifurcation theory, 2nd updated ed. Appl. Math. Sci. 112. New York, NY: Springer. p. xix, 591 (1998)

    Google Scholar 

  37. Kuznetsov, Y.A.: Elements of applied bifurcation theory, 3rd Ed. Appl. Math. Sci. 112. New York, NY: Springer (2004)

    Google Scholar 

  38. Lanford, O.: Bifurcation of periodic solutions into invariant tori. In: Nonlinear Problems in the Physical Sciences, Lecture Notes in Mathematics, vol. 322 (1973)

    Google Scholar 

  39. Lubich, C., Ostermann, A.: Runge-Kutta time discretization of reaction-diffusion and Naviér-stokes equations: nonsmooth-data error estimates and applications to long-time behaviour. Appl. Numer. Math. 22(1–3), 279–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lubich, C., Ostermann, A.: Hopf bifurcation of reaction-diffusion and Naviér-Stokes equations under discretization. Numer. Math. 81(1), 53–84 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lunardi, A.: Analytic Semigroups and Optimal Regularity in parabolic problems. Progress in Nonlinear Differential Equations and their Applications. 16. Basel: Birkhäuser, Basel.Boston.Berlin (1995)

    Google Scholar 

  42. Lynch, S.: Dynamical systems with applications using MATLAB. Boston, MA: Birkhäuser. p. xv, 459, EUR 68.48 (2004)

    Google Scholar 

  43. Ma, F.: Euler difference scheme for ordinary differential equations and center manifolds. Northeast. Math. J. 4(2), 149–161 (1988)

    MathSciNet  MATH  Google Scholar 

  44. Mei, Z.: Numerical Bifurcation Analysis for Reaction Diffusion Equations. SCM, vol. 28. Springer, Berlin (2000)

    Google Scholar 

  45. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York, Berlin, Heidelberg, Tokyo (1983)

    Book  MATH  Google Scholar 

  46. Pliss, V.: Principle reduction in the theory of stability of motion (russian). Izv. Akad. Nauk. SSSR Mat Ser. 28, 1297–1324 (1964)

    MATH  Google Scholar 

  47. Raasch, T.: Adaptive Wavelet and Frame Schemes for Elliptic and Parabolic Equations. PhD thesis, Philipps-Universität Marburg, (2007). Dissertation

    Google Scholar 

  48. Sieber, J., Krauskopf, B.: Dynamics of an inverted pendulum subject to delayed control. In: Freddy, D. et al. (eds.) EQUADIFF 2003. Proceedings of the International Conference on Differential Equations, Hasselt, Belgium, July 22–26, 2003. Hackensack, NJ: World Scientific. pp. 768–773 (2005)

    Google Scholar 

  49. Thomée, V.: Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics. 25. Berlin: Springer. p. x, 302 (1997)

    Google Scholar 

  50. Vanderbauwhede, A.: Centre manifolds, normal forms and elementary bifurcations. In: Kirchgraber, U., Walther, H.O. (eds.) Dynamics Reports, Dynam. Report. Ser. Dynam. Syst. Appl., 2, pp. 89–169. Wiley, Chichester (1989)

    Google Scholar 

  51. Vanderbauwhede, A., Iooss, G.: Center manifold theory in infinite dimensions. In: Johnes, C.K.R.T., Kirchgraber, U., Walther, H.O. (eds.) Dynamics Reported: Expositions in Dynamical Systems, Dynam. Report. (N.S.), 1, pp. 125–163. Springer-Verlag, Berlin (1992)

    Google Scholar 

  52. Zeidler, E.: Nonlinear functional analysis and its applications II/A, linear monotone operators. Springer Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo (1990)

    Book  MATH  Google Scholar 

  53. Zeidler, E.: Nonlinear functional analysis and its applications II/B, nonlinear monotone operators. Springer Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo (1990)

    Book  MATH  Google Scholar 

  54. Zou, Y.-K., Beyn, W.-J.: Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete Contin. Dyn. Syst. 2(3), 351–365 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  55. Zou, Y.-K., Beyn, W.-J.: Invariant manifolds for nonautonomous systems with application to one-step methods. J. Dyn. Differ. Equ. 10(3), 379–407 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Böhmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Böhmer, K. (2017). Numerical Center Manifold Methods. In: Gurevich, P., Hell, J., Sandstede, B., Scheel, A. (eds) Patterns of Dynamics. PaDy 2016. Springer Proceedings in Mathematics & Statistics, vol 205. Springer, Cham. https://doi.org/10.1007/978-3-319-64173-7_15

Download citation

Publish with us

Policies and ethics