
G

Graph Query Languages

Renzo Angles1, Juan Reutter2, and
Hannes Voigt3
1Universidad de Talca, Talca, Chile
2Pontificia Universidad Catolica de Chile,
Santiago, Chile
3Dresden Database Systems Group, Technische
Universität Dresden, Dresden, Germany

Definition

A query language is a high-level computer lan-
guage for the retrieval and modification of data
held in databases or files. Query languages usu-
ally consist of a collection of operators which can
be applied to any valid instances of the data struc-
ture types of a data model, in any combination
desired.

In the context of graph data management, a
graph query language (GQL) defines the way to
retrieve or extract data which have been modeled
as a graph and whose structure is defined by a
graph data model. Therefore, a GQL is designed
to support specific graph operations, such as
graph pattern matching and shortest path finding.

This work was supported by Iniciativa Científica Milenio
Grant 120004.

Overview

Research on graph query languages has at least
30 years of history. Several GQLs were proposed
during the 1980s, most of them oriented to study
and define the theoretical foundations of the area.
During the 1990s, the research on GQLs was
overshadowed by the appearance of XML, which
was arguably seen as the main alternative to
relational databases for scenarios involving semi-
structured data. With the beginning of the new
millennium, however, the area of GQLs gained
new momentum, driven by the emergence of ap-
plications where cyclical relationships naturally
occur, including social networks, the Semantic
Web, and so forth. Currently GQLs are a funda-
mental tool that supports the manipulation and
analysis of complex big data graphs. Detailed
survey of graph query language research can be
found in Angles et al. (2017b).

Key Research Findings

Most of the languages that have been proposed
are based on the idea of matching a graph pattern.
In designing a GQL one typically starts with
graph patterns, to which several other features
are added. Examples of these features include
set operations, relational algebra operations, the
addition of path queries, closing graph patterns
through recursion, etc. In the following we de-
scribe how graph pattern matching works, as well

© Springer International Publishing AG 2018
S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,
https://doi.org/10.1007/978-3-319-63962-8_75-1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63962-8_1&domain=pdf
https://doi.org/10.1007/978-3-319-63962-8_75-1


2 Graph Query Languages

as the most typical features commonly added to
graph patterns.

Since our focus is on the fundamentals of
GQLs, we concentrate on the simplest data model
for graphs, i.e., directed labeled graphs. Later on,
we review how these fundamentals are translated
into practical query languages in more complex
graph data models.

Let ˙ be a finite alphabet. A graph database
G over ˙ is a pair .V;E/, where V is a finite set
of nodes and E � V � ˙ � V is a set of edges.
That is, we view each edge as a triple .v; a; v0/ 2
V �˙ � V , whose interpretation is an a-labeled
edge from v to v0 in G.

Graph Pattern Matching
The idea of patterns is to define small subgraphs
of interest to look for in an input graph. For
example, in a social network one can match the
following pattern to look for a clique of three
individuals that are all friends with each other:

x

y z

friend friend

friend

Let V D fx; y; ´; : : : g be an infinite set of
variables. In its simplest form, a graph pattern
is simply a graph P D .VP ; EP / where all
the nodes in VP are replaced by variables. For
example, the pattern above can be understood
as a graph over alphabet ˙ D ffriendg whose
set of nodes is fx; y; ´g and whose edges
are f.x; friend; y/; .y; friend; x/; .x; friend; ´/,
.´; friend; x/; .y; friend; ´/; .´; friend; y/g.

The semantics of patterns is given using
the notion of a match. A match of a pattern
P D .VP ; EP / over a graph GD .VG ; EG/ is a
mapping � from variables to constants, such that
the graph resulting from replacing each variable
for the corresponding constant in the pattern is
actually a subgraph of G, i.e., for every pattern
node x 2 VP , we have that �.x/ 2 VG , and
for each edge .x; a; y/ 2 EP , we have that
.�.x/; a; �.y// belongs to EG .

The problem of pattern matching has been
extensively studied in the literature, and several

other notions of matching have been considered.
The basic notion defined above is known as a
homomorphism and constitutes the most common
semantics. Additionally, one could also consider
simple path semantics, which does not permit
repeating nodes and used in, e.g., the languages
G (Cruz et al. 1987b) and GC (Cruz et al. 1989),
injective homomorphism, that disallow variables
to be mapped to the same element or semantics
based on graph simulations (see, e.g., Miller et al.
2015 for a survey).

Although the set of matchings from P to G
can be already seen as the set of answers for
the evaluation of P over G, one is normally
interested in tuples of nodes: if P uses variables
x1; : : : ; xn, then we define the result of evaluating
P over G, which we denote by P.G/, as the
set of tuples f.�.x1/; : : : ; �.xn// j � is a match
from P to Gg.

Extensions. Graph patterns can be extended by
adding numerous features. For starters, one could
allow variables in the edge labels of patterns or
allow a mixture between constant and variables
in nodes or edges. In this case, mappings must
be the identity on constant values, and if an edge
.x; y; ´/ occurs in a pattern, then �.y/ must
be a label in ˙ , so that .�.x/; �.y/; �.´// is
an edge in the graph upon we are matching.
Patterns can also be augmented with projection,
and since the answer is a set of tuples, we can
also define set operations (union, intersection,
difference, etc.) over them. Likewise, one can
define filters that force the matches to satisfy
certain Boolean conditions such as x ¤ y.
Another operator is the left outer join, also known
as the optional operator. This operator allows
to query incomplete information (an important
characteristic of graph databases).

Graph Patterns as Relational Database
Queries. Graph patterns can also be defined
as conjunctive queries over the relational repre-
sentation of graph databases (see, e.g., Abiteboul
et al. 1995 for a good introduction on relational
database theory). In order to do this, given an
alphabet ˙ , we define �.˙/ as the relational
schema that consists of one binary predicate



Graph Query Languages 3

symbol Ea, for each symbol a 2 ˙ . For
readability purposes, we identify Ea with a,
for each symbol a 2 ˙ . Each graph database
G D .V;E/ over ˙ can be represented as a
relational instance D.G/ over the schema �.˙/:
The database D.G/ consists of all facts of the
form Ea.v; v

0/ such that .v; a; v0/ is an edge in
G (for this we assume that D includes all the
nodes in V ). It is then not difficult to see that
graph patterns are actually conjunctive queries
over the relational representation of graphs, that
is, formulas of the form Q. Nx/ D 9 Ny�. Nx; Ny/,
where Nx and Ny are tuples of variables and
�. Nx; Ny/ is a conjunction of relational atoms
from � that use variables from Nx to Ny. For
example, the pattern shown above can be
written as the relational query Q.x; y; ´/ D

friend.x; y/ ^ friend.y; x/ ^ friend.x; ´/ ^
friend.´; x/ ^ friend.y; ´/ ^ friend.´; y/.

The correspondence between patterns and
conjunctive queries allows us to reuse the broad
corpus on literature on conjunctive queries for our
graph scenario. We also use this correspondence
when defining more complex classes of graph
patterns.

Path Queries
The idea of a path query is to select pairs of nodes
in a graph whose relationship is given by a path
(of arbitrary length) satisfying certain properties.
For example, one could use a path query in a
social network to extract all nodes that can be
reached from an individual via friend-of-a-friend
paths of arbitrary length.

The most simple navigational querying
mechanism for graph databases is a regular
path query (RPQ) (Abiteboul et al. 1999; Cruz
et al. 1987a; Calvanese et al. 2002), which
allows to specify navigation by means of regular
expressions. Formally, an RPQ Q over ˙ is a
regular language L � ˙�, and it is specified
using a regular expression R. Their semantics
is defined in terms of paths. A path � from v0
to vm in a graph G D .V;E/ is a sequence
.v0; a0; v1/, .v1; a1; v2/; � � � ; .vm�1; am�1; vm/,
for some m � 0, where each .vi ; ai ; viC1/, for
i < m, is an edge in E. In particular, all the vi ’s

are nodes in V and all the aj ’s are letters in ˙ .
The label of � is the word a0 � � � am�1 2 ˙�.

The idea behind regular path queries is to
select all pairs of nodes whose labels belong to
the language of the defining regular expression.
That is, given a graph database G D .V;E/ and
an RPQ R, the evaluation of R over G, denoted
�R�G , is the set of all pairs .v; v0/ 2 V such that
there is path � between v and v0 and the label of
� is a word in the language of R.

More Complex Path Queries. RPQs have been
extended in a myriad of ways. For example, we
have two-way regular path queries (2RPQs) (Cal-
vanese et al. 2000) that add to RPQs the ability
to traverse edge backward via inverse symbols
a�, nested regular path queries (Barceló et al.
2012b) that further extend 2RPQs with node
tests similar to what is done with propositional
dynamic logic or XPath expressions, and several
proposals adding variables to path queries (Wood
1990; Santini 2012; Fionda et al. 2015). There
are also proposals of more expressive forms of
path queries, using, for example, context-free lan-
guages (Hellings 2014), and several formalisms
aimed at comparing pieces of data that may
be associated with the nodes in a graph (see,
e.g., Libkin and Vrgoč 2012). Another type of
path queries, called property paths, extends RPQs
with a mild form of negation (Kostylev et al.
2015).

Adding Path Queries to Patterns. Path queries
and patterns can be naturally combined to
form what is known as conjunctive regular
path queries, or CRPQs (Florescu et al. 1998;
Calvanese et al. 2000). Just as with graph patterns
and conjunctive queries, we can define CRPQs in
two ways. From a pattern perspective, CRPQs
amount to replacing some of the edges in a
graph pattern by a regular expression, such as
the following CRPQ, which looks for two paths
with an indirect friend n in common:

nx y
friend+ friend +

However, a CRPQ over an alphabet ˙ can also
be seen as a conjunctive query over a relational



4 Graph Query Languages

representation of graphs that includes a predicate
for each regular expression constructed from ˙ .
In our case, the corresponding conjunctive query
for the pattern above is written as Q.x; y/ D
friendC.x; n/ ^ friendC.y; n/. Note that here we
are using n as a constant; since CRPQs are again
patterns, they can be augmented with any of the
features we listed for patterns, including con-
stants, projection, set operations, filters, and outer
joins. We can also obtain more expressive classes
of queries by including more expressive forms
of path queries: using 2RPQs instead of RPQs
gives rise to C2RPQs, or conjunctive 2RPQs,
and using nested regular expressions gives rise
to CNREs, which are also known as conjunctive
nested path queries, or CNPQs (Bienvenu et al.
2014; Bourhis et al. 2014). Finally, Barceló et al.
(2012a) consider restricting several path queries
in a CRPQ at the same time by means of regular
relations. The resulting language is capable of
expressing, for example, that the two paths of
friends in the pattern above must be of the same
length.

Algorithmic Issues. The most important algo-
rithmic problem studied for GQLs is query an-
swering. This problem asks, given a queryQwith
k variables, a graph G and a tuple Na of k values
from G, whether Na belongs to the evaluation of
Q over G. All of the classes of path queries we
have discussed can be evaluated quite efficiently.
For example, all of RPQs, 2RPQs, and NREs can
be evaluated in linear time in the size ofQ and of
G. Barceló (2013) provides a good survey on the
subject.

When adding path queries to patterns, one
again hopes that the resulting language will not be
more difficult to evaluate than standard patterns
or conjunctive queries. And indeed this happens
to be the case: The evaluation problem for CR-
PQs, C2RPQs, and CNREs is NP-complete just
as patterns. In fact, one can show this for any
pattern augmented with a form of path query, as
long as the evaluation for these path queries is in
PTIME.

The second problem that has received con-
siderable attention is query containment. This
problem asks, given queries Q1 and Q2, whether

the answers of Q1 are always contained in the
answers of Q2. Since all queries we presented
are based on graph patterns, the lower bound for
this problem is NP, as containment is known to be
NP-complete already for simple graph patterns.
In contrast to evaluation, adding path queries to
patterns can significantly alter the complexity of
containment: for CRPQs the problem is already
EXPSPACE-complete (Calvanese et al. 2000),
and depending on the features considered, it may
even become undecidable.

Beyond Patterns
For the navigational languages, we have seen,
thus far, paths are the only form of recursion al-
lowed, but to express certain types of queries, we
may require more expressive forms of recursion.
As an example, suppose now our social network
admits labels friends and works_with, the latter
for joining two nodes that are colleagues. Now
imagine that we need to find all nodes x and
y that are connected by a path where each sub-
sequent pair of nodes in the path is connected
by both friend and works_with relations. We
cannot express this query as a regular expres-
sion between paths, so instead what we do is to
adopt Datalog as a framework for expressing the
repetitions of patterns themselves. Consider, for
example, a rule of the form:

P.x; y/ friend.x; y/;works_with.x; y/:

This rule is just another way of expressing the
pattern that computes all pairs of nodes connected
both by friend and works_with relations. In this
case, P represents a new relation, known as an
intensional predicate, that is intended to compute
all pairs of nodes that are satisfied by this pattern.
We can then use P to specify the rule:

Ans.x; y/ PC.x; y/:

Now both rules together form what is known as
a regular query (Reutter et al. 2015) or nested
positive 2RPQs (Bourhis et al. 2014, 2015). The
idea is that PC.x; y/ represents all pairs x; y
connected by a path of nodes, all of them satisfy-
ing the pattern P (i.e., connected both by friend



Graph Query Languages 5

and works_with relations). Regular queries can be
understood as the language resulting of extending
graph patterns with edges that can be labeled not
only with a path query but with any arbitrary
repetition of a binary pattern.

The idea of using Datalog as a graph query
language for graph databases comes from Con-
sens and Mendelzon (1990), where it was in-
troduced under the name GraphLog. GraphLog
opened up several possibilities for designing new
query languages for graphs, but one of the prob-
lems of GraphLog was that it was too expressive,
and therefore problems such as query contain-
ment were undecidable for arbitrary GraphLog
queries. However, interest in Datalog for graphs
has returned in the past few years, as researchers
started to restrict Datalog programs in order to
obtain query languages that can allow expressing
the recursion or repetition of a given pattern, but
at the same time maintaining good algorithmic
properties for the query answering problem. For
example, the complexity for evaluating regular
queries is the same as for C2RPQs, and the con-
tainment problem is just one exponential higher.
Besides regular queries, other noteworthy graph
languages follow by restricting to monadic Data-
log programs (Rudolph and Krötzsch 2013), pro-
grams whose rules are either guarded or frontier-
guarded (Bourhis et al. 2015; Bienvenu et al.
2015), and first-order logic with transitive clo-
sure (Bourhis et al. 2014).

Composability
A particularly important feature of query lan-
guages is composability. Composable query lan-
guages allow to formulate queries with respect to
results of other queries expressed in the same lan-
guage. Composability is an important principle
for the design of simple but powerful program-
ming languages in general and query languages
in particular (Date 1984). To be composable, the
input and the output of a query must have the
same (or a compatible) data model.

CQs (and C2RPQs) are not inherently com-
posable, since their output is a relation and their
input is a graph. In contrast, RPQs (and 2RPQs)
allow query composition, since the set of pairs of
nodes resulting from an RPQ can be interpreted

as edges obviously. Regular queries are compos-
able for the same reason. In general, Datalog-
based graph query languages are composable
over relations but not necessarily over graphs.

In the context of modern data analytics, data is
collected to a large extent automatically by hard-
and software sensors in fine granularity and low
abstraction. Where users interact with data, they
typically think, reason, and talk about entities
of larger granularity and higher abstraction. For
instance, social network data is collected in terms
of friend relationship and individual messages
send from one person to another, while the user
is often interested in communities, discussion
threads, topics, etc. User-level concepts are of-
ten multiple abstraction levels higher than the
concepts in which data is captured and stored.
The query language of database systems is the
main means for users to derive information in
terms of their user-level concepts for a database
oblivious of user’s concepts. To offer a capability
of conceptual abstraction, a query language has
to (1) be able to create entirely new entities
within the data model to lift data into higher-
level concepts and (2) be composable over its data
model, so that the users can express a stack of
multiple such conceptual abstraction steps with
the same language.

RPQs (and 2RPQs) and regular queries allow
conceptual abstraction for edges. For instance,
ancestor edges can be derived from sequences
of parent edges. Conceptual abstraction for nodes
has been considered only recently (Rudolf et al.
2014; Voigt 2017) and allows to derive (or con-
struct) an entirely new output graph from the
input graph. In the simplest form of graph con-
struction, a new node is derived from each tu-
ple resulting from a pattern match (C2RPQs,
etc.), e.g., deriving a marriage node from every
pair of persons that are mutually connected by
married � to edges. The more general and more
expressive variant of graph construction includes
aggregation and allows to derive a new node from
every group of tuples given a set of variables
as grouping keys, e.g., deriving a parents node
from every group of adults all connected by
parent � to to the same child.



6 Graph Query Languages

Key Applications

There is a vast number of GQLs that have been
proposed and implemented by graph databases
and an even larger number of GQLs that are
used in specific application domains (see, e.g.,
Dries et al. 2009; Brijder et al. 2013; Martín
et al. 2011). In the following we focus on GQLs
designed for the two most popular graph data
models: property graphs and RDF.

Property Graph Databases
A property graph is a directed labeled multigraph
with the special characteristic that each node
or edge can maintain a set (possibly empty) of
properties, usually represented as key-value pairs.
The property graph data model is very popular in
current graph database systems, including Neo4j,
Oracle PGX, Titan, and Amazon Neptune.

There is no standard query language for
property graphs although some proposals are
available. Blueprints (http://tinkerpop.apache.
org/) was one of the first libraries created for
manipulating property graphs. Blueprints is
analogous to the JDBC, but for graph databases.
Gremlin (Rodriguez 2015) is a graph-based
programming language for property graphs
developed within the TinkerPop open-source
project. Gremlin makes extensive use of XPath
to support complex graph traversals. Cypher is a
declarative query language defined for the Neo4j
graph database engine, originally, and by now
adopted by other implementers. Cypher supports
basic graph patterns and basic types of regular
path queries (i.e., paths with a fixed edge label or
paths with any labels) with a no-repeating-edges
matching semantics. The development of Cypher
is a still ongoing community effort (http://www.
opencypher.org/).

PGQL (van Rest et al. 2016) is a query lan-
guage for property graphs recently developed as
part of Oracle PGX, an in-memory graph analytic
framework. PGQL defines a SQL-like syntax that
allows to express graph pattern matching queries,
regular path queries (with conditions on labels
and properties), graph construction, and query
composition.

G-CORE (Angles et al. 2017a) is a language
recently proposed by the Linked Data Bench-
mark Council (LDBC). G-CORE advertises regu-
lar queries, nested weighted shortest path queries,
graph construction with aggregation, and com-
posability as the core feature of future graph
query languages on property graphs.

RDF Databases
The Resource Description Framework (RDF)
is a W3C recommendation that defines a
graph-based data model for describing and
publishing data on the web. This data model
gains popularity in the context of managing
web data, giving place to the development of
RDF databases (also called triplestores). Along
with these database systems, several RDF query
languages were developed (we refer the reader to
a brief survey by Haase et al. 2004). Currently,
SPARQL (Prud’hommeaux and Seaborne 2008)
is the standard query language for RDF. SPARQL
was designed to support several types of complex
graph patterns and, in its latest version, SPARQL
1.1 (Harris and Seaborne 2013), adds support for
negation, regular path queries (called property
paths), subqueries, and aggregate operators. The
path queries support reachability tests.

Cross-References

� Graph Data Management Systems
� Graph Data Models
� Graph Pattern Matching
� Graph Query Processing

References

Abiteboul S, Hull R, Vianu V (1995) Foundations of
databases. Addison-Wesley, Reading

Abiteboul S, Buneman P, Suciu D (1999) Data on the
Web: from relations to semistructured data and XML.
Morgan Kauffman, San Francisco

Angles R, Arenas M, Barceló P, Boncz PA, Fletcher GHL,
Gutierrez C, Lindaaker T, Paradies M, Plantikow S,
Sequeda J, van Rest O, Voigt H (2017a) G-CORE: a
core for future graph query languages. The computing
research repository abs/1712.01550

http://tinkerpop.apache.org/
http://tinkerpop.apache.org/
http://www.opencypher.org/
http://www.opencypher.org/
http://link.springer.com/Graph Data Management Systems
http://link.springer.com/Graph Data Models
http://link.springer.com/Graph Pattern Matching
http://link.springer.com/Graph Query Processing


Graph Query Languages 7

Angles R, Arenas M, Barceló P, Hogan A, Reutter JL,
Vrgoc D (2017b) Foundations of modern query lan-
guages for graph databases. ACM Comput Surv
68(5):1–40

Barceló P (2013) Querying graph databases. In: Proceed-
ings of the 32nd ACM SIGMOD-SIGACT-SIGART
symposium on principles of database systems, PODS
2013, pp 175–188

Barceló P, Libkin L, Lin AW, Wood PT (2012a) Expres-
sive languages for path queries over graph-structured
data. ACM Trans Database Syst (TODS) 37(4):31

Barceló P, Pérez J, Reutter JL (2012b) Relative expres-
siveness of nested regular expressions. In: Proceedings
of the Alberto Mendelzon workshop on foundations of
data management (AMW), pp 180–195

Bienvenu M, Calvanese D, Ortiz M, Simkus M (2014)
Nested regular path queries in description logics. In:
Proceeding of the international conference on princi-
ples of knowledge representation and reasoning (KR)

Bienvenu M, Ortiz M, Simkus M (2015) Navigational
queries based on frontier-guarded datalog: preliminary
results. In: Proceeding of the Alberto Mendelzon work-
shop on foundations of data management (AMW),
p 162

Bourhis P, Krötzsch M, Rudolph S (2014) How to best
nest regular path queries. In: Informal Proceedings of
the 27th International Workshop on Description Logics

Bourhis P, Krötzsch M, Rudolph S (2015) Reasonable
highly expressive query languages. In: Proceeding of
the international joint conference on artificial intelli-
gence (IJCAI), pp 2826–2832

Brijder R, Gillis JJM, Van den Bussche J (2013) The
DNA query language DNAQL. In: Proceeding of the
international conference on database theory (ICDT).
ACM, pp 1–9

Calvanese D, De Giacomo G, Lenzerini M, Vardi MY
(2000) Containment of conjunctive regular path queries
with inverse. In: Proceeding of the international con-
ference on principles of knowledge representation and
reasoning (KR), pp 176–185

Calvanese D, De Giacomo G, Lenzerini M, Vardi MY
(2002) Rewriting of regular expressions and regular
path queries. J Comput Syst Sci (JCSS) 64(3):443–465

Consens M, Mendelzon A (1990) Graphlog: a visual
formalism for real life recursion. In: Proceeding of the
ACM symposium on principles of database systems
(PODS), pp 404–416

Cruz I, Mendelzon A, Wood P (1987a) A graphical
query language supporting recursion. In: ACM special
interest group on management of data 1987 annual
conference (SIGMOD), pp 323–330

Cruz IF, Mendelzon AO, Wood PT (1987b) A graphical
query language supporting recursion. In: Proceeding of
the ACM international conference on management of
data (SIGMOD), pp 323–330

Cruz IF, Mendelzon AO, Wood PT (1989) G+: recursive
queries without recursion. In: Proceeding of the inter-
national conference on expert database systems (EDS).
Addison-Wesley, pp 645–666

Date CJ (1984) Some principles of good language design
(with especial reference to the design of database
languages). SIGMOD Rec 14(3):1–7

Dries A, Nijssen S, De Raedt L (2009) A query language
for analyzing networks. In: Proceeding of the ACM
international conference on information and knowledge
management (CIKM). ACM, pp 485–494

Fionda V, Pirrò G, Consens MP (2015) Extended property
paths: writing more SPARQL queries in a succinct
way. In: Proceeding of the conference on artificial
intelligence (AAAI)

Florescu D, Levy AY, Suciu D (1998) Query containment
for conjunctive queries with regular expressions. In:
Proceeding of the ACM symposium on principles of
database systems (PODS), pp 139–148

Haase P, Broekstra J, Eberhart A, Volz R (2004) A
comparison of RDF query languages. In: Proceeding
of the international Semantic Web conference (ISWC),
pp 502–517

Harris S, Seaborne A (2013) SPARQL 1.1 query lan-
guage. W3C recommendation. http://www.w3.org/TR/
sparql11-query/

Hellings J (2014) Conjunctive context-free path queries.
In: Proceeding of the international conference on
database theory (ICDT), pp 119–130

Kostylev EV, Reutter JL, Romero M, Vrgoč D (2015)
SPARQL with property paths. In: Proceeding of
the international Semantic Web conference (ISWC),
pp 3–18

Libkin L, Vrgoč D (2012) Regular path queries on graphs
with data. In: Proceeding of the international confer-
ence on database theory (ICDT), pp 74–85

Martín MS, Gutierrez C, Wood PT (2011) SNQL: a
social networks query and transformation language. In:
Proceeding of the Alberto Mendelzon workshop on
foundations of data management (AMW)

Miller JA, Ramaswamy L, Kochut KJ, Fard A (2015)
Research directions for big data graph analytics. In:
Proceeding of the IEEE international congress on big
data, pp 785–794

Prud’hommeaux E, Seaborne A (2008) SPARQL query
language for RDF. W3C recommendation. http://www.
w3.org/TR/rdf-sparql-query/

Reutter JL, Romero M, Vardi MY (2015) Regular queries
on graph databases. In: Proceeding of the international
conference on database theory (ICDT), pp 177–194

Rodriguez MA (2015) The Gremlin graph traversal ma-
chine and language. In: Proceeding of the international
workshop on database programming languages. ACM

Rudolf M, Voigt H, Bornhövd C, Lehner W (2014) Synop-
Sys: foundations for multidimensional graph analytics.
In: Castellanos M, Dayal U, Pedersen TB, Tatbul N
(eds) BIRTE’14, business intelligence for the real-
time enterprise, 1 Sept 2014. Springer, Hangzhou,
pp 159–166

Rudolph S, Krötzsch M (2013) Flag & check: data access
with monadically defined queries. In: Proceeding of the
symposium on principles of database systems (PODS).
ACM, pp 151–162

http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/


8 Graph Query Languages

Santini S (2012) Regular languages with variables on
graphs. Inf Comput 211:1–28

van Rest O, Hong S, Kim J, Meng X, Chafi H
(2016) PGQL: a property graph query language.
In: Proceeding of the workshop on graph data-
management experiences and systems (GRADES)

Voigt H (2017) Declarative multidimensional graph
queries. In: Proceeding of the 6th European business
intelligence summer schoole (BISS). LNBIP, vol 280.
Springer, pp 1–37

Wood PT (1990) Factoring augmented regular chain pro-
grams. In: Proceeding of the international conference
on very large data bases (VLDB), pp 255–263


	Graph Query Languages
	Definition
	Overview
	Key Research Findings
	Graph Pattern Matching
	Path Queries
	Beyond Patterns
	Composability

	Key Applications
	Property Graph Databases
	RDF Databases

	Cross-References
	References
	References




