Skip to main content

Graph Pattern Matching

  • Living reference work entry
  • First Online:

Definition

The graph pattern matching problem is to find the answers Q(G) of a pattern query Q in a given graph G. The answers are induced by specific query language and ranked by a quality measure. The problem can be categorized into three classes (Khan and Ranu 2017): (1) Subgraph/supergraph containment query, (2) graph similarity queries, and (3) graph pattern matching.

In the context of searching a graph database D that consists of many (small) graph transactions, the graph pattern matching finds the answers Q(G) as a set of graphs from D. For subgraph (resp. supergraph containment) query, it is to find Q(G) that are subgraphs (resp. supergraphs) of Q. The graph similarity queries are to find Q(G) as all graph transactions that are similar to Q for a particular similarity measure.

In the context of searching a single graph G, graph pattern matching is to find all the occurrences of a query graph Q in a given data graph G, specified by a matching function. The remainder of this...

This is a preview of subscription content, log in via an institution.

References

  • Aditya B, Bhalotia G, Chakrabarti S, Hulgeri A, Nakhe C, Parag P, Sudarshan S (2002) BANKS: browsing and keyword searching in relational databases. In: VLDB

    Book  Google Scholar 

  • Armbrust M, Fox A, Patterson D, Lanham N, Trushkowsky B, Trutna J, Oh H (2009) Scads: scale-independent storage for social computing applications. arXiv preprint arXiv:09091775

    Google Scholar 

  • Cao Y, Fan W, Huai J, Huang R (2015) Making pattern queries bounded in big graphs. In: ICDE, pp 161–172

    Google Scholar 

  • Cordella LP, Foggia P, Sansone C, Vento M (2004) A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans Pattern Anal Mach Intell 26(10):1367–1372

    Article  Google Scholar 

  • Fan W, Li J, Ma S, Tang N, Wu Y, Wu Y (2010) Graph pattern matching: from intractable to polynomial time. PVLDB 3(1–2):264–275

    Google Scholar 

  • Fan W, Li J, Ma S, Tang N, Wu Y (2011) Adding regular expressions to graph reachability and pattern queries. In: ICDE, pp 39–50

    MATH  Google Scholar 

  • Fan W, Li J, Wang X, Wu Y (2012a) Query preserving graph compression. In: SIGMOD, pp 157–168

    Google Scholar 

  • Fan W, Wang X, Wu Y (2012b) Performance guarantees for distributed reachability queries. PVLDB 5(11):1304–1316

    Google Scholar 

  • Fan W, Wang X, Wu Y (2013) Incremental graph pattern matching. TODS 38(3):18:1–18:47

    Google Scholar 

  • Fan W, Wang X, Wu Y (2014a) Answering graph pattern queries using views. In: ICDE

    Book  Google Scholar 

  • Fan W, Wang X, Wu Y (2014b) Querying big graphs within bounded resources. In: SIGMOD

    Book  Google Scholar 

  • Fan W, Wang X, Wu Y, Deng D (2014c) Distributed graph simulation: impossibility and possibility. PVLDB 7(12):1083–1094

    Google Scholar 

  • Fan W, Xu J, Wu Y, Yu W, Jiang J, Zheng Z, Zhang B, Cao Y, Tian C (2017) Parallelizing sequential graph computations. In: SIGMOD

    Book  Google Scholar 

  • He H, Singh A (2008) Graphs-at-a-time: query language and access methods for graph databases. In: SIGMOD

    Book  Google Scholar 

  • He H, Wang H, Yang J, Yu PS (2007) BLINKS: ranked keyword searches on graphs. In: SIGMOD

    Book  Google Scholar 

  • Jayaram N, Khan A, Li C, Yan X, Elmasri R (2015) Querying knowledge graphs by example entity tuples. TKDE 27(10):2797–2811

    Google Scholar 

  • Kargar M, An A (2011) Keyword search in graphs: finding R-cliques. PVLDB 4(10):681–692

    Google Scholar 

  • Kelley BP, Yuan B, Lewitter F, Sharan R, Stockwell BR, Ideker T (2004) PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res 32: 83–88

    Article  Google Scholar 

  • Khan A, Ranu S (2017) Big-graphs: querying, mining, and beyond. In: Handbook of big data technologies. Springer, Cham, pp 531–582

    Chapter  Google Scholar 

  • Khan A, Li N, Guan Z, Chakraborty S, Tao S (2011) Neighborhood based fast graph search in large networks. In: SIGMOD

    Book  Google Scholar 

  • Khan A, Wu Y, Aggarwal C, Yan X (2013) NeMa: fast graph search with label similarity. PVLDB 6(3): 181–192

    Google Scholar 

  • Lee J, Han WS, Kasperovics R, Lee JH (2012) An in-depth comparison of subgraph isomorphism algorithms in graph databases. PVLDB 6(2):133–144

    Google Scholar 

  • Liang Z, Xu M, Teng M, Niu L (2006) NetAlign: a web-based tool for comparison of protein interaction networks. Bioinformatics 22(17):2175–2177

    Article  Google Scholar 

  • Ma S, Cao Y, Fan W, Huai J, Wo T (2011) Capturing topology in graph pattern matching. PVLDB 5(4):310–321

    MATH  Google Scholar 

  • Mottin D, Lissandrini M, Velegrakis Y, Palpanas T (2014) Exemplar queries: give me an example of what you need. PVLDB 7(5):365–376

    Google Scholar 

  • Shang H, Zhang Y, Lin X, Yu J (2008) Taming verification hardness: an efficient algorithm for testing subgraph isomorphism. PVLDB 1(1):364–375

    Google Scholar 

  • Singh R, Xu J, Berger B (2008) Global alignment of multiple protein interaction networks with application to functional orthology detection. PNAS 105(35):12763–12768

    Article  Google Scholar 

  • Tian Y, Patel JM (2008) TALE: a tool for approximate large graph matching. In: ICDE

    Google Scholar 

  • Tian Y, McEachin R, Santos C, States D, Patel J (2006) SAGA: a subgraph matching tool for biological graphs. Bioinformatics 23(2):232–239

    Article  Google Scholar 

  • Tong H, Faloutsos C, Gallagher B, Eliassi-Rad T (2007) Fast best-effort pattern matching in large attributed graphs. In: KDD

    Book  Google Scholar 

  • Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23:31–42

    Article  MathSciNet  Google Scholar 

  • Zhang S, Li S, Yang J (2009) GADDI: distance index based subgraph matching in biological networks. In: EDBT

    Book  Google Scholar 

  • Zhao P, Han J (2010) On graph query optimization in large networks. In: VLDB

    Google Scholar 

  • Zheng W, Cheng H, Zou L, Yu JX, Zhao K (2017) Natural language question/answering: let users talk with the knowledge graph. In: CIKM

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yinghui Wu or Arijit Khan .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wu, Y., Khan, A. (2018). Graph Pattern Matching. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_74-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63962-8_74-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63962-8

  • Online ISBN: 978-3-319-63962-8

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics