Skip to main content

Thermal Image Segmentation Using Evolutionary Computation Techniques

  • Chapter
  • First Online:
Advances in Soft Computing and Machine Learning in Image Processing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 730))

Abstract

This chapter analyzes the performance of selected evolutionary computation techniques (ECT) applied to the segmentation of forward looking infrared (FLIR) images. FLIR images arise challenges for classical image processing techniques since the capture devices usually generate low-resolution images prone to noise and blurry outlines. Traditional ECTs such as artificial bee colony (ABC), differential evolution (DE), harmony search (HS), and the recently published flower pollination algorithm (FPA) are implemented and evaluated using as objective function the between-class variance (Otsu’s method) and the Kapur’s entropy. The comparison pays particular attention to the quality of the segmented image by evaluating three specific metrics named peak-to-signal noise ratio (PSNR), structural similarity index (SSIM), and feature similarity index (FSIM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vadivambal, R., Jayas, D.S.: Applications of Thermal Imaging in Agriculture and Food Industry-A Review. Food Bioprocess Technol. 4, 186–199 (2011). doi:10.1007/s11947-010-0333-5

    Article  Google Scholar 

  2. Al-Kassir, A.R., Fernandez, J., Tinaut, F.V., Castro, F.: Thermographic study of energetic installations. Appl. Therm. Eng. 25, 183–190 (2005). doi:10.1016/j.applthermaleng.2004.06.013

    Article  Google Scholar 

  3. Leykin, A., Hammoud, R.: Pedestrian tracking by fusion of thermal-visible surveillance videos. Mach. Vis. Appl. 21, 587–595 (2010). doi:10.1007/s00138-008-0176-5

    Article  Google Scholar 

  4. Wei, W., Xia, R., Xiang, W., Hui, B., Chang, Z., Liu, Y., Zhang, Y.: Recognition of Airport Runways in FLIR Images Based on Knowledge. IEEE Geosci. Remote Sens. Lett. 11, 1534–1538 (2014). doi:10.1109/LGRS.2014.2299898

    Article  Google Scholar 

  5. Al-Obaidy, F., Yazdani, F., Mohammadi, F.A.: Intelligent testing for Arduino UNO based on thermal image. Comput. Electr. Eng. 58, 88–100 (2017). doi:10.1016/j.compeleceng.2017.01.014

    Article  Google Scholar 

  6. Pitarma, R., Crisóstomo, J., Jorge, L.: Analysis of Materials Emissivity Based on Image Software. Springer, Cham, pp. 749–757 (2016). doi:10.1007/978-3-319-31232-3_70

  7. Ring, E.F.J., Ammer, K., Ring, E.F.J.: Infrared thermal imaging in medicine. Physiol. Meas. 33, R33 (2012). doi:10.1088/0967-3334/33/3/R33

    Article  Google Scholar 

  8. Mehra, M., Bagri, A., Jiang, X., Ortiz, J.: Image analysis for identifying mosquito breeding grounds. In: 2016 IEEE International Conference on Sensing Communication and Networking SECON Work. IEEE, pp. 1–6 (2016). doi:10.1109/SECONW.2016.7746808

  9. Gade, R., Moeslund, T.B.: Thermal cameras and applications: A survey. Mach. Vis. Appl. 25, 245–262 (2014). doi:10.1007/s00138-013-0570-5

    Article  Google Scholar 

  10. Vollmer, M., Möllmann, K.-P.: Wiley InterScience (Online service), Infrared Thermal Imaging : Fundamentals, Research and Applications. Wiley-VCH (2010)

    Google Scholar 

  11. Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13, 3066–3091 (2013). doi:10.1016/j.asoc.2012.03.072

    Article  Google Scholar 

  12. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vis. Gr. Image Process. 29, 273–285 (1985). doi:10.1016/0734-189X(85)90125-2

  13. Kittler, J., Illingworth, J.: Minimum error thresholding. Pattern Recognit. 19, 41–47 (1986). doi:10.1016/0031-3203(86)90030-0

    Article  Google Scholar 

  14. Otsu, N.: Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. SMC-9, 62–66 (1979). http://www.scopus.com/inward/record.url?eid=2-s2.0-0018306059&partnerID=tZOtx3y1

  15. Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13, 146 (2004). doi:10.1117/1.1631315

    Article  Google Scholar 

  16. Yin, P.-Y.: Multilevel minimum cross entropy threshold selection based on particle swarm optimization. Appl. Math. Comput. 184, 503–513 (2007). doi:10.1016/j.amc.2006.06.057

    MathSciNet  MATH  Google Scholar 

  17. Horng, M.-H., Liou, R.-J.: Multilevel minimum cross entropy threshold selection based on the firefly algorithm. Expert Syst. Appl. 38, 14805–14811 (2011). doi:10.1016/j.eswa.2011.05.069

    Article  Google Scholar 

  18. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997). doi:10.1109/4235.585893

    Article  Google Scholar 

  19. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Glob. Optim. 39, 459–471 (2007). doi:10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(n.d.), 341–359. doi:10.1023/A:1008202821328

  21. Loganathan, G.V.V., Geem, Z.W., Kim, J.H., Loganathan, G.V.V.: A new heuristic optimization algorithm: harmony search. Simulation. 76, 60–68 (2001). doi:10.1177/003754970107600201

    Article  Google Scholar 

  22. Yang, X.S.: Flower pollination algorithm for global optimization. Lecture Notes Computer Science (Including Subser. Lecture Notes Artificial Intelligence Lecture Notes Bioinformatics), vol. 7445 pp. 240–249, LNCS (2012). doi:10.1007/978-3-642-32894-7_27

  23. Mantegna, R.: Fast, accurate algorithm for numerical simulation of Levy stable stochastic processes. Phys. Rev. E. (1994). http://journals.aps.org/pre/abstract/10.1103/PhysRevE.49.4677 20 Oct 2015

  24. Zukal, M., Mekyska, J., Cika, P., Smekal, Z.: Interest points as a focus measure in multi-spectral imaging. Radioengineering. 22, 68–81 (2013). doi:10.1109/TSP.2012.6256402

    Google Scholar 

  25. Silva, A., Saade, L.F., Sequeiros, D.C.M., Silva, G.O., Paiva, A.C., Bravo, A.C., Conci, R.S.: A new database for breast research with infrared image. J. Med. Imaging Heal. Inform. 4, 92–100 (2014)

    Google Scholar 

  26. Davis, J., Keck, M.: A two-stage approach to person detection in thermal imagery. IEEE Work. Appl. Comput. Vis. (2005)

    Google Scholar 

  27. Ghamisi, P., Couceiro, M.S., Benediktsson, J.A., Ferreira, N.M.F.: An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl. 39, 12407–12417 (2012). doi:10.1016/j.eswa.2012.04.078

    Article  Google Scholar 

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004). doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  29. Agrawal, S., Panda, R., Bhuyan, S., Panigrahi, B.K.: Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm Evol. Comput. 11, 16–30 (2013). doi:10.1016/j.swevo.2013.02.001

    Article  Google Scholar 

  30. Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20, 2378–2386 (2011). doi:10.1109/TIP.2011.2109730

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Hinojosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hinojosa, S., Pajares, G., Cuevas, E., Ortega-Sanchez, N. (2018). Thermal Image Segmentation Using Evolutionary Computation Techniques. In: Hassanien, A., Oliva, D. (eds) Advances in Soft Computing and Machine Learning in Image Processing. Studies in Computational Intelligence, vol 730. Springer, Cham. https://doi.org/10.1007/978-3-319-63754-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63754-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63753-2

  • Online ISBN: 978-3-319-63754-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics