Skip to main content

MEG and Multimodal Integration

  • Living reference work entry
  • First Online:
Magnetoencephalography
  • 197 Accesses

Abstract

Functional brain imaging methods provide measures of various physiological processes with a range of spatial and temporal scales. Because the sensitivity properties of the imaging modalities differ, combining multimodal data is expected to provide more information about brain activity than is available by any single method alone. Data from multiple modalities can be described as complementary or supportive, and consequently, can be analyzed using symmetric or asymmetric data fusion approaches. Complementary modalities have similar physiological origin and are observed with similar experimental paradigms. In a supportive role, data from one imaging modality guides the analysis and interpretation of another modality. In this chapter, we focus on the fusion of magnetoencephalography (MEG) data with electroencephalography (EEG), structural magnetic resonance imaging (MRI), and functional MRI (fMRI) data. For example, MEG and EEG are complementary modalities because they have similar source types, i.e., both are generated by cortical primary currents, but have different spatial sensitivity characteristics. The combination of MEG and EEG data can resolve certain ambiguities that can occur when data from only one of the modalities are available. MEG and fMRI can also be considered complementary if the different types of signals are obtained from a common experimental paradigm and are analyzed using symmetric, model-based, or data-driven fusion approaches. Structural MRI can provide supportive data for MEG source estimation, e.g., by indicating allowable locations and orientations of the MEG source currents. Similarly, fMRI can be used in a supportive role to suggest a likely source distribution for MEG among multiple alternatives. This chapter describes various approaches to multimodal neuroimaging data fusion and discusses their benefits and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agam Y, Hamalainen MS, Lee AK, Dyckman KA, Friedman JS, Isom M, Makris N, Manoach DS (2011) Multimodal neuroimaging dissociates hemodynamic and electrophysiological correlates of error processing. Proc Natl Acad Sci U S A 108:17556–17561

    Article  Google Scholar 

  • Ahlfors SP, Hamalainen MS (2012) MEG and EEG: source estimation. In: Brette R, Destexhe A (eds) Handbook of neural activity measurement. Cambridge University Press, Cambridge, MA, pp 257–286

    Chapter  Google Scholar 

  • Ahlfors SP, Simpson GV (2004) Geometrical interpretation of fMRI-guided MEG/EEG inverse estimates. NeuroImage 22:323–332

    Article  Google Scholar 

  • Ahlfors SP, Wreh C 2nd (2015) Modeling the effect of dendritic input location on MEG and EEG source dipoles. Med Biol Eng Comput 53:879–887

    Article  Google Scholar 

  • Ahlfors SP, Simpson GV, Dale AM, Belliveau JW, Liu AK, Korvenoja A, Virtanen J, Huotilainen M, Tootell RB, Aronen HJ, Ilmoniemi RJ (1999) Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI. J Neurophysiol 82:2545–2555

    Article  Google Scholar 

  • Ahlfors SP, Han J, Belliveau JW, Hamalainen MS (2010a) Sensitivity of MEG and EEG to source orientation. Brain Topogr 23:227–232

    Article  Google Scholar 

  • Ahlfors SP, Han J, Lin FH, Witzel T, Belliveau JW, Hamalainen MS, Halgren E (2010b) Cancellation of EEG and MEG signals generated by extended and distributed sources. Hum Brain Mapp 31:140–149

    Google Scholar 

  • Ahlfors SP, Jones SR, Ahveninen J, Hamalainen MS, Belliveau JW, Bar M (2015) Direction of magnetoencephalography sources associated with feedback and feedforward contributions in a visual object recognition task. Neurosci Lett 585:149–154

    Article  Google Scholar 

  • Aine CJ, Bockholt HJ, Bustillo JR, Canive JM, Caprihan A, Gasparovic C, Hanlon FM, Houck JM, Jung RE, Lauriello J, Liu J, Mayer AR, Perrone-Bizzozero NI, Posse S, Stephen JM, Turner JA, Clark VP, Calhoun VD (2017) Multimodal neuroimaging in schizophrenia: description and dissemination. Neuroinformatics 15:343–364

    Article  Google Scholar 

  • Auranen T, Nummenmaa A, Vanni S, Vehtari A, Hamalainen MS, Lampinen J, Jaaskelainen IP (2009) Automatic fMRI-guided MEG multidipole localization for visual responses. Hum Brain Mapp 30:1087–1099

    Article  Google Scholar 

  • Aydin U, Vorwerk J, Dumpelmann M, Kupper P, Kugel H, Heers M, Wellmer J, Kellinghaus C, Haueisen J, Rampp S, Stefan H, Wolters CH (2015) Combined EEG/MEG can outperform single modality EEG or MEG source reconstruction in presurgical epilepsy diagnosis. PLoS One 10:e0118753

    Article  Google Scholar 

  • Babajani A, Soltanian-Zadeh H (2006) Integrated MEG/EEG and fMRI model based on neural masses. IEEE Trans Biomed Eng 53:1794–1801

    Article  Google Scholar 

  • Babiloni F, Carducci F, Cincotti F, Del Gratta C, Pizzella V, Romani GL, Rossini PM, Tecchio F, Babiloni C (2001) Linear inverse source estimate of combined EEG and MEG data related to voluntary movements. Hum Brain Mapp 14:197–209

    Article  Google Scholar 

  • Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F (2003) Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study. NeuroImage 19:1–15

    Article  Google Scholar 

  • Baillet S, Garnero L (1997) A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem. IEEE Trans Biomed Eng 44:374–385

    Article  Google Scholar 

  • Baillet S, Garnero L, Marin G, Hugonin JP (1999) Combined MEG and EEG source imaging by minimization of mutual information. IEEE Trans Biomed Eng 46:522–534

    Article  Google Scholar 

  • Baule G, McFee R (1965) Theory of magnetic detection of the heart’s electrical activity. J Appl Phys 36:2066–2073

    Article  Google Scholar 

  • Beisteiner R, Gomiscek G, Erdler M, Teichtmeister C, Moser E, Deecke L (1995) Comparing localization of conventional functional magnetic resonance imaging and magnetoencephalography. Eur J Neurosci 7:1121–1124

    Article  Google Scholar 

  • Berman JI, Edgar JC, Blaskey L, Kuschner ES, Levy SE, Ku M, Dell J, Roberts TP (2016) Multimodal diffusion-MRI and MEG assessment of auditory and language system development in autism spectrum disorder. Front Neuroanat 10:30

    Article  Google Scholar 

  • Bojak I, Oostendorp TF, Reid AT, Kotter R (2011) Towards a model-based integration of co-registered electroencephalography/functional magnetic resonance imaging data with realistic neural population meshes. Philos Trans A Math Phys Eng Sci 369:3785–3801

    Article  MathSciNet  MATH  Google Scholar 

  • Calhoun VD, Sui J (2016) Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol Psychiatry Cogn Neurosci Neuroimaging 1:230–244

    Article  Google Scholar 

  • Cetin MS, Houck JM, Rashid B, Agacoglu O, Stephen JM, Sui J, Canive J, Mayer A, Aine C, Bustillo JR, Calhoun VD (2016) Multimodal classification of schizophrenia patients with MEG and fMRI data using static and dynamic connectivity measures. Front Neurosci 10:466

    Article  Google Scholar 

  • Chang WT, Ahlfors SP, Lin FH (2013) Sparse current source estimation for MEG using loose orientation constraints. Hum Brain Mapp 34:2190–2201

    Article  Google Scholar 

  • Chen Y, Davis MH, Pulvermuller F, Hauk O (2013) Task modulation of brain responses in visual word recognition as studied using EEG/MEG and fMRI. Front Hum Neurosci 7:376

    Google Scholar 

  • Chowdhury RA, Zerouali Y, Hedrich T, Heers M, Kobayashi E, Lina JM, Grova C (2015) MEG-EEG information fusion and electromagnetic source imaging: from theory to clinical application in epilepsy. Brain Topogr 28:785–812

    Article  Google Scholar 

  • Cichy RM, Pantazis D (2017) Multivariate pattern analysis of MEG and EEG: a comparison of representational structure in time and space. NeuroImage 158:441–454

    Article  Google Scholar 

  • Cichy RM, Pantazis D, Oliva A (2016) Similarity-based fusion of MEG and fMRI reveals Spatio-temporal dynamics in human cortex during visual object recognition. Cereb Cortex 26:3563–3579

    Article  Google Scholar 

  • Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175:664–666

    Article  Google Scholar 

  • Cohen D, Cuffin BN (1983) Demonstration of useful differences between magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 56:38–51

    Article  Google Scholar 

  • Colon AJ, Osch M, Buijs M, Grond JVD, Hillebrand A, Schijns O, Wagner GJ, Ossenblok P, Hofman P, Buchem MAV, Boon P (2018) MEG-guided analysis of 7T-MRI in patients with epilepsy. Seizure 60:29–38

    Article  Google Scholar 

  • Cottereau BR, Ales JM, Norcia AM (2015) How to use fMRI functional localizers to improve EEG/MEG source estimation. J Neurosci Methods 250:64–73

    Article  Google Scholar 

  • Dale AM, Halgren E (2001) Spatiotemporal mapping of brain activity by integration of multiple imaging modalities. Curr Opin Neurobiol 11:202–208

    Article  Google Scholar 

  • Dale AM, Sereno MI (1993) Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. J Cogn Neurosci 5:162–176

    Article  Google Scholar 

  • Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26:55–67

    Article  Google Scholar 

  • Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pelegrini-Issac M, Lina JM, Benali H (2007) Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage 36:69–87

    Article  MATH  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20:1743–1755

    Article  Google Scholar 

  • de Jongh A, de Munck JC, Goncalves SI, Ossenblok P (2005) Differences in MEG/EEG epileptic spike yields explained by regional differences in signal-to-noise ratios. J Clin Neurophysiol 22:153–158

    Article  Google Scholar 

  • Deco G, Cabral J, Woolrich MW, Stevner ABA, van Hartevelt TJ, Kringelbach ML (2017) Single or multiple frequency generators in on-going brain activity: a mechanistic whole-brain model of empirical MEG data. NeuroImage 152:538–550

    Article  Google Scholar 

  • Dehghani N, Cash SS, Chen CC, Hagler DJ Jr, Huang M, Dale AM, Halgren E (2010) Divergent cortical generators of MEG and EEG during human sleep spindles suggested by distributed source modeling. PLoS One 5:e11454

    Article  Google Scholar 

  • Del Gratta C, Della Penna S, Ferretti A, Franciotti R, Pizzella V, Tartaro A, Torquati K, Bonomo L, Romani GL, Rossini PM (2002) Topographic organization of the human primary and secondary somatosensory cortices: comparison of fMRI and MEG findings. NeuroImage 17:1373–1383

    Article  Google Scholar 

  • Diekmann V, Becker W, Jurgens R, Grozinger B, Kleiser B, Richter HP, Wollinsky KH (1998) Localisation of epileptic foci with electric, magnetic and combined electromagnetic models. Electroencephalogr Clin Neurophysiol 106:297–313

    Article  Google Scholar 

  • Ebersole JS, Ebersole SM (2010) Combining MEG and EEG source modeling in epilepsy evaluations. J Clin Neurophysiol 27:360–371

    Article  Google Scholar 

  • Eulitz C, Eulitz H, Elbert T (1997) Differential outcomes from magneto- and electroencephalography for the analysis of human cognition. Neurosci Lett 227:185–188

    Article  Google Scholar 

  • Fernandez A, Rios-Lago M, Abasolo D, Hornero R, Alvarez-Linera J, Paul N, Maestu F, Ortiz T (2011) The correlation between white-matter microstructure and the complexity of spontaneous brain activity: a difussion tensor imaging-MEG study. NeuroImage 57:1300–1307

    Article  Google Scholar 

  • Freeman WJ, Ahlfors SP, Menon V (2009) Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition. Int J Psychophysiol 73:43–52

    Article  Google Scholar 

  • Friston KJ, Glaser DE, Henson RN, Kiebel S, Phillips C, Ashburner J (2002) Classical and Bayesian inference in neuroimaging: applications. NeuroImage 16:484–512

    Article  Google Scholar 

  • Fuchs M, Wagner M, Wischmann HA, Kohler T, Theissen A, Drenckhahn R, Buchner H (1998) Improving source reconstructions by combining bioelectric and biomagnetic data. Electroencephalogr Clin Neurophysiol 107:93–111

    Article  Google Scholar 

  • Fujimaki N, Hayakawa T, Nielsen M, Knosche TR, Miyauchi S (2002) An fMRI-constrained MEG source analysis with procedures for dividing and grouping activation. NeuroImage 17:324–343

    Article  Google Scholar 

  • George JS, Lewis PS, Ranken DM, Kaplan L, Wood CC (1991) Anatomical constraints for neuromagnetic source models. SPIE Med Imaging V Image Phys 1443:37–51

    Article  Google Scholar 

  • George JS, Aine CJ, Mosher JC, Schmidt DM, Ranken DM, Schlitt HA, Wood CC, Lewine JD, Sanders JA, Belliveau JW (1995) Mapping function in the human brain with MEG, anatomical MRI and functional MRI. J Clin Neurophysiol 12:406–431

    Article  Google Scholar 

  • Goldenholz DM, Ahlfors SP, Hämäläinen MS, Sharon D, Ishitobi M, Vaina LM, Stufflebeam SM (2009) Mapping the signal-to-noise-ratios of cortical sources in magnetoencephalography and electroencephalography. Hum Brain Mapp 30:1077–1086

    Article  Google Scholar 

  • Grynszpan F, Geselowitz DB (1973) Model studies of the magnetocardiogram. Biophys J 13:911–925

    Article  Google Scholar 

  • Gutschalk A, Hamalainen MS, Melcher JR (2010) BOLD responses in human auditory cortex are more closely related to transient MEG responses than to sustained ones. J Neurophysiol 103:2015–2026

    Article  Google Scholar 

  • Hagen E, Naess S, Ness TV, Einevoll GT (2018) Multimodal modeling of neural network activity: computing LFP, ECoG, EEG, and MEG signals with LFPy 2.0. Front Neuroinform 12:92

    Article  Google Scholar 

  • Hagler DJ Jr, Ahmadi ME, Kuperman J, Holland D, McDonald CR, Halgren E, Dale AM (2009) Automated white-matter tractography using a probabilistic diffusion tensor atlas: application to temporal lobe epilepsy. Hum Brain Mapp 30:1535–1547

    Article  Google Scholar 

  • Hamalainen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32:35–42

    Article  Google Scholar 

  • Hamalainen M, Hari R, Lounasmaa OV, Williamson SJ (1995) Do auditory stimuli activate human parietal brain regions? Neuroreport 6:1712–1714

    Article  Google Scholar 

  • Hansen P, Kringelbach M, Salmelin R (2010) MEG: an introduction to methods. Oxford University Press, New York

    Book  Google Scholar 

  • Haueisen J, Ramon C, Czapski P, Eiselt M (1995) On the influence of volume currents and extended sources on neuromagnetic fields: a simulation study. Ann Biomed Eng 23:728–739

    Article  Google Scholar 

  • Haueisen J, Funke M, Gullmar D, Eichardt R (2012) Tangential and radial epileptic spike activity: different sensitivity in EEG and MEG. J Clin Neurophysiol 29:327–332

    Article  Google Scholar 

  • He B, Liu Z (2008) Multimodal functional neuroimaging: integrating functional MRI and EEG/MEG. IEEE Rev Biomed Eng 1:23–40

    Article  Google Scholar 

  • Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Munte TF, Gos A, Scherg M, Johannes S, Hundeshagen H et al (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372:543–546

    Article  Google Scholar 

  • Henson RN, Mouchlianitis E, Friston KJ (2009) MEG and EEG data fusion: simultaneous localisation of face-evoked responses. NeuroImage 47:581–589

    Article  Google Scholar 

  • Hillebrand A, Barnes GR (2002) A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage 16:638–650

    Article  Google Scholar 

  • Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. NeuroImage 59:3909–3921

    Article  Google Scholar 

  • Horwitz B, Poeppel D (2002) How can EEG/MEG and fMRI/PET data be combined? Hum Brain Mapp 17:1–3

    Article  Google Scholar 

  • Horwitz B, Tagamets MA, McIntosh AR (1999) Neural modeling, functional brain imaging, and cognition. Trends Cogn Sci 3:91–98

    Article  Google Scholar 

  • Houck JM, Cetin MS, Mayer AR, Bustillo JR, Stephen J, Aine C, Canive J, Perrone-Bizzozero N, Thoma RJ, Brookes MJ, Calhoun VD (2017) Magnetoencephalographic and functional MRI connectomics in schizophrenia via intra- and inter-network connectivity. NeuroImage 145:96–106

    Article  Google Scholar 

  • Huang MX, Song T, Hagler DJ Jr, Podgorny I, Jousmaki V, Cui L, Gaa K, Harrington DL, Dale AM, Lee RR, Elman J, Halgren E (2007) A novel integrated MEG and EEG analysis method for dipolar sources. NeuroImage 37:731–748

    Article  Google Scholar 

  • Huang MX, Theilmann RJ, Robb A, Angeles A, Nichols S, Drake A, D'Andrea J, Levy M, Holland M, Song T, Ge S, Hwang E, Yoo K, Cui L, Baker DG, Trauner D, Coimbra R, Lee RR (2009) Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J Neurotrauma 26:1213–1226

    Article  Google Scholar 

  • Huiskamp G, Agirre-Arrizubieta Z, Leijten F (2010) Regional differences in the sensitivity of MEG for interictal spikes in epilepsy. Brain Topogr 23:159–164

    Article  Google Scholar 

  • Huizenga HM, van Zuijen TL, Heslenfeld DJ, Molenaar PC (2001) Simultaneous MEG and EEG source analysis. Phys Med Biol 46:1737–1751

    Article  Google Scholar 

  • Hunold A, Funke ME, Eichardt R, Stenroos M, Haueisen J (2016) EEG and MEG: sensitivity to epileptic spike activity as function of source orientation and depth. Physiol Meas 37:1146–1162

    Article  Google Scholar 

  • Im CH, Jung HK, Fujimaki N (2005) fMRI-constrained MEG source imaging and consideration of fMRI invisible sources. Hum Brain Mapp 26:110–118

    Article  Google Scholar 

  • Im CH, Lee SY (2006) A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study. Phys Med Biol 51:6005–6021

    Article  Google Scholar 

  • Inoue T, Shimizu H, Nakasato N, Kumabe T, Yoshimoto T (1999) Accuracy and limitation of functional magnetic resonance imaging for identification of the central sulcus: comparison with magnetoencephalography in patients with brain tumors. NeuroImage 10:738–748

    Article  Google Scholar 

  • Irimia A, Van Horn JD, Halgren E (2012) Source cancellation profiles of electroencephalography and magnetoencephalography. NeuroImage 59:2464–2474

    Article  Google Scholar 

  • Jones SR, Pritchett DL, Stufflebeam SM, Hamalainen M, Moore CI (2007) Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 27:10751–10764

    Article  Google Scholar 

  • Jun SC, George JS, Kim W, Pare-Blagoev J, Plis S, Ranken DM, Schmidt DM (2008) Bayesian brain source imaging based on combined MEG/EEG and fMRI using MCMC. NeuroImage 40:1581–1594

    Article  Google Scholar 

  • Kadis DS, Dimitrijevic A, Toro-Serey CA, Smith ML, Holland SK (2016) Characterizing information flux within the distributed pediatric expressive language network: a Core region mapped through fMRI-constrained MEG effective connectivity analyses. Brain Connect 6:76–83

    Article  Google Scholar 

  • Kaiser D, Azzalini DC, Peelen MV (2016) Shape-independent object category responses revealed by MEG and fMRI decoding. J Neurophysiol 115:2246–2250

    Article  Google Scholar 

  • Knake S, Halgren E, Shiraishi H, Hara K, Hamer HM, Grant PE, Carr VA, Foxe D, Camposano S, Busa E, Witzel T, Hamalainen MS, Ahlfors SP, Bromfield EB, Black PM, Bourgeois BF, Cole AJ, Cosgrove GR, Dworetzky BA, Madsen JR, Larsson PG, Schomer DL, Thiele EA, Dale AM, Rosen BR, Stufflebeam SM (2006) The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res 69:80–86

    Article  Google Scholar 

  • Korvenoja A, Huttunen J, Salli E, Pohjonen H, Martinkauppi S, Palva JM, Lauronen L, Virtanen J, Ilmoniemi RJ, Aronen HJ (1999) Activation of multiple cortical areas in response to somatosensory stimulation: combined magnetoencephalographic and functional magnetic resonance imaging. Hum Brain Mapp 8:13–27

    Article  Google Scholar 

  • Lankinen K, Saari J, Hlushchuk Y, Tikka P, Parkkonen L, Hari R, Koskinen M (2018) Consistency and similarity of MEG- and fMRI-signal time courses during movie viewing. NeuroImage 173:361–369

    Article  Google Scholar 

  • Larson E, Maddox RK, Lee AK (2014) Improving spatial localization in MEG inverse imaging by leveraging intersubject anatomical differences. Front Neurosci 8:330

    Article  Google Scholar 

  • Lin YY, Shih YH, Hsieh JC, Yu HY, Yiu CH, Wong TT, Yeh TC, Kwan SY, Ho LT, Yen DJ, Wu ZA, Chang MS (2003) Magnetoencephalographic yield of interictal spikes in temporal lobe epilepsy. Comparison with scalp EEG recordings. NeuroImage 19:1115–1126

    Article  Google Scholar 

  • Lin FH, Belliveau JW, Dale AM, Hamalainen MS (2006) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27:1–13

    Article  Google Scholar 

  • Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc Natl Acad Sci U S A 95:8945–8950

    Article  Google Scholar 

  • Liu AK, Dale AM, Belliveau JW (2002) Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum Brain Mapp 16:47–62

    Article  Google Scholar 

  • Liu Z, Ding L, He B (2006) Integration of EEG/MEG with MRI and fMRI. IEEE Eng Med Biol Mag 25:46–53

    Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157

    Article  Google Scholar 

  • Lopes da Silva FH (2010) Electrophysiological basis of MEG signals. In: Hansen P, Kringelbach M, Salmelin R (eds) MEG: an introduction to methods. Oxford University Press, New York, pp 1–23

    Google Scholar 

  • Makela JP, Ahonen A, Hämäläinen M, Hari R, Ilmoniemi R, Kajola M, Knuutila J, Lounasmaa OV, McEvoy L, Salmelin R, Salonen O, Sams M, Simola J, Tesche C, Vasama J-P (1993) Functional differences between auditory cortices of the two hemispheres revealed by whole-head neuromagnetic recordings. Hum Brain Mapp 1:48–56

    Article  Google Scholar 

  • Malmivuo J, Plonsey R (1995) Bioelectromagnetism – principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York

    Book  Google Scholar 

  • Matchin W, Brodbeck C, Hammerly C, Lau E (2019) The temporal dynamics of structure and content in sentence comprehension: evidence from fMRI-constrained MEG. Hum Brain Mapp 40:663–678

    Article  Google Scholar 

  • Mathiak K, Fallgatter AJ (2005) Combining magnetoencephalography and functional magnetic resonance imaging. Int Rev Neurobiol 68:121–148

    Article  Google Scholar 

  • Mathiak K, Rapp A, Kircher TT, Grodd W, Hertrich I, Weiskopf N, Lutzenberger W, Ackermann H (2002) Mismatch responses to randomized gradient switching noise as reflected by fMRI and whole-head magnetoencephalography. Hum Brain Mapp 16:190–195

    Article  Google Scholar 

  • Melcher JR, Cohen D (1988) Dependence of the MEG on dipole orientation in the rabbit head. Electroencephalogr Clin Neurophysiol 70:460–472

    Article  Google Scholar 

  • Michel CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J (2009) Electrical neuroimaging. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • Molins A, Stufflebeam SM, Brown EN, Hamalainen MS (2008) Quantification of the benefit from integrating MEG and EEG data in minimum l2-norm estimation. NeuroImage 42:1069–1077

    Article  Google Scholar 

  • Moradi F, Liu LC, Cheng K, Waggoner RA, Tanaka K, Ioannides AA (2003) Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI. NeuroImage 18:595–609

    Article  Google Scholar 

  • Morioka T, Mizushima A, Yamamoto T, Tobimatsu S, Matsumoto S, Hasuo K, Fujii K, Fukui M (1995) Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials. Neuroradiology 37:526–530

    Article  Google Scholar 

  • Mosher JC, Spencer ME, Leahy RM, Lewis PS (1993) Error bounds for EEG and MEG dipole source localization. Electroencephalogr Clin Neurophysiol 86:303–321

    Article  Google Scholar 

  • Mosher JC, Leahy RM, Lewis PS (1999) EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng 46:245–259

    Article  Google Scholar 

  • Muravchik C, Bria O, Nehorai A (2000) EEG/MEG error bounds for a dynamic dipole source with a realistic head model. Methods Inf Med 39:110–113

    Article  Google Scholar 

  • Muthuraman M, Hellriegel H, Hoogenboom N, Anwar AR, Mideksa KG, Krause H, Schnitzler A, Deuschl G, Raethjen J (2014) Beamformer source analysis and connectivity on concurrent EEG and MEG data during voluntary movements. PLoS One 9:e91441

    Article  Google Scholar 

  • Natsukawa H, Kobayashi T (2015) Cortical activation associated with determination of depth order during transparent motion perception: a normalized integrative fMRI-MEG study. Hum Brain Mapp 36:3922–3934

    Article  Google Scholar 

  • Ossenblok P, de Munck JC, Colon A, Drolsbach W, Boon P (2007) Magnetoencephalography is more successful for screening and localizing frontal lobe epilepsy than electroencephalography. Epilepsia 48:2139–2149

    Article  Google Scholar 

  • Ou W, Nummenmaa A, Ahveninen J, Belliveau JW, Hamalainen MS, Golland P (2010) Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation. NeuroImage 52:97–108

    Article  Google Scholar 

  • Pflieger ME, Simpson GV, Ahlfors SP, Ilmoniemi RJ (2000) Superadditive information from simultaneous MEG/EEG Data. In: Aine CJ, Okada Y, Stroink G, Swithenby SJ, Wood CC (eds) BioMag96: 10th international conference on biomagnetism, vol II. Springer, Santa Fe, pp 1154–1157

    Google Scholar 

  • Phillips JW, Leahy RM, Mosher JC, Timsari B (1997) Imaging neural activity using MEG and EEG. IEEE Eng Med Biol Mag 16:34–42

    Article  Google Scholar 

  • Pineda-Pardo JA, Bruna R, Woolrich M, Marcos A, Nobre AC, Maestu F, Vidaurre D (2014) Guiding functional connectivity estimation by structural connectivity in MEG: an application to discrimination of conditions of mild cognitive impairment. NeuroImage 101:765–777

    Article  Google Scholar 

  • Plis SM, Calhoun VD, Weisend MP, Eichele T, Lane T (2010) MEG and fMRI fusion for non-linear estimation of neural and BOLD signal changes. Front Neuroinform 4:114

    Article  Google Scholar 

  • Poline J-P, Garnero L, Lahaue P-J (2010) Combining neuroimaging techniques: the future. In: Hansen P, Kringelbach M, Salmelin R (eds) MEG: an introduction to methods. Oxford University Press, New York, pp 273–299

    Chapter  Google Scholar 

  • Ramantani G, Boor R, Paetau R, Ille N, Feneberg R, Rupp A, Boppel T, Scherg M, Rating D, Bast T (2006) MEG versus EEG: influence of background activity on interictal spike detection. J Clin Neurophysiol 23:498–508

    Article  Google Scholar 

  • Reichert C, Durschmid S, Heinze HJ, Hinrichs H (2017) A comparative study on the detection of covert attention in event-related EEG and MEG signals to control a BCI. Front Neurosci 11:575

    Article  Google Scholar 

  • Riera J, Aubert E, Iwata K, Kawashima R, Wan X, Ozaki T (2005) Fusing EEG and fMRI based on a bottom-up model: inferring activation and effective connectivity in neural masses. Philos Trans R Soc Lond Ser B Biol Sci 360:1025–1041

    Article  Google Scholar 

  • Riera JJ, Valdes PA, Tanabe K, Kawashima R (2006) A theoretical formulation of the electrophysiological inverse problem on the sphere. Phys Med Biol 51:1737–1758

    Article  Google Scholar 

  • Rodin E, Funke M, Berg P, Matsuo F (2004) Magnetoencephalographic spikes not detected by conventional electroencephalography. Clin Neurophysiol 115:2041–2047

    Article  Google Scholar 

  • Rosen BR, Buckner RL, Dale AM (1998) Event-related functional MRI: past, present, and future. Proc Natl Acad Sci U S A 95:773–780

    Article  Google Scholar 

  • Rossini PM, Altamura C, Ferretti A, Vernieri F, Zappasodi F, Caulo M, Pizzella V, Del Gratta C, Romani GL, Tecchio F (2004) Does cerebrovascular disease affect the coupling between neuronal activity and local haemodynamics. Brain 127:99–110

    Article  Google Scholar 

  • Sanders JA, Lewine JD, Orrison WW (1996) Comparison of primary motor cortex localization using functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 4:47–57

    Article  Google Scholar 

  • Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK (2015) Mathematical framework for large-scale brain network modeling in the virtual brain. NeuroImage 111:385–430

    Article  Google Scholar 

  • Sharon D, Hamalainen MS, Tootell RB, Halgren E, Belliveau JW (2007) The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. NeuroImage 36:1225–1235

    Article  Google Scholar 

  • Simpson GV, Pflieger ME, Foxe JJ, Ahlfors SP, Vaughan HG Jr, Hrabe J, Ilmoniemi RJ, Lantos G (1995) Dynamic neuroimaging of brain function. J Clin Neurophysiol 12:432–449

    Article  Google Scholar 

  • Singh KD (2012) Which “neural activity” do you mean? fMRI, MEG, oscillations and neurotransmitters. NeuroImage 62:1121–1130

    Article  Google Scholar 

  • Singh KD, Barnes GR, Hillebrand A, Forde EM, Williams AL (2002) Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. NeuroImage 16:103–114

    Article  Google Scholar 

  • Stephen JM, Coffman BA, Jung RE, Bustillo JR, Aine CJ, Calhoun VD (2013) Using joint ICA to link function and structure using MEG and DTI in schizophrenia. NeuroImage 83:418–430

    Article  Google Scholar 

  • Stippich C, Freitag P, Kassubek J, Soros P, Kamada K, Kober H, Scheffler K, Hopfengartner R, Bilecen D, Radu EW, Vieth JB (1998) Motor, somatosensory and auditory cortex localization by fMRI and MEG. Neuroreport 9:1953–1957

    Article  Google Scholar 

  • Stok CJ, Spekreijse HJ, Peters MJ, Boom HB, Lopes da Silva FH (1990) A comparative EEG/MEG equivalent dipole study of the pattern onset visual response. Electroencephalogr Clin Neurophysiol Suppl 41:34–50

    Google Scholar 

  • Sui J, Adali T, Yu Q, Chen J, Calhoun VD (2012) A review of multivariate methods for multimodal fusion of brain imaging data. J Neurosci Methods 204:68–81

    Article  Google Scholar 

  • Sutherling WW, Levesque MF, Crandall PH, Barth DS (1991) Localization of partial epilepsy using magnetic and electric measurements. Epilepsia 32(Suppl 5):S29–S40

    Google Scholar 

  • Swettenham JB, Muthukumaraswamy SD, Singh KD (2013) BOLD responses in human primary visual cortex are insensitive to substantial changes in neural activity. Front Hum Neurosci 7:76

    Article  Google Scholar 

  • Tanaka N, Grant PE, Suzuki N, Madsen JR, Bergin AM, Hamalainen MS, Stufflebeam SM (2012) Multimodal imaging of spike propagation: a technical case report. AJNR Am J Neuroradiol 33:E82–E84

    Article  Google Scholar 

  • Torquati K, Pizzella V, Babiloni C, Del Gratta C, Della Penna S, Ferretti A, Franciotti R, Rossini PM, Romani GL (2005) Nociceptive and non-nociceptive sub-regions in the human secondary somatosensory cortex: an MEG study using fMRI constraints. NeuroImage 26:48–56

    Article  Google Scholar 

  • Tripp JH (1983) Physical concepts and mathematical models. In: Williamson SJ, Romani G-L, Kaufman L, Modena I (eds) Biomagnetism: an interdisciplinary approach. Plenum Press, New York, pp 101–139

    Chapter  Google Scholar 

  • Tuunanen PI, Kavec M, Jousmaki V, Usenius JP, Hari R, Salmelin R, Kauppinen RA (2003) Comparison of BOLD fMRI and MEG characteristics to vibrotactile stimulation. NeuroImage 19:1778–1786

    Article  Google Scholar 

  • Uludag K, Roebroeck A (2014) General overview on the merits of multimodal neuroimaging data fusion. NeuroImage 102(Pt 1):3–10

    Article  Google Scholar 

  • Valdes-Sosa PA, Sanchez-Bornot JM, Sotero RC, Iturria-Medina Y, Aleman-Gomez Y, Bosch-Bayard J, Carbonell F, Ozaki T (2009) Model driven EEG/fMRI fusion of brain oscillations. Hum Brain Mapp 30:2701–2721

    Article  Google Scholar 

  • Vartiainen J, Liljestrom M, Koskinen M, Renvall H, Salmelin R (2011) Functional magnetic resonance imaging blood oxygenation level-dependent signal and magnetoencephalography evoked responses yield different neural functionality in reading. J Neurosci 31:1048–1058

    Article  Google Scholar 

  • Vaughan HG Jr (1982) The neural origins of human event-related potentials. Ann N Y Acad Sci 388:125–138

    Article  Google Scholar 

  • Vauhkonen M, Vadasz D, Karjalainen PA, Somersalo E, Kaipio JP (1998) Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans Med Imaging 17:285–293

    Article  Google Scholar 

  • Wilson TW, Heinrichs-Graham E, Becker KM, Aloi J, Robertson KR, Sandkovsky U, White ML, O'Neill J, Knott NL, Fox HS, Swindells S (2015) Multimodal neuroimaging evidence of alterations in cortical structure and function in HIV-infected older adults. Hum Brain Mapp 36:897–910

    Article  Google Scholar 

  • Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinz HJ, Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 7:49–66

    Article  Google Scholar 

  • Wood CC, Cohen D, Cuffin BN, Allison T (1985) Electrical sources in human somatosensory cortex: identification by combined magnetic and potential recordings. Science 227:1051–1053

    Article  Google Scholar 

  • Xu J, Sheng J, Qian T, Luo YJ, Gao JH (2018) EEG/MEG source imaging using fMRI informed time-variant constraints. Hum Brain Mapp 39:1700–1711

    Article  Google Scholar 

  • Yoshinaga H, Nakahori T, Ohtsuka Y, Oka E, Kitamura Y, Kiriyama H, Kinugasa K, Miyamoto K, Hoshida T (2002) Benefit of simultaneous recording of EEG and MEG in dipole localization. Epilepsia 43:924–928

    Article  Google Scholar 

  • Yoshioka T, Toyama K, Kawato M, Yamashita O, Nishina S, Yamagishi N, Sato MA (2008) Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals. NeuroImage 42:1397–1413

    Article  Google Scholar 

  • Zijlmans M, Huiskamp GM, Leijten FS, Van Der Meij WM, Wieneke G, Van Huffelen AC (2002) Modality-specific spike identification in simultaneous magnetoencephalography/electroencephalography: a methodological approach. J Clin Neurophysiol 19:183–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seppo P. Ahlfors .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ahlfors, S.P. (2019). MEG and Multimodal Integration. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics