Skip to main content

Studying Dynamic Neural Interactions with MEG

  • Living reference work entry
  • First Online:
Magnetoencephalography

Abstract

Interactions between functionally specialized brain regions are crucial for normal brain function. Magnetoencephalography (MEG) is suited to capture these interactions because it provides whole head measurements of brain activity with temporal resolution in the millisecond range. Many different measures of connectivity exist, and in order to take the connectivity analysis results at face value, one should be aware of the strengths and weaknesses of these measures. Next to this, an important challenge in MEG connectivity analysis lies in the fact that more than one sensor picks up the activity of any underlying source. This field spread severely limits the utility of connectivity measures computed directly between sensor recordings. As a consequence, neuronal interactions should be ideally studied on the level of the reconstructed sources. MEG is well suited for this purpose, since its signal properties and high spatial sampling allow for relatively accurate unmixing of the sensor recordings. This chapter provides some necessary background on connectivity analysis in general and proceeds by describing the challenges that are associated with the analysis of MEG-based connectivity at the sensor level. Source-level approaches are described, and some recent advances with respect to MEG-based connectivity during the resting state and graph theoretic approaches are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Astolfi L, Cincotti F, Mattia D, Babiloni C, Carducci F, Basilisco A, Rossini PM, Salinari S, Ding L, Ni Y et al (2005) Assessing cortical functional connectivity by linear inverse estimation and directed transfer function: simulations and application to real data. Clin Neurophysiol 116(4):920–932

    Article  Google Scholar 

  • Atukeren E (2008) Christmas cards, Easter bunnies, and granger-causality. Qual Quant 42(6):835–844

    Article  Google Scholar 

  • Baccala LA, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84(6):463–474

    Article  MATH  Google Scholar 

  • Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. Sig Process Mag IEEE 18(6):14–30

    Article  Google Scholar 

  • Bassett DS, Meyer-Lindenberg A, Achard S, Duke T, Bullmore E (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A 103(51):19518–19523

    Article  Google Scholar 

  • Bassett DS, Bullmore ET, Meyer-Lindenberg A, Apud JA, Weinberger DR, Coppola R (2009) Cognitive fitness of cost-efficient brain functional networks. Proc Natl Acad Sci U S A 106(28):11747–11752

    Article  Google Scholar 

  • Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond Ser B Biol Sci 360(1457):1001–1013

    Article  Google Scholar 

  • Berger H (1929) Ãœber das elektrenkephalogramm des menschen. Eur Arch Psychiatry Clin Neurosci 87(1):527–570

    Google Scholar 

  • Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541

    Article  Google Scholar 

  • Bressler SL, Seth AK (2011) Wiener-Granger causality: a well established methodology. NeuroImage 58(2):323–329

    Article  Google Scholar 

  • Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR, Stephenson MC, Barnes GR, Smith SM, Morris PG (2011) Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proc Natl Acad Sci U S A 108:16783

    Article  Google Scholar 

  • Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Annu Rev Clin Psychol 7:113–140

    Article  Google Scholar 

  • Chen CC, Kiebel SJ, Friston KJ (2008) Dynamic causal modelling of induced responses. NeuroImage 41(4):1293–1312

    Article  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. NeuroImage 20(3):1743–1755

    Article  Google Scholar 

  • David O, Garnero L, Cosmelli D, Varela FJ (2002) Estimation of neural dynamics from MEG/EEG cortical current density maps: application to the reconstruction of large-scale cortical synchrony. IEEE Trans Biomed Eng 49(9):975–987

    Article  Google Scholar 

  • David O, Cosmelli D, Hasboun D, Garnero L (2003) A multitrial analysis for revealing significant corticocortical networks in magnetoencephalography and electroencephalography. NeuroImage 20(1):186–201

    Article  Google Scholar 

  • de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D, Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL, Corbetta M (2010) Temporal dynamics of spontaneous MEG activity in brain networks. Proc Natl Acad Sci U S A 107(13):6040–6045

    Article  Google Scholar 

  • de Pasquale F, Della Penna S, Snyder AZ, Marzetti L, Pizzella V, Romani GL, Corbetta M (2012) A cortical core for dynamic integration of functional networks in the resting human brain. Neuron 74(4):753–764

    Article  Google Scholar 

  • Deco G, Corbetta M (2011) The dynamical balance of the brain at rest. Neuroscientist 17(1):107–123

    Article  Google Scholar 

  • Erdoes P, Renyi A (1959) On random graphs I. Publ Math 6:290–297

    MathSciNet  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9(10):474–480

    Article  Google Scholar 

  • Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78

    Article  Google Scholar 

  • Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Friston KJ (2007) Dynamic causal modelling of evoked potentials: a reproducibility study. NeuroImage 36(3):571–580

    Article  Google Scholar 

  • Ghuman AS, McDaniel JR, Martin A (2011) A wavelet-based method for measuring the oscillatory dynamics of resting-state functional connectivity in MEG. NeuroImage 56(1):69–77

    Article  Google Scholar 

  • Gomez-Herrero G, Atienza M, Egiazarian K, Cantero JL (2008) Measuring directional coupling between EEG sources. NeuroImage 43(3):497–508

    Article  Google Scholar 

  • Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424–438

    Article  MATH  Google Scholar 

  • Gross J, Tass PA, Salenius S, Hari R, Freund HJ, Schnitzler A (2000) Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. J Physiol 527.(Pt 3:623–631

    Article  Google Scholar 

  • Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci U S A 98(2):694–699

    Article  Google Scholar 

  • Gross J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A (2002) The neural basis of intermittent motor control in humans. Proc Natl Acad Sci U S A 99(4):2299–2302

    Article  Google Scholar 

  • Gross J, Schmitz F, Schnitzler I, Kessler K, Shapiro K, Hommel B, Schnitzler A (2004) Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci U S A 101(35):13050–13055

    Article  Google Scholar 

  • Guggisberg AG, Honma SM, Findlay AM, Dalal SS, Kirsch HE, Berger MS, Nagarajan SS (2008) Mapping functional connectivity in patients with brain lesions. Ann Neurol 63(2):193–203

    Article  Google Scholar 

  • Haerle M, Rockstroh BS, Keil A, Wienbruch C, Elbert TR (2004) Mapping the brain’s orchestration during speech comprehension: task-specific facilitation of regional synchrony in neural networks. BMC Neurosci 5:40

    Article  Google Scholar 

  • Haufe S, Tomioka R, Nolte G, Müller KR, Kawanabe M (2010) Modeling sparse connectivity between underlying brain sources for EEG/MEG. IEEE Trans Biomed Eng 57(8):1954–1963

    Article  Google Scholar 

  • Haufe S, Nikulin VV, Müller KR, Nolte G (2013) A critical assessment of connectivity measures for EEG data: a simulation study. NeuroImage 64:120–133

    Article  Google Scholar 

  • Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. NeuroImage 59(4):3909–3921

    Article  Google Scholar 

  • Hipp JF, Engel AK, Siegel M (2011) Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69(2):387–396

    Article  Google Scholar 

  • Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK (2012) Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 15:884–890

    Article  Google Scholar 

  • Ioannides AA (2007) Dynamic functional connectivity. Curr Opin Neurobiol 17(2):161–170

    Article  Google Scholar 

  • Jensen O, Colgin LL (2007) Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11(7):267–269

    Article  Google Scholar 

  • Jerbi K, Lachaux J-P, N’Diaye K, Pantazis D, Leahy RM, Garnero L, Baillet S (2007) Coherent neural representation of hand speed in humans revealed by MEG imaging. Proc Natl Acad Sci U S A 104(18):7676–7681

    Article  Google Scholar 

  • Kaminski M, Liang H (2005) Causal influence: advances in neurosignal analysis. Crit Rev Biomed Eng 33(4):347–430

    Article  Google Scholar 

  • Kiebel SJ, Garrido MI, Moran RJ, Friston KJ (2008) Dynamic causal modelling for EEG and MEG. Cogn Neurodyn 2(2):121–136

    Article  Google Scholar 

  • Kujala J, Pammer K, Cornelissen P, Roebroeck A, Formisano E, Salmelin R (2007) Phase coupling in a cerebro-cerebellar network at 8–13 Hz during reading. Cereb Cortex 17(6):1476–1485

    Article  Google Scholar 

  • Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8(4):194–208

    Article  Google Scholar 

  • Luckhoo H, Hale JR, Stokes MG, Nobre AC, Morris PG, Brookes MJ, Woolrich MW (2012) Inferring task-related networks using independent component analysis in magnetoencephalography. NeuroImage 62(1):530–541

    Article  Google Scholar 

  • Makeig S, Westerfield M, Jung TP, Enghoff S, Townsend J, Courchesne E, Sejnowski TJ (2002) Dynamic brain sources of visual evoked responses. Science (New York, NY) 295(5555):690–694

    Article  Google Scholar 

  • Mantini D, Della Penna S, Marzetti L, de Pasquale F, Pizzella V, Corbetta M, Romani GL (2011) A signal-processing pipeline for magnetoencephalography resting-state networks. Brain Connect 1(1):49–59

    Article  Google Scholar 

  • Marinazzo D, Liao W, Chen H, Stramaglia S (2011) Nonlinear connectivity by Granger causality. NeuroImage 58(2):330–338

    Article  Google Scholar 

  • Moran RJ, Kiebel SJ, Stephan KE, Reilly RB, Daunizeau J, Friston KJ (2007) A neural mass model of spectral responses in electrophysiology. NeuroImage 37(3):706–720

    Article  Google Scholar 

  • Niedermeyer E, Silva FLD (2004) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, New York

    Google Scholar 

  • Nolte G (2003) The magnetic lead field theorem in the quasi-static approximation and its use for magnetoencephalography forward calculation in realistic volume conductors. Phys Med Biol 48(22):3637–3652

    Article  Google Scholar 

  • Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307

    Article  Google Scholar 

  • Nolte G, Ziehe A, Nikulin VV, Schlogl A, Kramer N, Brismar T, Müller K-R (2008) Robustly estimating the flow direction of information in complex physical systems. Phys Rev Lett 100(23):234101–234104

    Article  Google Scholar 

  • Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869

    Article  Google Scholar 

  • Palva S, Palva JM (2012) Discovering oscillatory interaction networks with M/EEG: challenges and breakthroughs. Trends Cogn Sci 16(4):219–230

    Article  Google Scholar 

  • Palva JM, Monto S, Kulashekhar S, Palva S (2010) Neuronal synchrony reveals working memory networks and predicts individual memory capacity. Proc Natl Acad Sci U S A 107(16):7580–7585

    Article  Google Scholar 

  • Peelle JE, Gross J, Davis MH (2012) Phase-locked responses to speech in human auditory cortex are enhanced during comprehension. Cereb Cortex 23:1378

    Article  Google Scholar 

  • Penny WD, Litvak V, Fuentemilla L, Duzel E, Friston K (2009) Dynamic causal models for phase coupling. J Neurosci Methods 183(1):19–30

    Article  Google Scholar 

  • Romei V, Rihs T, Brodbeck V, Thut G (2008) Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. Neuroreport 19(2):203–208

    Article  Google Scholar 

  • Schloegl A, Supp G, Christa N, Wolfgang K (2006) Analyzing event-related EEG data with multivariate autoregressive parameters. In: Event-related dynamics of brain oscillations. Elsevier, Amsterdam, pp 135–147

    Chapter  Google Scholar 

  • Schnitzler A, Gross J (2005) Normal and pathological oscillatory communication in the brain. Nat Rev Neurosci 6(4):285–296

    Article  Google Scholar 

  • Schoffelen J-M, Gross J (2009) Source connectivity analysis with MEG and EEG. Hum Brain Mapp 30(6):1857–1865

    Article  Google Scholar 

  • Schoffelen J-M, Oostenveld R, Fries P (2008) Imaging the human motor system’s beta-band synchronization during isometric contraction. NeuroImage 41(2):437–447

    Article  Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85(2):461–464

    Article  Google Scholar 

  • Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK (2008) Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60(4):709–719

    Article  Google Scholar 

  • Siegel M, Donner TH, Engel AK (2012) Spectral fingerprints of large-scale neuronal interactions. Nat Rev Neurosci 13:121–134

    Article  Google Scholar 

  • Sporns O (2011) Networks of the brain. MIT Press, Cambridge

    MATH  Google Scholar 

  • Stam CJ (2004) Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? Neurosci Lett 355(1–2):25–28

    Article  Google Scholar 

  • Stam CJ (2010) Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci 289(1–2):128–134

    Article  Google Scholar 

  • Stam CJ, Van Dijk BW (2002) Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 163(3–4):236–251

    Article  MathSciNet  MATH  Google Scholar 

  • Stam CJ, van Straaten EC (2012) The organization of physiological brain networks. Clin Neurophysiol 123(6):1067–1087

    Article  Google Scholar 

  • Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193

    Article  Google Scholar 

  • Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy–a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30(1):45–67

    Article  MathSciNet  Google Scholar 

  • Vinck M, Oostenveld R, van Wingerden M, Battaglia F, Pennartz CMA (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. NeuroImage 55(4):1548–1565

    Article  Google Scholar 

  • Westlake KP, Hinkley LB, Bucci M, Guggisberg AG, Findlay AM, Henry RG, Nagarajan SS, Byl N (2012) Resting state alpha-band functional connectivity and recovery after stroke. Exp Neurol 237(1):160–169

    Article  Google Scholar 

  • Wiener N (1956) The theory of prediction, modern mathematics for engineers. McGraw-Hill, New York, pp 165–190

    Google Scholar 

  • Winter WR, Nunez PL, Ding J, Srinivasan R (2007) Comparison of the effect of volume conduction on EEG coherence with the effect of field spread on MEG coherence. Stat Med 26(21):3946–3957

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Gross .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Schoffelen, JM., Gross, J. (2019). Studying Dynamic Neural Interactions with MEG. In: Supek, S., Aine, C. (eds) Magnetoencephalography. Springer, Cham. https://doi.org/10.1007/978-3-319-62657-4_18-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62657-4_18-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62657-4

  • Online ISBN: 978-3-319-62657-4

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics