Skip to main content

Local Immunotherapies of Cancer

  • Chapter
  • First Online:
Oncoimmunology

Abstract

The past decade has seen clinical cancer research turn away from refining cytotoxic therapies to identifying immunomodulatory therapies that can harness the immune system to do the work of fighting cancer for us. The first revolution in cancer therapy brought us potent but toxic chemotherapies that were often initially good at controlling tumors; however, in the metastatic setting, recurrence was typically inevitable and more difficult to control. Immunotherapy has now emerged as among the most promising class of therapeutics for the treatment of cancer. These therapies harness the potent tumoricidal potential of cytotoxic effector cells of the patient’s own immune system. Although checkpoint-blocking antibodies approved in the past decade offer great promise, they non-specifically release the brakes on immune cells, and the majority of cancer patients are, so far, non-responders, while some patients experience toxic autoimmune adverse effects. One approach to improve on these limitations is with localized, in situ therapies, inducing a vaccinal response within the tumor microenvironment. These approaches alter the tumor microenvironment by inducing local immunogenic cell death to release tumor antigen, recruiting inflammatory leukocytes, priming of the adaptive immune response, and inhibiting tolerogenic mechanisms through which tumors dampen the immune response. Through a combined approach using some or all of these features, we are working to develop an in situ vaccine strategy that will result in systemic elimination of tumor cells as well as long-term remissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Busch W. Aus der Sitzung der medicinischen section vom 13 November 1867. Berl Klin Wochenschr. 1868;5:b99.

    Google Scholar 

  2. Coley WB. The treatment of malignant tumours by repeated inoculations of erysipelas with a report of ten original cases. Am J Med Sci. 1893;105:487.

    Article  Google Scholar 

  3. Otto F, et al. Phase II trial of intravenous endotoxin in patients with colorectal and non-small cell lung cancer. Eur J Cancer. 1996;32A:1712–8.

    Article  CAS  PubMed  Google Scholar 

  4. Goto S, et al. Intradermal administration of lipopolysaccharide in treatment of human cancer. Cancer Immunol Immunother. 1996;42:255–61.

    Article  CAS  PubMed  Google Scholar 

  5. Engelhardt R, Mackensen A, Galanos C. Phase I trial of intravenously administered endotoxin (Salmonella abortus equi) in cancer patients. Cancer Res. 1991;51:2524–30.

    CAS  PubMed  Google Scholar 

  6. Ansell SM, et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15:6446–53. doi:10.1158/1078-0432.CCR-09-1339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ansell SM, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372:311–9. doi:10.1056/NEJMoa1411087.

    Article  PubMed  CAS  Google Scholar 

  8. Armand P, et al. Programmed death-1 blockade with pembrolizumab in patients with classical hodgkin lymphoma after brentuximab vedotin failure. J Clin Oncol. 2016; doi:10.1200/JCO.2016.67.3467.

  9. Zinzani PL, et al. Phase 1b study of PD-1 blockade with pembrolizumab in patients with relapsed/refractory primary mediastinal large B-cell lymphoma (PMBCL). Blood. 2015;126:3986.

    Google Scholar 

  10. Spranger S, et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell–inflamed tumor microenvironment in melanoma. Proc Natl Acad Sci. 2016;113:E7759–68. doi:10.1073/pnas.1609376113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8:328rv324. doi:10.1126/scitranslmed.aad7118.

    Article  CAS  Google Scholar 

  12. Hellmann MD, Gettinger SN, Goldman JW, Brahmer JR, Borghaei H, Chow LQ, Ready N, Gerber DE, Juergens RA, Shepherd FA, Laurie SA, Zhou Y, Geese WJ, Agrawal S, Li X, Antonia SJ. CheckMate 012: safety and efficacy of first-line (1L) nivolumab (nivo; N) and ipilimumab (ipi; I) in advanced (adv) NSCLC. J Clin Oncol. 2016;34(15):3001.

    Google Scholar 

  13. Sharma, P. in Society for the Immunotherapy of Cancer.

    Google Scholar 

  14. Wolchok JD, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33. doi:10.1056/NEJMoa1302369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72. doi:10.1146/annurev-immunol-032712-100008.

    Article  CAS  PubMed  Google Scholar 

  16. Mole RH. Whole body irradiation; radiobiology or medicine? Br J Radiol. 1953;26:234–41. doi:10.1259/0007-1285-26-305-234.

    Article  CAS  PubMed  Google Scholar 

  17. Apetoh L, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–9. doi:10.1038/nm1622.

    Article  CAS  PubMed  Google Scholar 

  18. Ghiringhelli F, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15:1170–8. doi:10.1038/nm.2028.

    Article  CAS  PubMed  Google Scholar 

  19. Obeid M, et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 2007;14:1848–50. doi:10.1038/sj.cdd.4402201.

    Article  CAS  PubMed  Google Scholar 

  20. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5. doi:10.1038/nature00858.

    Article  CAS  PubMed  Google Scholar 

  21. Zitvogel L, Kepp O, Kroemer G. Decoding cell death signals in inflammation and immunity. Cell. 2010;140:798–804. doi:10.1016/j.cell.2010.02.015.

    Article  CAS  PubMed  Google Scholar 

  22. Deng L, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:843–52. doi:10.1016/j.immuni.2014.10.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsumura S, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181:3099–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lugade AA, et al. Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol. 2008;180:3132–9.

    Article  CAS  PubMed  Google Scholar 

  25. Cekic C, Linden J. Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment. Cancer Res. 2014;74:7239–49. doi:10.1158/0008-5472.CAN-13-3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barcellos-Hoff MH, Derynck R, Tsang ML, Weatherbee JA. Transforming growth factor-beta activation in irradiated murine mammary gland. J Clin Invest. 1994;93:892–9. doi:10.1172/JCI117045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vanpouille-Box C, et al. TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res. 2015;75:2232–42. doi:10.1158/0008-5472.CAN-14-3511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deng L, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124:687–95. doi:10.1172/JCI67313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dovedi SJ, et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 2014;74:5458–68. doi:10.1158/0008-5472.CAN-14-1258.

    Article  CAS  PubMed  Google Scholar 

  30. Demaria S, et al. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res. 2005;11:728–34.

    CAS  PubMed  Google Scholar 

  31. Kwon ED, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:700–12. doi:10.1016/S1470-2045(14)70189-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kang J, Demaria S, Formenti S. Current clinical trials testing the combination of immunotherapy with radiotherapy. J Immunother Cancer. 2016;4:51. doi:10.1186/s40425-016-0156-7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dewan MZ, et al. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15:5379–88. doi:10.1158/1078-0432.ccr-09-0265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kepp O, et al. Molecular determinants of immunogenic cell death elicited by anticancer chemotherapy. Cancer Metastasis Rev. 2011;30:61–9. doi:10.1007/s10555-011-9273-4.

    Article  CAS  PubMed  Google Scholar 

  35. Ghiringhelli F, et al. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34:336–44. doi:10.1002/eji.200324181.

    Article  CAS  PubMed  Google Scholar 

  36. Turtle CJ, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell all patients. J Clin Invest. 2016;126:2123–38. doi:10.1172/JCI85309.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Dranoff G, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 1993;90:3539–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huleihel M, Douvdevani A, Segal S, Apte RN. Different regulatory levels are involved in the generation of hemopoietic cytokines (CSFs and IL-6) in fibroblasts stimulated by inflammatory products. Cytokine. 1993;5:47–56.

    Article  CAS  PubMed  Google Scholar 

  39. Griffin JD, et al. The biology of GM-CSF: regulation of production and interaction with its receptor. Int J Cell Cloning. 1990;8(Suppl 1):35–44; discussion 44-35. doi:10.1002/stem.5530080705.

    Article  CAS  PubMed  Google Scholar 

  40. Becher B, Tugues S, Greter M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity. 2016;45:963–73. doi:10.1016/j.immuni.2016.10.026.

    Article  CAS  PubMed  Google Scholar 

  41. Mach N, et al. Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res. 2000;60:3239–46.

    CAS  PubMed  Google Scholar 

  42. Spitler LE, et al. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J Clin Oncol. 2000;18:1614–21. doi:10.1200/jco.2000.18.8.1614.

    Article  CAS  PubMed  Google Scholar 

  43. Soiffer R, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 1998;95:13141–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Salgia R, et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol. 2003;21:624–30. doi:10.1200/JCO.2003.03.091.

    Article  PubMed  Google Scholar 

  45. Simons JW, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res. 1999;59:5160–8.

    CAS  PubMed  Google Scholar 

  46. Soiffer R, et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol. 2003;21:3343–50. doi:10.1200/JCO.2003.07.005.

    Article  CAS  PubMed  Google Scholar 

  47. Kolstad A, et al. Sequential intranodal immunotherapy induces antitumor immunity and correlated regression of disseminated follicular lymphoma. Blood. 2015;125:82–9. doi:10.1182/blood-2014-07-592162.

    Article  CAS  PubMed  Google Scholar 

  48. Gutschalk CM, et al. GM-CSF enhances tumor invasion by elevated MMP-2, −9, and −26 expression. Cancer Med. 2013;2:117–29. doi:10.1002/cam4.20.

    Article  CAS  PubMed  Google Scholar 

  49. Baldwin GC, et al. Nonhematopoietic tumor cells express functional GM-CSF receptors. Blood. 1989;73:1033–7.

    CAS  PubMed  Google Scholar 

  50. Braun B, Lange M, Oeckler R, Mueller MM. Expression of G-CSF and GM-CSF in human meningiomas correlates with increased tumor proliferation and vascularization. J Neuro-Oncol. 2004;68:131–40.

    Article  Google Scholar 

  51. Mueller MM, Fusenig NE. Constitutive expression of G-CSF and GM-CSF in human skin carcinoma cells with functional consequence for tumor progression. Int J Cancer. 1999;83:780–9.

    Article  CAS  PubMed  Google Scholar 

  52. Mueller MM, et al. Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Am J Pathol. 2001;159:1567–79. doi:10.1016/S0002-9440(10)62541-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perez FA, Fligner CL, Yu EY. Rapid clinical deterioration and leukemoid reaction after treatment of urothelial carcinoma of the bladder: possible effect of granulocyte colony-stimulating factor. J Clin Oncol. 2009;27:e215–7. doi:10.1200/JCO.2009.22.4931.

    Article  PubMed  Google Scholar 

  54. Revoltella RP, Menicagli M, Campani D. Granulocyte-macrophage colony-stimulating factor as an autocrine survival-growth factor in human gliomas. Cytokine. 2012;57:347–59. doi:10.1016/j.cyto.2011.11.016.

    Article  CAS  PubMed  Google Scholar 

  55. Urdinguio RG, et al. Immune-dependent and independent antitumor activity of GM-CSF aberrantly expressed by mouse and human colorectal tumors. Cancer Res. 2013;73:395–405. doi:10.1158/0008-1078 5472.CAN-12-0806.

  56. Ardekani TFM, et al. Evaluation of pre-treatment serum levels of IL-7 and GM-CSF in colorectal cancer patients. Int J Mol Cell Med. 2014;3:27–34.

    Google Scholar 

  57. Montag M, et al. Angiogenic growth factors in tissue homogenates of HNSCC: expression pattern, prognostic relevance, and interrelationships. Cancer Sci. 2009;100:1210–8. doi:10.1111/j.1349-7006.2009.01158.x.

    Article  CAS  PubMed  Google Scholar 

  58. Ninck S, et al. Expression profiles of angiogenic growth factors in squamous cell carcinomas of the head and neck. Int J Cancer. 2003;106:34–44. doi:10.1002/ijc.11188.

    Article  CAS  PubMed  Google Scholar 

  59. Wetzler M, et al. Granulocyte-macrophage colony-stimulating factor as a cause of paraneoplastic leukaemoid reaction in advanced transitional cell carcinoma. J Intern Med. 1993;234:417–20.

    Article  CAS  PubMed  Google Scholar 

  60. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One. 2008;3:e3077. doi:10.1371/journal.pone.0003077.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Wang J, et al. Granulocyte-colony stimulating factor promotes proliferation, migration and invasion in glioma cells. Cancer Biol Ther. 2012;13:389–400. doi:10.4161/cbt.19237.

    Article  CAS  PubMed  Google Scholar 

  62. Lyman SD, Jacobsen SE. C-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood. 1998;91:1101–34.

    CAS  PubMed  Google Scholar 

  63. Blom B, Ho S, Antonenko S, Liu YJ. Generation of interferon alpha-producing predendritic cell (pre-DC)2 from human CD34(+) hematopoietic stem cells. J Exp Med. 2000;192:1785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen W, et al. FLT3 ligand administration after hematopoietic cell transplantation increases circulating dendritic cell precursors that can be activated by CpG oligodeoxynucleotides to enhance T-cell and natural killer cell function. Biol Blood Marrow Transplant. 2005;11:23–34. doi:10.1016/j.bbmt.2004.08.004.

    Article  CAS  PubMed  Google Scholar 

  65. Gilliet M, et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med. 2002;195:953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Miller JS, McCullar V, Punzel M, Lemischka IR, Moore KA. Single adult human CD34(+)/Lin−/CD38(−) progenitors give rise to natural killer cells, B-lineage cells, dendritic cells, and myeloid cells. Blood. 1999;93:96–106.

    CAS  PubMed  Google Scholar 

  67. Breton G, et al. Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs. J Exp Med. 2016;213(13):2861–70. doi:10.1084/jem.20161135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Broz ML, et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell. 2014;26:638–52. doi:10.1016/j.ccell.2014.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Salmon H, et al. Expansion and activation of CD103+ DC progenitors at the tumor site promote T cell accumulation in melanoma lesions and transform clinical response to BRAF and PD-L1 blockade. Immunity. 2015, (in press).

    Google Scholar 

  70. Brasel K, et al. Hematologic effects of flt3 ligand in vivo in mice. Blood. 1996;88:2004–12.

    CAS  PubMed  Google Scholar 

  71. Fernandez N, et al. Active specific T-cell-based immunotherapy for cancer: nucleic acids, peptides, whole native proteins, recombinant viruses, with dendritic cell adjuvants or whole tumor cell-based vaccines. Principles and future prospects. Cytokines Cell Mol Ther. 1998;4:53–65.

    CAS  PubMed  Google Scholar 

  72. Kutzler MA, Weiner DB. Developing DNA vaccines that call to dendritic cells. J Clin Invest. 2004;114:1241–4. doi:10.1172/JCI23467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miller G, Pillarisetty VG, Shah AB, Lahrs S, DeMatteo RP. Murine Flt3 ligand expands distinct dendritic cells with both tolerogenic and immunogenic properties. J Immunol. 2003;170:3554–64.

    Article  CAS  PubMed  Google Scholar 

  74. Averbook BJ, Schuh JL, Papay R, Maliszewski C. Antitumor effects of Flt3 ligand in transplanted murine tumor models. J Immunother. 2002;25:27–35.

    Article  CAS  PubMed  Google Scholar 

  75. Chen K, et al. Antitumor activity and immunotherapeutic properties of Flt3-ligand in a murine breast cancer model. Cancer Res. 1997;57:3511–6.

    CAS  PubMed  Google Scholar 

  76. Ciavarra RP, et al. Flt3-ligand induces transient tumor regression in an ectopic treatment model of major histocompatibility complex-negative prostate cancer. Cancer Res. 2000;60:2081–4.

    CAS  PubMed  Google Scholar 

  77. Drexler HG, Meyer C, Quentmeier H. Effects of FLT3 ligand on proliferation and survival of myeloid leukemia cells. Leuk Lymphoma. 1999;33:83–91. doi:10.3109/10428199909093728.

    Article  CAS  PubMed  Google Scholar 

  78. Esche C, Subbotin VM, Maliszewski C, Lotze MT, Shurin MR. FLT3 ligand administration inhibits tumor growth in murine melanoma and lymphoma. Cancer Res. 1998;58:380–3.

    CAS  PubMed  Google Scholar 

  79. Hou S, et al. Eradication of hepatoma and colon cancer in mice with Flt3L gene therapy in combination with 5-FU. Cancer Immunol Immunother. 2007;56:1605–13. doi:10.1007/s00262-007-0306-3.

    Article  CAS  PubMed  Google Scholar 

  80. Peron JM, et al. FLT3-ligand administration inhibits liver metastases: role of NK cells. J Immunol. 1998;161:6164–70.

    CAS  PubMed  Google Scholar 

  81. Wang A, Braun SE, Sonpavde G, Cornetta K. Antileukemic activity of Flt3 ligand in murine leukemia. Cancer Res. 2000;60:1895–900.

    CAS  PubMed  Google Scholar 

  82. Chakravarty PK, et al. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 1999;59:6028–32.

    CAS  PubMed  Google Scholar 

  83. Demaria S, et al. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70. doi:10.1016/j.ijrobp.2003.09.012.

    Article  PubMed  Google Scholar 

  84. Fong L, et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A. 2001;98:8809–14. doi:10.1073/pnas.141226398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Freedman RS, et al. Pilot study of Flt3 ligand comparing intraperitoneal with subcutaneous routes on hematologic and immunologic responses in patients with peritoneal carcinomatosis and mesotheliomas. Clin Cancer Res. 2003;9:5228–37.

    CAS  PubMed  Google Scholar 

  86. Higano CS, et al. Safety and biological activity of repeated doses of recombinant human Flt3 ligand in patients with bone scan-negative hormone-refractory prostate cancer. Clin Cancer Res. 2004;10:1219–25.

    Article  CAS  PubMed  Google Scholar 

  87. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015;33:257–90. doi:10.1146/annurev-immunol-032414-112240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Syed TA, Goswami J, Ahmadpour OA, Ahmad SA. Treatment of molluscum contagiosum in males with an analog of imiquimod 1% in cream: a placebo-controlled, double-blind study. J Dermatol. 1998;25:309–13.

    Article  CAS  PubMed  Google Scholar 

  89. Grillo-Ardila CF, et al. Imiquimod for anogenital warts in non-immunocompromised adults. Cochrane Database Syst Rev. 2014;11:CD010389. doi:10.1002/14651858.CD010389.pub2.

    Google Scholar 

  90. Geisse J, et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J Am Acad Dermatol. 2004;50:722–33. doi:10.1016/j.jaad.2003.11.066.

    Article  PubMed  Google Scholar 

  91. Dewan MZ, et al. Synergy of topical toll-like receptor 7 agonist with radiation and low-dose cyclophosphamide in a mouse model of cutaneous breast cancer. Clin Cancer Res. 2012;18:6668–78. doi:10.1158/1078-0432.CCR-12-0984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Adams S, et al. Topical TLR7 agonist imiquimod can induce immune-mediated rejection of skin metastases in patients with breast cancer. Clin Cancer Res. 2012;18:6748–57. doi:10.1158/1078-0432.CCR-12-1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Henriques L, et al. Imiquimod in the treatment of breast cancer skin metastasis. J Clin Oncol. 2014;32:e22–5. doi:10.1200/JCO.2012.46.4883.

    Article  PubMed  Google Scholar 

  94. Smyth EC, et al. Treatment of locally recurrent mucosal melanoma with topical imiquimod. J Clin Oncol. 2011;29:e809–11. doi:10.1200/JCO.2011.36.8829.

    Article  PubMed  Google Scholar 

  95. Calista D, Riccioni L, Bagli L, Valenzano F. Long-term remission of primary cutaneous neutrophil-rich CD30+ anaplastic large cell lymphoma treated with topical imiquimod. A case report. J Eur Acad Dermatol Venereol. 2015;30(5):899–901. doi:10.1111/jdv.13070.

    Article  PubMed  Google Scholar 

  96. Didona B, et al. Primary cutaneous CD30+ T-cell lymphoma responsive to topical imiquimod (Aldara). Br J Dermatol. 2004;150:1198–201. doi:10.1111/j.1365-2133.2004.05993.x.

    Article  CAS  PubMed  Google Scholar 

  97. Ehst BD, Dreno B, Vonderheid EC. Primary cutaneous CD30+ anaplastic large cell lymphoma responds to imiquimod cream. Eur J Dermatol. 2008;18:467–8. doi:10.1684/ejd.2008.0450.

    PubMed  Google Scholar 

  98. Ariffin N, Khorshid M. Treatment of mycosis fungoides with imiquimod 5% cream. Clin Exp Dermatol. 2006;31:822–3. doi:10.1111/j.1365-2230.2006.02208.x.

    Article  CAS  PubMed  Google Scholar 

  99. Dummer R, Urosevic M, Kempf W, Kazakov D, Burg G. Imiquimod induces complete clearance of a PUVA-resistant plaque in mycosis fungoides. Dermatology. 2003;207:116–118. doi:70962 70962 [pii].

    Article  PubMed  Google Scholar 

  100. Suchin KR, Junkins-Hopkins JM, Rook AH. Treatment of stage IA cutaneous T-cell lymphoma with topical application of the immune response modifier imiquimod. Arch Dermatol. 2002;138:1137–1139. doi:dce20018.

    Article  PubMed  Google Scholar 

  101. Chong A, Loo WJ, Banney L, Grant JW, Norris PG. Imiquimod 5% cream in the treatment of mycosis fungoides—a pilot study. J Dermatolog Treat. 2004;15:118–9. doi:10.1080/09546630310019373. 59HC05A57N4CA00X [pii].

    Article  CAS  PubMed  Google Scholar 

  102. Deeths MJ, Chapman JT, Dellavalle RP, Zeng C, Aeling JL. Treatment of patch and plaque stage mycosis fungoides with imiquimod 5% cream. J Am Acad Dermatol. 2005;52:275–80. doi:10.1016/j.jaad.2004.04.049.

    Article  PubMed  Google Scholar 

  103. Ardigo M, Cota C, Berardesca E. Unilesional mycosis fungoides successfully treated with imiquimod. Eur J Dermatol. 2006;16:446.

    PubMed  Google Scholar 

  104. Richmond HM, Lozano A, Jones D, Duvic M. Primary cutaneous follicle center lymphoma associated with alopecia areata. Clin Lymphoma Myeloma. 2008;8:121–4. doi:10.3816/CLM.2008.n.015.

    Article  PubMed  Google Scholar 

  105. Stavrakoglou A, Brown VL, Coutts I. Successful treatment of primary cutaneous follicle centre lymphoma with topical 5% imiquimod. Br J Dermatol. 2007;157:620–2. doi:10.1111/j.1365-2133.2007.07976.x.

    Article  CAS  PubMed  Google Scholar 

  106. Coors EA, Schuler G, Von Den Driesch P. Topical imiquimod as treatment for different kinds of cutaneous lymphoma. Eur J Dermatol. 2006;16:391–3.

    CAS  PubMed  Google Scholar 

  107. Spaner DE, et al. Regression of lymphomatous skin deposits in a chronic lymphocytic leukemia patient treated with the toll-like receptor-7/8 agonist, imiquimod. Leuk Lymphoma. 2005;46:935–9. doi:10.1080/10428190500054426.

    Article  PubMed  Google Scholar 

  108. Shackleton M, et al. The impact of imiquimod, a toll-like receptor-7 ligand (TLR7L), on the immunogenicity of melanoma peptide vaccination with adjuvant Flt3 ligand. Cancer Immun. 2004;4:9.

    PubMed  Google Scholar 

  109. Sidky YA, et al. Inhibition of murine tumor growth by an interferon-inducing imidazoquinolinamine. Cancer Res. 1992;52:3528–33.

    CAS  PubMed  Google Scholar 

  110. Dovedi SJ, et al. Systemic delivery of a TLR7 agonist in combination with radiation primes durable antitumor immune responses in mouse models of lymphoma. Blood. 2013;121:251–9. doi:10.1182/blood-2012-05-432393.

    Article  CAS  PubMed  Google Scholar 

  111. Singh M, et al. Effective innate and adaptive antimelanoma immunity through localized TLR7/8 activation. J Immunol. 2014;193:4722–31. doi:10.4049/jimmunol.1401160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mullins S, et al. Abstract 1475: local immune activation resulting in tumor growth inhibition with MEDI9197 - an intratumorally administered TLR7/8 agonist. Cancer Res. 2016;76:1475. doi:10.1158/1538-7445.am2016-1475.

    Article  Google Scholar 

  113. Gresser I, Belardelli F, Maury C, Maunoury MT, Tovey MG. Injection of mice with antibody to interferon enhances the growth of transplantable murine tumors. J Exp Med. 1983;158:2095–107.

    Article  CAS  PubMed  Google Scholar 

  114. Affabris E, et al. Molecular mechanisms of action of interferons in the friend virus-induced leukemia cell system. Haematologica. 1987;72:76–8.

    CAS  PubMed  Google Scholar 

  115. Diamond MS, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 2011;208:1989–2003. doi:10.1084/jem.20101158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Robbins SH, et al. Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling. Genome Biol. 2008;9:R17. doi:10.1186/gb-2008-9-1-r17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Zhang X, et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell. 2013;51:226–35. doi:10.1016/j.molcel.2013.05.022.

    Article  CAS  PubMed  Google Scholar 

  118. Liu S, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347:aaa2630. doi:10.1126/science.aaa2630.

    Article  PubMed  CAS  Google Scholar 

  119. Gao P, et al. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell. 2013;154:748–62. doi:10.1016/j.cell.2013.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kim S, et al. Anticancer flavonoids are mouse-selective STING agonists. ACS Chem Biol. 2013;8:1396–401. doi:10.1021/cb400264n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lara PN Jr, et al. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J Clin Oncol. 2011;29:2965–71. doi:10.1200/JCO.2011.35.0660.

    Article  CAS  PubMed  Google Scholar 

  122. Corrales L, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11:1018–30. doi:10.1016/j.celrep.2015.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xia T, Konno H, Barber GN. Recurrent loss of STING signaling in melanoma correlates with susceptibility to viral oncolysis. Cancer Res. 2016;76(22):6747–59. doi:10.1158/0008-5472.CAN-16-1404.

    Article  CAS  PubMed  Google Scholar 

  124. Parato KA, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012;20:749–58. doi:10.1038/mt.2011.276.

    Article  CAS  PubMed  Google Scholar 

  125. Tayeb S, Zakay-Rones Z, Panet A. Therapeutic potential of oncolytic Newcastle disease virus: a critical review. Oncolytic Virother. 2015;4:49–62. doi:10.2147/OV.S78600.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Kim JH, et al. Systemic armed oncolytic and immunologic therapy for cancer with JX-594, a targeted poxvirus expressing GM-CSF. Mol Ther. 2006;14:361–70. doi:10.1016/j.ymthe.2006.05.008.

    Article  CAS  PubMed  Google Scholar 

  127. Breitbach CJ, et al. Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature. 2011;477:99–102. doi:10.1038/nature10358.

    Article  CAS  PubMed  Google Scholar 

  128. Breitbach CJ, et al. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res. 2013;73:1265–75. doi:10.1158/0008-5472.CAN-12-2687.

    Article  CAS  PubMed  Google Scholar 

  129. Heo J, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19:329–36. doi:10.1038/nm.3089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Park BH, et al. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: a phase I trial. Lancet Oncol. 2008;9:533–42. doi:10.1016/S1470-2045(08)70107-4.

    Article  CAS  PubMed  Google Scholar 

  131. Hwang TH, et al. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma. Mol Ther. 2011;19:1913–22. doi:10.1038/mt.2011.132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Breitbach CJ, Moon A, Burke J, Hwang TH, Kirn DH. A phase 2, open-label, randomized study of Pexa-Vec (JX-594) administered by intratumoral injection in patients with unresectable primary hepatocellular carcinoma. Methods Mol Biol. 2015;1317:343–357. doi: 10.1007/978-1-4939-2727-2_19.

    Article  PubMed  Google Scholar 

  133. Cripe TP, et al. Phase 1 study of intratumoral Pexa-Vec (JX-594), an oncolytic and immunotherapeutic vaccinia virus, in pediatric cancer patients. Mol Ther. 2015;23:602–8. doi:10.1038/mt.2014.243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu BL, et al. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003;10:292–303. doi:10.1038/sj.gt.3301885.

    Article  CAS  PubMed  Google Scholar 

  135. Harrington KJ, et al. Phase I/II study of oncolytic HSV GM-CSF in combination with radiotherapy and cisplatin in untreated stage III/IV squamous cell cancer of the head and neck. Clin Cancer Res. 2010;16:4005–15. doi:10.1158/1078-0432.CCR-10-0196.

    Article  CAS  PubMed  Google Scholar 

  136. Hu JC, et al. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res. 2006;12:6737–47. doi:10.1158/1078-0432.CCR-06-0759.

    Article  CAS  PubMed  Google Scholar 

  137. Senzer NN, et al. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol. 2009;27:5763–71. doi:10.1200/JCO.2009.24.3675.

    Article  CAS  PubMed  Google Scholar 

  138. Kaufman HL, et al. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol. 2010;17:718–30. doi:10.1245/s10434-009-0809-6.

    Article  PubMed  Google Scholar 

  139. Andtbacka RH, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015;33(25):2780–8. doi:10.1200/JCO.2014.58.3377.

    Article  CAS  PubMed  Google Scholar 

  140. Bourke E, Bosisio D, Golay J, Polentarutti N, Mantovani A. The toll-like receptor repertoire of human B lymphocytes: inducible and selective expression of TLR9 and TLR10 in normal and transformed cells. Blood. 2003;102:956–63. doi:10.1182/blood-2002-11-3355.

    Article  PubMed  Google Scholar 

  141. Jahrsdörfer B, et al. CpG DNA increases primary malignant B cell expression of costimulatory molecules and target antigens. J Leukoc Biol. 2001;69:81–8.

    PubMed  Google Scholar 

  142. Li J, et al. Lymphoma immunotherapy with CpG oligodeoxynucleotides requires TLR9 either in the host or in the tumor itself. J Immunol. 2007;179:2493–500.

    Article  CAS  PubMed  Google Scholar 

  143. Brody JD, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol. 2010;28:4324–32. doi:10.1200/JCO.2010.28.9793.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kim YH, et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood. 2012;119:355–63. doi:10.1182/blood-2011-05-355222.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Kohrt HE, et al. Dose-escalated, intratumoral TLR9 agonist and low-dose radiation induce abscopal effects in follicular lymphoma. Blood. 2014;124(21):3092.

    Google Scholar 

  146. Grauer OM, et al. TLR ligands in the local treatment of established intracerebral murine gliomas. J Immunol. 2008;181:6720–9.

    Article  CAS  PubMed  Google Scholar 

  147. Stone GW, et al. Regression of established AB1 murine mesothelioma induced by peritumoral injections of CpG oligodeoxynucleotide either alone or in combination with poly(I:C) and CD40 ligand plasmid DNA. J Thorac Oncol. 2009;4:802–8.

    Article  PubMed  Google Scholar 

  148. Sharma S, Dominguez AL, Hoelzinger DB, Lustgarten J. CpG-ODN but not other TLR-ligands restore the antitumor responses in old mice: the implications for vaccinations in the aged. Cancer Immunol Immunother. 2008;57:549–61.

    Article  CAS  PubMed  Google Scholar 

  149. Furumoto K, Soares L, Engleman EG, Merad M. Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J Clin Invest. 2004;113:774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Carpentier A, et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro-Oncology. 2010;12:401–8. doi:10.1093/neuonc/nop047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Hemont C, Neel A, Heslan M, Braudeau C, Josien R. Human blood mDC subsets exhibit distinct TLR repertoire and responsiveness. J Leukoc Biol. 2013;93:599–609. doi:10.1189/jlb.0912452.

    Article  CAS  PubMed  Google Scholar 

  152. Salem ML, Kadima AN, Cole DJ, Gillanders WE. Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J Immunother. 2005;28:220–8.

    Article  CAS  PubMed  Google Scholar 

  153. Salem ML, El-Naggar SA, Kadima A, Gillanders WE, Cole DJ. The adjuvant effects of the toll-like receptor 3 ligand polyinosinic-cytidylic acid poly (I:C) on antigen-specific CD8+ T cell responses are partially dependent on NK cells with the induction of a beneficial cytokine milieu. Vaccine. 2006;24:5119–32. doi:10.3201/eid1204.050599.

    Article  CAS  PubMed  Google Scholar 

  154. Levy H, S. A. ed Copenhaver D, Baron S, Dianzaniet F (eds) Galveston, U. Texas Medical Branch, (1992).

    Google Scholar 

  155. Levy H, Salazar A. Interferon inducers. In: Baron S, Copenhaver D, Dianzaniet F, editors. Interferon: principles and medical applications. Galveston, TX: University of Texas Medical Branch; 1992.

    Google Scholar 

  156. Levy HB, et al. Immune modulating effects of poly ICLC. Ann N Y Acad Sci. 1980;350:33–41.

    Article  CAS  PubMed  Google Scholar 

  157. Talmadge JE, Hartmann D. Optimization of an immunotherapeutic protocol with poly(I,C)-LC. J Biol Response Mod. 1985;4:484–9.

    CAS  PubMed  Google Scholar 

  158. Reikine S, Nguyen JB, Modis Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front Immunol. 2014;5:342. doi:10.3389/fimmu.2014.00342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Kurosawa S, et al. Expression of the costimulatory molecule B7-H2 (inducible costimulator ligand) by human airway epithelial cells. Am J Respir Cell Mol Biol. 2003;28:563–73. doi:10.1165/rcmb.2002-0199OC.

    Article  CAS  PubMed  Google Scholar 

  160. Black PL, et al. Effect of tumor burden and route of administration on the immunotherapeutic properties of polyinosinic-polycytidylic acid stabilized with poly-L-lysine in carboxymethyl cellulose [poly(I,C)-LC]. Int J Immunopharmacol. 1992;14:1341–53.

    Article  CAS  PubMed  Google Scholar 

  161. Machida H, et al. Interferon induction and therapy of brain tumors in rats by poly(ICLC). Microbiol Immunol. 1982;26:353–8.

    Article  CAS  PubMed  Google Scholar 

  162. Talmadge JE, et al. Immunotherapeutic potential in murine tumor models of polyinosinic-polycytidylic acid and poly-L-lysine solubilized by carboxymethylcellulose. Cancer Res. 1985;45:1066–72.

    CAS  PubMed  Google Scholar 

  163. Zhu X, et al. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med. 2007;5:10. doi:10.1186/1479-5876-5-10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Zhu X, et al. Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-alpha and IFN-gamma dependent manners. Cancer Immunol Immunother. 2010;59:1401–9. doi:10.1007/s00262-010-0876-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rosenfeld MR, et al. A multi-institution phase II study of poly-ICLC and radiotherapy with concurrent and adjuvant temozolomide in adults with newly diagnosed glioblastoma. Neuro-Oncology. 2010;12:1071–7. doi:10.1093/neuonc/noq071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wu CY, Monie A, Pang X, Hung CF, Wu TC. Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation. J Biomed Sci. 2010;17:88. doi:10.1186/1423-0127-17-88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hammerich L, Davis TA, Keler T, Salazar AM, Brody J. Combining In Situ vaccination with immune checkpoint blockade induces long-term regression of lymphoma tumors. Blood. 2016;128:465.

    Article  Google Scholar 

  168. Bever CT Jr, et al. Preliminary trial of poly ICLC in chronic progressive multiple sclerosis. Neurology. 1986;36:494–8.

    Article  PubMed  Google Scholar 

  169. Butowski N, et al. A phase II clinical trial of poly-ICLC with radiation for adult patients with newly diagnosed supratentorial glioblastoma: a north American brain tumor consortium (NABTC01-05). J Neuro-Oncol. 2009;91:175–82. doi:10.1007/s11060-008-9693-3.

    Article  CAS  Google Scholar 

  170. Butowski N, et al. A north American brain tumor consortium phase II study of poly-ICLC for adult patients with recurrent anaplastic gliomas. J Neuro-Oncol. 2009;91:183–9. doi:10.1007/s11060-008-9705-3.

    Article  CAS  Google Scholar 

  171. Hartman LL, et al. Pediatric phase II trials of poly-ICLC in the management of newly diagnosed and recurrent brain tumors. J Pediatr Hematol Oncol. 2014;36:451–7. doi:10.1097/MPH.0000000000000047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Okada H, et al. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res. 2015;21:286–94. doi:10.1158/1078-0432.CCR-14-1790.

    Article  CAS  PubMed  Google Scholar 

  173. Rapoport AP, et al. Combination immunotherapy after ASCT for multiple myeloma using MAGE-A3/poly-ICLC immunizations followed by adoptive transfer of vaccine-primed and costimulated autologous T cells. Clin Cancer Res. 2014;20:1355–65. doi:10.1158/1078-0432.CCR-13-2817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Sabbatini P, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18:6497–508. doi:10.1158/1078-0432.CCR-12-2189.

    Article  CAS  PubMed  Google Scholar 

  175. Salazar AM, Erlich RB, Mark A, Bhardwaj N, Herberman RB. Therapeutic in situ autovaccination against solid cancers with intratumoral poly-ICLC: case report, hypothesis, and clinical trial. Cancer Immunol Res. 2014;2:720–4. doi:10.1158/2326-6066.CIR-14-0024.

    Article  PubMed  Google Scholar 

  176. Tsuji T, et al. Effect of montanide and poly-ICLC adjuvant on human self/tumor antigen-specific CD4+ T cells in phase I overlapping long peptide vaccine trial. Cancer Immunol Res. 2013;1:340–50. doi:10.1158/2326-6066.CIR-13-0089.

    Article  CAS  PubMed  Google Scholar 

  177. De La Torre N, et al. Use of low-dose cyclophosphaminde followed by low-dose tumoral radiation, intratumoral poly-ICLC combined with local-regional therapy, followed by systemic immune boosting with intramuscular poly-ICLC in patients with cancers of the liver. J Clin Oncol. 2015;33(3):327.

    Article  Google Scholar 

  178. Giantonio BJ, et al. Toxicity and response evaluation of the interferon inducer poly ICLC administered at low dose in advanced renal carcinoma and relapsed or refractory lymphoma: a report of two clinical trials of the eastern cooperative Oncology group. Investig New Drugs. 2001;19:89–92.

    Article  CAS  Google Scholar 

  179. Okada H, et al. Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol. 2011;29:330–6. doi:10.1200/JCO.2010.30.7744.

    Article  CAS  PubMed  Google Scholar 

  180. Dhodapkar MV, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med. 2014;6:232ra251. doi:10.1126/scitranslmed.3008068.

    Article  CAS  Google Scholar 

  181. Bhardwaj N, et al. Converting tumors into vaccine manufacturing factories: DC recruitment, activation and clinical responses with a flt3L-primed in situ vaccine for low-grade lymphoma [nct01976585]. J Immunother Cancer. 2014;2(Suppl 3):45. doi:10.1186/2051-1426-2-S3-P45.

    Article  Google Scholar 

  182. Marron T, et al. Turning a tumor into a vaccine factory: in situ vaccination for low-grade lymphoma. Blood. 2014;124:5473.

    Google Scholar 

  183. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Blood. 2007;110:2537–44. doi:10.1182/blood-2007-03-082578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Ai WZ, et al. Follicular lymphoma B cells induce the conversion of conventional CD4+ T cells to T-regulatory cells. Int J Cancer. 2009;124:239–44. doi:10.1002/ijc.23881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Tiemessen MM, et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A. 2007;104:19446–51. doi:10.1073/pnas.0706832104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lin Y, et al. Immunosuppressive CD14+HLA-DR(low)/− monocytes in B-cell non-Hodgkin lymphoma. Blood. 2011;117:872–81. doi:10.1182/blood-2010-05-283820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin’s lymphoma. Cancer Res. 2006;66:10145–52. doi:10.1158/0008-5472.CAN-06-1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Rawal S, et al. Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment. J Immunol. 2013;190:6681–93. doi:10.4049/jimmunol.1201363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Michaud M, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334:1573–7. doi:10.1126/science.1208347.

    Article  CAS  PubMed  Google Scholar 

  190. Cox MC, et al. Phenotypically and functionally altered T cell compartment in DLBCL patients at diagnosis and its long-term modification upon chemoimmunotherapy regimen. Blood. 2015;126:1529.

    Google Scholar 

  191. Rech AJ, et al. CD25 blockade depletes and selectively reprograms regulatory T cells in concert with immunotherapy in cancer patients. Sci Transl Med. 2012;4:134ra162. doi:10.1126/scitranslmed.3003330.

    Article  CAS  Google Scholar 

  192. Jacobs JF, et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res. 2010;16:5067–78. doi:10.1158/1078-0432.CCR-10-1757.

    Article  CAS  PubMed  Google Scholar 

  193. Sampson JH, et al. A pilot study of IL-2Ralpha blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One. 2012;7:e31046. doi:10.1371/journal.pone.0031046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11:889–96. doi:10.1038/ni.1937.

    Article  CAS  PubMed  Google Scholar 

  195. Farinha P, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood. 2005;106:2169–74. doi:10.1182/blood-2005-04-1565.

    Article  CAS  PubMed  Google Scholar 

  196. Stiff A, et al. Myeloid-derived suppressor cells express Bruton's tyrosine kinase and can be depleted in tumor bearing hosts by ibrutinib treatment. Cancer Res. 2016;76(8):2125–36. doi:10.1158/0008-5472.CAN-15-1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Gunderson AJ, et al. Bruton tyrosine kinase-dependent immune cell cross-talk drives pancreas cancer. Cancer Discov. 2016;6:270–85. doi:10.1158/2159-8290.CD-15-0827.

    Article  CAS  PubMed  Google Scholar 

  198. Dubovsky JA, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122:2539–49. doi:10.1182/blood-2013-06-507947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Sagiv-Barfi I, Kohrt HE, Burckhardt L, Czerwinski DK, Levy R. Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma. Blood. 2015;125:2079–86. doi:10.1182/blood-2014-08-593137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Ramsay AG, et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood. 2009;114:4713–20. doi:10.1182/blood-2009-04-217687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lockmer S, et al. Sequential immune cell modulation in nordic follicular lymphoma patients in the SAKK 35/10 randomized trial with rituximab and lenalidomide. Blood. 2015;126:1535.

    Google Scholar 

  202. Gorgun G, et al. Lenalidomide enhances immune checkpoint blockade-induced immune response in multiple myeloma. Clin Cancer Res. 2015;21:4607–18. doi:10.1158/1078-0432.CCR-15-0200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua Brody MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marron, T.U., Hammerich, L., Brody, J. (2018). Local Immunotherapies of Cancer. In: Zitvogel, L., Kroemer, G. (eds) Oncoimmunology. Springer, Cham. https://doi.org/10.1007/978-3-319-62431-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62431-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62430-3

  • Online ISBN: 978-3-319-62431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics