Skip to main content

How to Design an Adaptive Management Approach?

  • Chapter
  • First Online:
Biodiversity and Wind Farms in Portugal

Abstract

Wind energy has some negative impacts on biodiversity (the most significant include mortality due to collision, barrier effect and/or disturbance). It is crucial to develop new approaches that reduce the uncertainty, and promote a compromise between economic sustainability, biodiversity conservation and social requirements. Adaptive management is presented as an approach that allows all of this. We review the current published knowledge regarding adaptive management and its application to wind energy projects and biodiversity. A step-by-step process is presented and detailed, including the discussion of relevant issues at each step. The set-up phase is crucial during project planning and allows the evaluation of different scenarios. The iterative phase is a sequential process of action and decision-making where actions are adjusted as a result of the monitoring results. Crucial factors to the success of adaptive management for a given wind farm are the involvement of different stakeholders and the capability to be a dynamic process, allowing for adjustment as a result of monitoring. A national case study is illustrated to demonstrate a comprehensive approach of adaptive management that goes beyond Portuguese legislation and promotes the involvement of several stakeholders and focus their concerns on key impacts. In the future, it is expected that this approach might be developed in line with all the Environmental Assessment Process allowing the inclusion of: (i) a detailed planning of the different phases of the project; (ii) the definition of different mitigation scenarios for expected impacts and evaluation of their costs; and (iii) the establishment of limits to the level of impacts deemed acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • APA. (2010). Guia Para Avaliação De Impacte Ambiental em Parques Eólicos [Methodological Guide to the Environmental Impact Assessment for Wind Farms]. Agência Portuguesa do Ambiente [Portuguese Environmental Agency]. Available from http://www.apambiente.pt/ (in Portuguese).

  • Arnett, E. B., Baerwald, EF., Mathews, F., Rodrigues, L., Rodriguez-Durán, A., Rydell, J., et al. (2015). Impacts of wind energy development on bats: A global perspective. In C. C. Voigt & T. Kingston (Eds.), Bats in the anthropocene: Conservation of bats in a changing world (pp. 295–323).

    Google Scholar 

  • Arnett, E. B., Huso, M. M. P., Schirmacher, M. R., & Hayes, J. P. (2011). Altering turbine speed reduces bat mortality at wind-energy facilities. Frontiers of Ecology and Environment, 9(4), 209–214.

    Article  Google Scholar 

  • Arnett, E. B., & May, R. F. (2016). Mitigating wind energy impacts on wildlife: Approaches for multiple taxa. Human-Wildlife Interactions, 10(1), 28–41.

    Google Scholar 

  • Baerwald, E. F., D’Amours, G. H., Klug, B. J., & Barclay, R. M. R. (2008). Barotrauma is a significant cause of bat fatalities at wind turbines. Current Biology, 18(16), R695–R696.

    Article  CAS  Google Scholar 

  • Barclay, R. M. R., Baereals, E. F., & Gruver, J. C. (2007). Variation in bat and bird fatalities at wind energy facilities: Assessing the effects of rotor size and tower height. Canadian Journal of Zoology, 85, 381–387.

    Article  Google Scholar 

  • BBOP. (2012). Standard on biodiversity offsets. Business and Biodiversity Offsets Programme (Washington, D.C.).

    Google Scholar 

  • BBOP. (2013). To no net loss and beyond: An overview of the business and biodiversity offsets programme (p. 20). Washington, DC: Business and Biodiversity Offsets Programme.

    Google Scholar 

  • Bennet, F., Culloch, R., & Tait, A. (2016). Guidance on effective adaptive management and post-consent monitoring strategies. Deliverables 5.2 & 5.4., RiCORE Project (p. 45).

    Google Scholar 

  • BIO3. (2007). Monitorização da avifauna no Parque Eólico da Serra de Candeeiros—relatório 3. Bio3—Estudos e Projetos em Biologia e Valorização de Recursos Naturais, Lda., Almada.

    Google Scholar 

  • BIO3. (2012). Monitorização da avifauna no Parque Eólico da Serra de Candeeiros—relatório 6. Bio3—Estudos e Projetos em Biologia e Valorização de Recursos Naturais, Lda., Almada.

    Google Scholar 

  • BIOINSIGHT. (2016). Monitorização da avifauna no Parque Eólico da Serra de Candeeiros—relatório 9. Bio3—Estudos e Projetos em Biologia e Valorização de Recursos Naturais, Lda., Almada.

    Google Scholar 

  • Birdlife International. (2015). Review and guidance on use of “shutdown-on-demand” for wind turbines to conserve migrating soaring birds in the Rift valley/red Sea flyway. Amman, Jordan: Regional Flyway Facility.

    Google Scholar 

  • Brotas, G., Oliveira, JM., & Loureiro, C. (2015). Wind farms and a compensatory programme for the Iberian wolf in Portugal: Seven years of analysis. In J. Koppel & E. Schuster (Eds.), Conference on wind energy and wildlife impacts: Book of abstracts. Berlin, Germany.

    Google Scholar 

  • Bulling, L., & Koppel, J. (2016) Exploring the trade-offs between wind energy and biodiversity conservation. In D. Geneletti (Ed.), Biodiversity and ecosystem services in impact assessment. Research Handbooks on Impact Assessment (pp. 299–320).

    Google Scholar 

  • Cole, S. G., & Dahl, E. L. (2013). Compensating white-tailed eagle mortality at the smøla wind-power plant using electrocution prevention measures. Wildlife Society Bulletin, 37, 84–93.

    Article  Google Scholar 

  • Cordeiro, A., Mascarenhas, M., & Costa, H. (2013). Long term survey of wind farms impacts on Common Kestrel’s populations and definition of an appropriate mitigation plan. In Conference on Wind Power and Environmental Impacts, Stocolm, Sweden

    Google Scholar 

  • Drewitt, A. L., & Langston, R. H. W. (2006). Assessing the impacts of wind farms on birds. Ibis, 148, 29–42.

    Article  Google Scholar 

  • Drewitt, A. L., & Langston, R. H. W. (2008). Collision effects of wind-power generators and other obstacles on birds. Annals of the New York Academy of Sciences, 1134, 233–266.

    Article  Google Scholar 

  • EC. (2011a). Guidance on wind energy development in accordance with the EU nature legislation. Luxembourg: Office for official publications of the European Communities.

    Google Scholar 

  • EC. (2011b). Wind energy developments and Natura 2000. EU Guidance on wind energy development in accordance with the EU nature legislation—European Commission, Brussels (p. 116).

    Google Scholar 

  • Enevoldsen, P., & Sovacool, B. K. (2016). Examining the social acceptance of wind energy: Practical guidelines for onshore wind project development in France. Renewable and Sustainable Energy Reviews, 53, 178–184.

    Article  Google Scholar 

  • Gartman, V., Bulling, L., Dahmen, M., Geiβler, G., & Koppel, J. (2016a). Mitigation measures for wildlife in wind energy development, consolidating the state of knowledge—Part 1: Planning and sitting, construction. Journal of environmental Assessment Policy and Management, 18(3), 1650013.

    Google Scholar 

  • Gartman, V., Bulling, L., Dahmen, M., Geiβler, G., & Koppel, J. (2016b). Mitigation measures for wildlife in wind energy Development, consolidating the state of knowledge—Part 2: operation, decommissioning. Journal of environmental Assessment Policy and Management, 18(3), 1650014.

    Google Scholar 

  • GPWind. (2013). Good practice guide—A new resource for reconciling wind energy development with environmental and community interests. Available at https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/gpwind_good_practice_guide_gp_wind_en.pdf

  • Huso, M. M. P. (2010). An estimator of wildlife fatality from observed carcasses. Environmetrics, 22, 318–329.

    Article  Google Scholar 

  • IFC. (2012). Performance standards on environmental and social sustainability (p. 66). Washington: International Finance Corporation, The World Bank Group.

    Google Scholar 

  • IUCN. (2016). Environmental & social management system (ESMS)—Standard on biodiversity conservation and sustainable use of natural resources. International Union for Conservation of Nature, available at https://www.iucn.org/sites/dev/files/iucn_esms_standard_biodiversity.pdf. Accessed in 2016–09–23.

  • Korner-Nievergelt, F., Korner-Nievergelt, P., Behr, O., Niermann, I., Brinkmann, R., & Hellriegel, B. (2011). A new method to determine bird and bat fatality at wind energy turbines from carcass searches. Wildlife Biology, 17, 350–363.

    Google Scholar 

  • LEA. (2010). Monitorização dos efeitos da Medida de Minimização de Mortalidade do Parque Eólico do Outeiro. Relatório final. Laboratório de Ecologia Aplicada da Universidade de Trás-os-Montes e Alto Douro. Vila Real. Portugal, 78.

    Google Scholar 

  • Marques, A. T. (2012). Compensation and off-site mitigation strategies for endangered Bonelli’s eagle populations in wind farms. Workshop Wind Power and Biodiversity: Tools to measure, avoid and compensate impacts. EDP, organizado por Bio3, Fundación Global Nature e Global Nature Fund. 29 de Junho de 2012. Lisboa, Portugal.

    Google Scholar 

  • Marques, A. T., Batalha, H., Rodrigues, S., Costa, H., Pereira, M. J. R., Fonseca, C., et al. (2014). Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biological Conservation, 179, 40–52.

    Article  Google Scholar 

  • Marques, A. T., Paula, J., Pereira, M. J. R., Ramalho, R., & Rodrigues, S. (2015). Assessing the problem. In M. Mascarenhas, J. Bernardino, A. Paula, H. Costa, C. Bastos, A. Cordeiro, et al. (Eds.), Biodiversity and wind energy: A bird’s and bat’s perspective (pp. 30–51). Portugal: Bio3 and University of Aveiro.

    Google Scholar 

  • Marques, J., Rodrigues, S., Paula, J., Mesquita, S., Cordeiro, A., Mascarenhas, M., et al. (2016). Mitigação de impactes dos parques eólicos em quirópteros minimizando perdas de produção: dois casos de estudo de adequação da velocidade de arranque das turbinas. CNAI’16. Évora. Portugal.

    Google Scholar 

  • Marshall, R. (2001). Application of mitigation and its resolution within environmental impact assessment: an industrial perspective. Impact Assessment and Project Appraisal, 19(3), 195–204.

    Article  Google Scholar 

  • Martínez, J. E., Calvo, J. F., Martínez, J. A., Zuberogoitia, I., Cerezo, E., Manrique, J., et al. (2010). Potential impact of wind farms on territories of large eagles in southeastern Spain. Biodiversity and Conservation, 19, 3757–3767.

    Google Scholar 

  • Moore, A. L., & McCarthy, M. A. (2010). On valuing information in adaptive-management models. Conservation Biology, 24(4), 984–993. doi:10.1111/j.1523-1739.2009.01443.x

  • Passos, I., Silva, M., Mesquita, S., Marques, A., Bernardino, J., Costa, H., et al. (2013). Aliens in wind farms—Preventing and monitoring impacts on vegetation. In Communication presented at Conference on Wind Energy and Wildlife Impacts. Stockholm, Sweden. Available from http://www.naturvardsverket.se/CWE2013/Emerging-issues/

  • Paula, J. J. S., Bispo, R. M. B., Leite, A. H., Pereira, P. G. S., Costa, H. M. R. G., Fonseca, C. M. M. S., et al. (2015a). Camera-trapping as a methodology to assess the persistence of wildlife carcasses resulting from collisions with human-made structures. Wildlife research, 41(8), 717–725.

    Article  Google Scholar 

  • Paula, A., Marques, J., Pereira, P. S., & Santos, J. (2015). Mitigation: A hierarchy of solutions. In M. Mascarenhas, J. Bernardino, A. Paula, H. Costa, C. Bastos, A. Cordeiro, et al. (Eds.), Biodiversity and wind energy: A bird’s and bat’s perspective (pp. 52–71). Portugal: Bio3 and University of Aveiro.

    Google Scholar 

  • Pereira, M. J. R., Peste, F., Paula, A., Pereira, P., Bernardino, J., Vieira, J., et al. (2016). Managing coniferous production forests towards bat conservation. Wildlife Research, 43, 80–92.

    Article  Google Scholar 

  • Peste, F., Paula, A., da Silva, L. O., Bernardino, J., Pereira, P., Mascarenhas, M., et al. (2015). How to mitigate impacts of wind farms on bats? A review of potential conservation measures in the European context. Environmental Impact Assessment Review, 51, 10–22.

    Article  Google Scholar 

  • Santos, J., Cordeiro, A., & Costa, H. (2015). Reconciling wind and biodiversity: The integrated management approach. In M. Mascarenhas, J. Bernardino, A. Paula, H. Costa, C. Bastos, A. Cordeiro, et al. (Eds.), Biodiversity and wind energy: A bird’s and bat’s prspective (pp. 72–83). Portugal: Bio3 and University of Aveiro.

    Google Scholar 

  • Santos, J., Marques, A T., Paula, A., Bernardino, J., Mascarenhas, M., & Costa, H. (2012). Compensation and off-site mitigation strategies for endangered Bonelli’s eagle populations in wind farms. VIIth Polish Wind Energy Association (PWEA) Conference & Exhibition. Varsóvia, Polónia, May 22–23, 2012.

    Google Scholar 

  • Stankey, G. H., Clark, R. N., & Bormann, B. T. (2005). Adaptive management of natural resources: Theory, concepts, and management institutions. General Technical Report. PNW-GTR-654. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station (p. 73).

    Google Scholar 

  • Strickland, M. D., Arnett, E. B., Erickson, W. P., Johnson, D. H., Johnson, G. D., Morrison, M. L., et al. (2011). Comprehensive guide to studying wind energy/wildlife interactions. Washington, D.C., USA: Prepared for the National Wind Coordinating Collaborative.

    Google Scholar 

  • Tomé, R. F., Canário, F., Leitão, A., Pires, N., Cardoso, P., & Repas, M. (2015). Radar assisted shutdown on demand ensures zero soaring bird mortality at a wind farm located in a migratory flyway. In J. Koppel & E. Schuster (Eds.), Conference on wind energy and wildlife impacts: Book of abstracts. Berlin, Germany.

    Google Scholar 

  • Tomé, R., Leitão, A. H., Canário, F., & Pires, N. (2012). Environmental management of wind farms—A successful onshore case study. FAME international Workshop—Effects of marine renewables and other marine uses on biodiversity—Atlantic Area, Lisbon. Portugal.

    Google Scholar 

  • USFWS. (2012). U.S Fish and Wildlife Service—Land-based wind energy guidelines, USA (p. 71).

    Google Scholar 

  • van der BRUGGE, R., & van RAAK. (2007). Facing the adaptive management challenge: Insights from transition management. Ecology and Society, 12(2), 33. http://www.ecologyandsociety.org/vol12/iss2/art33. Accessed in 2014–03–11.

  • Walters, C. J., & Holling, C. S. (1990). Large-scale management experiments and learning by doing. Ecology, 71, 2060–2068.

    Google Scholar 

  • Westgate, M. J., Likens, G. E., & Lindenmayer, D. B. (2013). Adaptive management of biological systems: A review. Biological Conservation, 158, 128–139.

    Article  Google Scholar 

  • Williams, B. K., & Brown, E. D. (2012). Adaptive management: The U.S. department of the interior applications guide. Adaptive Management Working Group, U.S. Department of the Interior, Washington, DC.

    Google Scholar 

  • Williams, B. K., & Brown, E. D. (2014). Adaptive management: From more talk to real action. Environmental Management, 53, 465–479. doi:10.1007/s00267-013-0205-7.

    Article  Google Scholar 

  • Williams, B. K., & Brown, E. D. (2016). Technical challenges in the application of adaptive management. Biological Conservation, 195, 255–263.

    Article  Google Scholar 

  • Williams, B. K., & Johnson, F. A. (2013). Confronting dynamics and uncertainty in optimal decision making for conservation. Environmental Research letters, 8, 025004.

    Article  Google Scholar 

  • Williams, B. K., Szaro, R. C., & Shapiro, C. D. (2007). Adaptive Management: The U.S. Department of the Interior Technical Guide. Washington, DC: Adaptative Management Working Group. U.S. Departmente of the Interior.

    Google Scholar 

  • Williams, B. K., Szaro, R. C., & Shapiro, C. D. (2009). Adaptive management: The U.S. Department of the interior technical guide. Washington, DC: Adaptive Management Working Group, U.S. Department of the Interior.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Coelho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Coelho, H., Mesquita, S., Mascarenhas, M. (2018). How to Design an Adaptive Management Approach?. In: Mascarenhas, M., Marques, A., Ramalho, R., Santos, D., Bernardino, J., Fonseca, C. (eds) Biodiversity and Wind Farms in Portugal. Springer, Cham. https://doi.org/10.1007/978-3-319-60351-3_8

Download citation

Publish with us

Policies and ethics