Skip to main content

The Fourier Transforms

  • Chapter
  • First Online:
Lecture Notes on Wavelet Transforms

Part of the book series: Compact Textbooks in Mathematics ((CTM))

Abstract

Historically, Joseph Fourier (1770–1830) first introduced the remarkable idea of expansion of a function in terms of trigonometric series without giving any attention to rigorous mathematical analysis. The integral formulas for the coefficients of the Fourier expansion were already known to Leonhard Euler (1707–1783) and others. In fact, Fourier developed his new idea for finding the solution of heat (or Fourier) equation in terms of Fourier series so that the Fourier series can be used as a practical tool for determining the Fourier series solution of partial differential equations under prescribed boundary conditions. Thus, the Fourier series of a function f(t) defined on the interval (−L, L) is given by

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The following list includes books and research papers that have been useful for the preparation of these notes as well as some which may be of interest for further study.

Bibliography

  • Almeida, L. B. (1994). The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 42, 3084–3091.

    Article  Google Scholar 

  • Atakishiyev, N. M., Vicent, L. E., & Wolf, K. B. (1999). Continuous vs discrete fractional Fourier transforms. Journal of Computational and Applied Mathematics, 107, 73–95.

    Article  MathSciNet  MATH  Google Scholar 

  • Bracewell, R. N. (2000). The Fourier transform and its applications (3rd ed.). Boston: McGraw-Hill.

    MATH  Google Scholar 

  • Brigham, E. O. (1998). The fast Fourier transform and its applications. New Jersey: Prentice Hall.

    Google Scholar 

  • Butz, T. (2006). Fourier transformation for pedestrians. Berlin: Springer.

    MATH  Google Scholar 

  • Candan, C., Kutay, M. A., & Ozaktas, H. M. (2000). The discrete fractional Fourier transform. IEEE Transactions on Signal Processing, 48(5), 1329–1337.

    Article  MathSciNet  MATH  Google Scholar 

  • Debnath, L., & Bhatta, D. (2015). Integral transforms and their applications (3rd ed.). Boca Raton/Florida: Chapman and Hall/CRC Press.

    MATH  Google Scholar 

  • Debnath, L., & Mikusinski, P. (1999). Introduction to Hilbert spaces with applications (2nd ed.). Boston: Academic.

    MATH  Google Scholar 

  • Duhamel, P., & Vetterli, M. (1990). Fast Fourier transforms: A tutorial review and a state of the art. Signal Processing, 19(4), 259–299.

    Article  MathSciNet  MATH  Google Scholar 

  • Heisenberg, W. (1948a). Zur statistischen theori der turbulenz. Zeitschrift für Physik, 124, 628–657.

    Google Scholar 

  • Heisenberg, W. (1948b). On the theory of statistical and isotropic turbulence. Proceedings of the Royal Society of London, A195, 402–406.

    Google Scholar 

  • Mendlovic, D., & Ozaktas, H. M. (1993a). Fractional Fourier transforms and their optical implementation-I. Journal of the Optical Society of America A, 10(10), 1875–1881.

    Google Scholar 

  • Mendlovic, D., & Ozaktas, H. M. (1993b). Fractional Fourier transforms and their optical implementation-II. Journal of the Optical Society of America A. 10(12), 2522–2531.

    Google Scholar 

  • Namias, V. (1980). The fractional order Fourier transform and its application to quantum mechanics. Journal of the Institute of Mathematics and its Applications, 25, 241–265.

    Article  MathSciNet  MATH  Google Scholar 

  • Ozaktas, H. M., Kutay, M. A., & Candan, C. (2010). Fractional Fourier transform. In A. D. Poularikas (Ed.), Transforms and applications handbook (pp. 632–659). Boca Raton: CRC Press.

    Google Scholar 

  • Ozaktas, H. M., Zalevsky, Z., & Kutay, M. A. (2000). The fractional Fourier transform with applications in optics and signal processing. New York: Wiley.

    Google Scholar 

  • Ran, T., Bing, D., & Yue, W. (2006). Research progress of the fractional Fourier transform in signal processing. Science in China: Series F, 49, 1–25.

    MathSciNet  MATH  Google Scholar 

  • Rao, K. R., Kim, D. N., & Hwang, J. J. (2010). Fast Fourier transform: algorithms and applications. New York: Springer.

    Book  MATH  Google Scholar 

  • Sejdić, E., Djurović, I., & Stanković, L. (2011). Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Processing, 91, 1351–1369.

    Article  MATH  Google Scholar 

  • Sundararajan, D. (2001). The discrete Fourier transform. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Tao, R., Deng, B., & Wang, Y. (2009). Fractional Fourier transform and its applications. Beijing: Tsinghua University Press.

    Google Scholar 

  • Wong, M. W. (2010). Discrete Fourier analysis. Boston: Birkhäuser.

    Google Scholar 

  • Zayed, A. I. (1998). Fractional Fourier transform of generalized functions. Integral Transforms and Special Functions, 7(3), 299–312.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Debnath, L., Shah, F.A. (2017). The Fourier Transforms. In: Lecture Notes on Wavelet Transforms. Compact Textbooks in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-59433-0_1

Download citation

Publish with us

Policies and ethics