Skip to main content

Predicting Interrelated Alzheimer’s Disease Outcomes via New Self-learned Structured Low-Rank Model

  • Conference paper
  • First Online:
Book cover Information Processing in Medical Imaging (IPMI 2017)

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. As the prodromal stage of AD, Mild Cognitive Impairment (MCI) maintains a good chance of converting to AD. How to efficaciously detect this conversion from MCI to AD is significant in AD diagnosis. Different from standard classification problems where the distributions of classes are independent, the AD outcomes are usually interrelated (their distributions have certain overlaps). Most of existing methods failed to examine the interrelations among different classes, such as AD, MCI conversion and MCI non-conversion. In this paper, we proposed a novel self-learned low-rank structured learning model to automatically uncover the interrelations among classes and utilized such interrelated structures to enhance classification. We conducted experiments on the ADNI cohort data. Empirical results demonstrated advantages of our model.

H. Huang—At UTA, this work was partially supported by NIH R01 AG049371, NSF IIS 1302675, IIS 1344152, DBI 1356628, IIS 1619308, IIS 1633753. At IU, this work was partially supported by NIH R01 EB022574, R01 LM011360, U01 AG024904, P30 AG10133, and R01 AG19771.

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, M.S., DeKosky, S.T., Dickson, D., Dubois, B., Feldman, H.H., Fox, N.C., Gamst, A., Holtzman, D.M., Jagust, W.J., Petersen, R.C., et al.: The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 7(3), 270–279 (2011)

    Article  Google Scholar 

  2. Bentler, P., Lee, S.Y.: Matrix derivatives with chain rule and rules for simple, hadamard, and kronecker products. J. Math. Psychol. 17(3), 255–262 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bezdek, J.C., Hathaway, R.J.: Convergence of alternating optimization. Neural Parallel Sci. Comput. 11(4), 351–368 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Cacabelos, R., Yamatodani, A., Niigawa, H., Hariguchi, S., Tada, K., Nishimura, T., Wada, H., Brandeis, L., Pearson, J.: Brain histamine in Alzheimer’s disease. Methods Find. Exp. Clin. Pharmacol. 11(5), 353–360 (1989)

    Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011). Software available at. http://www.csie.ntu.edu.tw/cjlin/libsvm

    Article  Google Scholar 

  7. Devanand, D., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal, S., Rusinek, H., Pelton, G., Honig, L., Mayeux, R., et al.: Hippocampal and entorhinal atrophy in mild cognitive impairment prediction of Alzheimer disease. Neurology 68(11), 828–836 (2007)

    Article  Google Scholar 

  8. Hua, X., Leow, A.D., Parikshak, N., Lee, S., Chiang, M.C., Toga, A.W., Jack, C.R., Weiner, M.W., Thompson, P.M., ADNI, et al.: Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, MCI, and normal subjects. Neuroimage 43(3), 458–469 (2008)

    Google Scholar 

  9. Kang, Z., Grauman, K., Sha, F.: Learning with whom to share in multi-task feature learning. In: Proceedings of the 28th International Conference on Machine Learning (ICML 2011), pp. 521–528 (2011)

    Google Scholar 

  10. Kittaneh, F.: Inequalities for the schatten p-norm. Glasgow Math. J. 26(02), 141–143 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Misra, C., Fan, Y., Davatzikos, C.: Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. Neuroimage 44(4), 1415–1422 (2009)

    Article  Google Scholar 

  12. Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., ADNI, et al.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015)

    Google Scholar 

  13. Petersen, R., Stevens, J., Ganguli, M., Tangalos, E., Cummings, J., DeKosky, S.: Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review) report of the quality standards subcommittee of the American academy of neurology. Neurology 56(9), 1133–1142 (2001)

    Article  Google Scholar 

  14. Shen, L., Kim, S., Risacher, S.L., Nho, K., Swaminathan, S., West, J.D., Foroud, T., Pankratz, N., Moore, J.H., Sloan, C.D., et al.: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: a study of the ADNI cohort. Neuroimage 53(3), 1051–1063 (2010)

    Article  Google Scholar 

  15. Suykens, J.A., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Least Squares Support Vector Machines, vol. 4. World Scientific (2002)

    Google Scholar 

  16. Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Shen, L., ADNI: Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance. In: IEEE Conference on Computer Vision, pp. 557–562 (2011)

    Google Scholar 

  17. Wang, H., Nie, F., Huang, H., Risacher, S., Saykin, A.J., Shen, L., ADNI: Joint classification and regression for identifying ad-sensitive and cognition-relevant imaging biomarkers. In: The 14th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 115–123 (2011)

    Google Scholar 

  18. Wang, H., Nie, F., Huang, H., Risacher, S.L., Saykin, A.J., Shen, L., ADNI: Identifying disease sensitive and quantitative trait relevant biomarkers from multi-dimensional heterogeneous imaging genetics data via sparse multi-modal multi-task learning. Bioinformatics 28(12), i127–i136 (2012)

    Google Scholar 

  19. Wenk, G.L., et al.: Neuropathologic changes in Alzheimer’s disease. J. Clin. Psychiatry 64, 7–10 (2003)

    Google Scholar 

  20. West, M.J., Coleman, P.D., Flood, D.G., Troncoso, J.C.: Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344(8925), 769–772 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Heng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, X. et al. (2017). Predicting Interrelated Alzheimer’s Disease Outcomes via New Self-learned Structured Low-Rank Model. In: Niethammer, M., et al. Information Processing in Medical Imaging. IPMI 2017. Lecture Notes in Computer Science(), vol 10265. Springer, Cham. https://doi.org/10.1007/978-3-319-59050-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59050-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59049-3

  • Online ISBN: 978-3-319-59050-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics