Skip to main content

Monofunctional Elements of Multi-functional Proteins

  • Chapter
  • First Online:
  • 429 Accesses

Abstract

Arrestins can act as activators or molecular scaffolds for various effectors, including MAPK signaling cascades, clathrin and AP2, E3 ubiquitin ligases, and phosphatases. Current investigations have focused on isolating the regions of arrestin that interact with effectors in an attempt to understand the role of arrestin in mediating downstream signaling pathways. The interactions of arrestins with some of their binding partners has recently been tested using monofunctional elements, which only have a particular function of a protein, and range from peptide fragments to separated domains. These elements can be used to recapitulate protein-protein interactions, and have been applied successfully in elucidation of the structural basis of the interactions of arrestin with receptors, clathrin, AP2, kinases, and several other effector proteins.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This chapter uses the systematic names of the arrestin proteins: arrestin-1 (historic name S-antigen, visual or rod arrestin), arrestin-2 (β-arrestin or β-arrestin1), arrestin-3 (β-arrestin2), and arrestin-4 (cone or X-arrestin).

References

  • Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV (2011) Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Biochemistry 50:3749–3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baillie George S, Adams David R, Bhari N, Houslay Thomas M, Vadrevu S, Meng D, Li X, Dunlop A, Milligan G, Bolger Graeme B, Klussmann E, Houslay Miles D (2007) Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of β-arrestin using spot-immobilized peptide arrays. Biochem J 404:71–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitman M, Kook S, Gimenez LE, Lizama BN, Palazzo MC, Gurevich EV, Gurevich VV (2012) Silent scaffolds: inhibition of c-Jun N-terminal kinase 3 activity in the cell by a dominant-negative arrestin-3 mutant. J Biol Chem 287:19653–19664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruchas MR, Macey TA, Lowe JD, Chavkin C (2006) Kappa opioid receptor activation of p38 MAPK Is GRK3- and arrestin-dependent in neurons and astrocytes. J Biol Chem 281:18081–18089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter B, Nehmé R, Warne T, Leslie AG, Tate CG (2016) Structure of the adenosine A(2A) receptor bound to an engineered G protein. Nature 536:104–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffa S, Breitman M, Hanson SM, Callaway K, Kook S, Dalby KN, Gurevich VV (2011) The effect of arrestin conformation on the recruitment of c-Raf1, MEK1, and ERK1/2 activation. PLoS ONE 6:e28723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen GB, Ren R, Baltimore D (1995) Modular binding domains in signal transduction proteins. Cell 80:237–248

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP (2007) Scaffold proteins of MAP-kinase modules. Oncogene 26:3185–3202

    Article  CAS  PubMed  Google Scholar 

  • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770

    Article  CAS  PubMed  Google Scholar 

  • Franke RR, König B, Sakmar TP, Khorana HG, Hofmann KP (1990) Rhodopsin mutants that bind but fail to activate transducin. Science 250:123–125

    Article  CAS  PubMed  Google Scholar 

  • Galet C, Ascoli M (2008) Arrestin-3 is essential for the activation of Fyn by the luteinizing hormone receptor (LHR) in MA-10 cells. Cell Signal 20:1822–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Good MC, Tang G, Singleton J, Remenyi A, Lim WA (2009) The Ste5 scaffold directs mating signaling by catalytically unlocking the Fus3 MAP kinase for activation. Cell 136:1085–1097

    Google Scholar 

  • Good MC, Zalatan JG, Lim WA (2011) Scaffold proteins: hubs for controlling the flow of cellular information. Science 332:680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman OB, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) [beta]-Arrestin acts as a clathrin adaptor in endocytosis of the [beta]2-adrenergic receptor. Nature 383:447–450

    Article  CAS  PubMed  Google Scholar 

  • Goodman OB, Krupnick JG, Gurevich VV, Benovic JL, Keen JH (1997) Arrestin/clathrin interaction. Localization of the arrestin binding locus to the clathrin terminal domain. J Biol Chem 272:15017–15022

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Whitmarsh AJ (2008) The beta-arrestin-2 scaffold protein promotes c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus. J Biol Chem 283:15903–15911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Benovic JL (1993) Visual arrestin interaction with rhodopsin. Sequential multisite binding ensures strict selectivity toward light-activated phosphorylated rhodopsin. J Biol Chem 268:11628–11638

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2004) The molecular acrobatics of arrestin activation. Trends Pharmacol Sci 25:105–111

    Article  CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2006) The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 110:465–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2010) Custom-designed proteins as novel therapeutic tools? The case of arrestins. Expert Rev Mol Med 12:e13

    Article  PubMed  PubMed Central  Google Scholar 

  • Gurevich VV, Gurevich EV (2015) Analyzing the roles of multi-functional proteins in cells: the case of arrestins and GRKs. Crit Rev Biochem Mol Biol 50:440–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich EV, Tesmer JJ, Mushegian A, Gurevich VV (2012) G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 133:40–69

    Article  CAS  PubMed  Google Scholar 

  • Hanson SM, Gurevich VV (2006) The differential engagement of arrestin surface charges by the various functional forms of the receptor. J Biol Chem 281:3458–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanson SM, Francis DJ, Vishnivetskiy SA, Kolobova EA, Hubbell WL, Klug CS, Gurevich VV (2006) Differential interaction of spin-labeled arrestin with inactive and active phosphorhodopsin. Proc Natl Acad Sci USA 103:4900–4905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch JA, Schubert C, Gurevich VV, Sigler PB (1999) The 2.8 A crystal structure of visual arrestin: a model for arrestin’s regulation. Cell 97:257–269

    Article  CAS  PubMed  Google Scholar 

  • Imamura T, Huang J, Dalle S, Ugi S, Usui I, Luttrell LM, Miller WE, Lefkowitz RJ, Olefsky JM (2001) β-Arrestin-mediated recruitment of the Src family kinase yes mediates endothelin-1-stimulated glucose transport. J Biol Chem 276:43663–43667

    Article  CAS  PubMed  Google Scholar 

  • Kang DS, Kern RC, Puthenveedu MA, von Zastrow M, Williams JC, Benovic JL (2009) Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. J Biol Chem 284:29860–29872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Zhou XE, Gao X, He Y, Liu W, Ishchenko A, Barty A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Ke J, Tan MH, Zhang C, Moeller A, West GM, Pascal BD, Van Eps N, Caro LN, Vishnivetskiy SA, Lee RJ, Suino-Powell KM, Gu X, Pal K, Ma J, Zhi X, Boutet S, Williams GJ, Messerschmidt M, Gati C, Zatsepin NA, Wang D, James D, Basu S, Roy-Chowdhury S, Conrad CE, Coe J, Liu H, Lisova S, Kupitz C, Grotjohann I, Fromme R, Jiang Y, Tan M, Yang H, Li J, Wang M, Zheng Z, Li D, Howe N, Zhao Y, Standfuss J, Diederichs K, Dong Y, Potter CS, Carragher B, Caffrey M, Jiang H, Chapman HN, Spence JC, Fromme P, Weierstall U, Ernst OP, Katritch V, Gurevich VV, Griffin PR, Hubbell WL, Stevens RC, Cherezov V, Melcher K, Xu HE (2015) Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature 523:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Vishnivetskiy SA, Van Eps N, Alexander NS, Cleghorn WM, Zhan X, Hanson SM, Morizumi T, Ernst OP, Meiler J, Gurevich VV, Hubbell WL (2012) Conformation of receptor-bound visual arrestin. Proc Nat Acad Sci USA 109:18407–18412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Hofmann KP, Ernst OP, Scheerer P, Choe HW, Sommer ME (2013) Crystal structure of pre-activated arrestin p44. Nature 497:142–146

    Article  CAS  PubMed  Google Scholar 

  • König B, Arendt A, McDowell JH, Kahlert M, Hargrave PA, Hofmann KP (1989) Three cytoplasmic loops of rhodopsin interact with transducin. Proc Natl Acad Sci USA 86:6878–6882

    Article  PubMed  PubMed Central  Google Scholar 

  • Krupnick JG, Gurevich VV, Schepers T, Hamm HE, Benovic JL (1994) Arrestin-rhodopsin interaction. Multi-site binding delineated by peptide inhibition. J Biol Chem 269:3226–3232

    CAS  PubMed  Google Scholar 

  • Krupnick JG, Gurevich VV, Benovic JL (1997) Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J Biol Chem 272:18125–18131

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SG, Caron MG, Barak LS (1999) The 2-adrenergic receptor/arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Nat Acad Sci USA 96:3712–3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, MacLeod R, Dunlop AJ, Edwards HV, Advant N, Gibson LC, Devine NM, Brown KM, Adams DR, Houslay MD, Baillie GS (2009) A scanning peptide array approach uncovers association sites within the JNK/beta arrestin signalling complex. FEBS Lett 583:3310–3316

    Article  CAS  PubMed  Google Scholar 

  • Luttrell DK, Luttrell LM (2004) Not so strange bedfellows: G-protein-coupled receptors and Src family kinases. Oncogene 23:7969–7978

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661

    Article  CAS  PubMed  Google Scholar 

  • Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ (2001) Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds. Proc Natl Acad Sci 98:2449–2454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577

    Article  CAS  PubMed  Google Scholar 

  • Meng D, Lynch MJ, Huston E, Beyermann M, Eichhorst J, Adams DR, Klussmann E, Houslay MD, Baillie GS (2009) MEK1 binds directly to βArrestin1, influencing both its phosphorylation by ERK and the timing of its isoprenaline-stimulated internalization. J Biol Chem 284:11425–11435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moaven H, Koike Y, Jao CC, Gurevich VV, Langen R, Chen J (2013) Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina. Proc Natl Acad Sci USA 110:9463–9468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsini MJ, Benovic JL (1998) Characterization of dominant negative arrestins that inhibit beta2-adrenergic receptor internalization by distinct mechanisms. J Biol Chem 273:34616–34622

    Article  CAS  PubMed  Google Scholar 

  • Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23:7906–7909

    Article  CAS  PubMed  Google Scholar 

  • Peeler JS, Donzell WC, Anderson RG (1993) The appendage domain of the AP-2 subunit is not required for assembly or invagination of clathrin-coated pits. J Cell Biol 120:47–54

    Article  CAS  PubMed  Google Scholar 

  • Phillips WJ, Wong SC, Cerione RA (1992) Rhodopsin/transducin interactions. II. Influence of the transducin-beta gamma subunit complex on the coupling of the transducin-alpha subunit to rhodopsin. J Biol Chem 267:17040–17046

    CAS  PubMed  Google Scholar 

  • Pin J-P, Galvez T, Prézeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98:325–354

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo J, Tsakem EL, Breitman M, Gurevich VV (2011) Identification of arrestin-3-specific residues necessary for JNK3 kinase activation. J Biol Chem 286:27894–27901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) β-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla AK, Xiao K, Lefkowitz RJ (2011) Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 36:457–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ (2013) Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature 497:137–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Raman D, Gurevich EV, Vishnivetskiy SA, Gurevich VV (2006) Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J Biol Chem 281:21491–21499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Gurevich EV, Gurevich VV (2007) Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites. J Neurochem 103:1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Coffa S, Fu H, Gurevich VV (2009) How does arrestin assemble MAPKs into a signaling complex? J Biol Chem 284:685–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Vishnivetskiy SA, Seo J, Chen J, Gurevich EV, Gurevich VV (2011) Arrestin-1 expression in rods: balancing functional performance and photoreceptor health. Neuroscience 174:37–49

    Article  CAS  PubMed  Google Scholar 

  • Sterne-Marr R, Gurevich VV, Goldsmith P, Bodine RC, Sanders C, Donoso LA, Benovic JL (1993) Polypeptide variants of beta-arrestin and arrestin3. J Biol Chem 268:15640–15648

    CAS  PubMed  Google Scholar 

  • Strissel KJ, Sokolov M, Trieu LH, Arshavsky VY (2006) Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin. J Neurosci 26:1146–1153

    Article  CAS  PubMed  Google Scholar 

  • Strungs EG, Luttrell LM (2014) Arrestin-dependent activation of ERK and Src family kinases. In: Gurevich VV (ed) Arrestins—pharmacology and therapeutic potential. Springer, Berlin, pp 225–257

    Chapter  Google Scholar 

  • Szczepek M, Beyrière F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME, Hildebrand PW, Scheerer P (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 5

    Google Scholar 

  • ter Haar E, Harrison SC, Kirchhausen T (2000) Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin. Proc Natl Acad Sci USA 97:1096–1100

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishnivetskiy SA, Paz CL, Schubert C, Hirsch JA, Sigler PB, Gurevich VV (1999) How does arrestin respond to the phosphorylated state of rhodopsin? J Biol Chem 274:11451–11454

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Hosey MM, Benovic JL, Gurevich VV (2004) Mapping the arrestin-receptor interface: structural elements responsible for receptor specificity of arrestin proteins. J Biol Chem 279:1262–1268

    Article  CAS  PubMed  Google Scholar 

  • Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV (2011) Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. J Biol Chem 286:24288–24299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV (2013) Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. J Biol Chem 288:11741–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilden U (1995) Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry 34:1446–1454

    Article  CAS  PubMed  Google Scholar 

  • Wilden U, Hall SW, Kuhn H (1986) Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Proc Natl Acad Sci USA 83:1174–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu N, Hanson SM, Francis DJ, Vishnivetskiy SA, Thibonnier M, Klug CS, Shoham M, Gurevich VV (2006) Arrestin binding to calmodulin: a direct interaction between two ubiquitous signaling proteins. J Mol Biol 364:955–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR, Lefkowitz RJ (2007) Functional specialization of β-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci 104:12011–12016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DD, Kuan C-Y, Whitmarsh AJ, Rinocn M, Zheng TS, Davis RJ, Rakic P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389:865–870

    Article  CAS  PubMed  Google Scholar 

  • Zhan X, Kook S, Gurevich EV, Gurevich VV (2014a) Arrestin-dependent activation of JNK family kinases. In: Gurevich VV (ed) Arrestins—pharmacology and therapeutic potential. Springer, Berlin, pp 259–280

    Chapter  Google Scholar 

  • Zhan X, Perez A, Gimenez LE, Vishnivetskiy SA, Gurevich VV (2014b) Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains. Cell Signal 26:766–776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Stoy H, Kaoud TS, Perry NA, Chen Q, Perez A, Els-Heindl S, Slagis JV, Iverson TM, Beck-Sickinger AG, Gurevich EV, Dalby KN, Gurevich VV (2016) Peptide mini-scaffold facilitates JNK3 activation in cells. Sci Rep 6:21025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS (2014) Identification of receptor binding-induced conformational changes in non-visual arrestins. J Biol Chem 289:20991–21002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants to VVG (GM077561, GM109955, EY011500), EVG (NS065868, DA030103) and TMI (GM095633, GM120569). NAP was supported by T32 GM007628 and the American Heart Association (16PRE30180007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vsevolod V. Gurevich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Perry, N.A., Zhan, X., Iverson, T.M., Gurevich, E.V., Gurevich, V.V. (2017). Monofunctional Elements of Multi-functional Proteins. In: Gurevich, V. (eds) The Structural Basis of Arrestin Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-57553-7_18

Download citation

Publish with us

Policies and ethics